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Let X be a strongly symmetric Hunt process with a-potential density
u“(x, y). Let

g2 = {;tl[f(u“(ac,y))2 du(x)dp(y) < °°}

and let L} denote the continuous additive functional with Revuz measure
u. For a set of positive measures .# C £2, subject to some additional
regularity conditions, we consider families of continuous (in time) additive
functionals L = {L}, (¢, n) € R*X.#} of X and a second-order Gaussian
chaos H, ={H,(n), u €#} which is associated with L by an isomor-
phism theorem of Dynkin.

A general theorem is obtained which shows that, with some additional
regularity conditions depending on X and .#, if H, has a continuous
version on .# almost surely, then so does L and, furthermore, that moduli
of continuity for H, are also moduli of continuity for L.

Special attention is given to Lévy processes in R" and 7", the n-
dimensional torus, with .#Z taken to be the set of translates of a fixed
measure. Many concrete examples are given, especially when X is Brown-
ian motion in R" and T" for n = 2 and 3. For certain measures p on 7"
and processes, including Brownian motion in 7', necessary and sufficient
conditions are given for the continuity of {L/, (¢, ) € R* X.#}, where .#
is the set of all translates of u.

1. Introduction. In this paper we study the continuity of families of
additive functionals of symmetric Markov processes. Let us briefly consider
this question heuristically. Let {X,, ¢ € R*} be a symmetric Markov process
with locally compact state space S. One may think of the local time of X, up
to time ¢, at a point x € S, as

(1.1) L; = lim [*5, ,(X,) ds,
0
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whenever the limit exists in some sense, where {6, ,} is a family of approxi-
mate delta functions at x. Considerable effort has been spent over the last 30
years to find reasonable conditions for the continuity of the stochastic process
I ={L}, (t,x) € R*x S}. Some historical background is given in [14], in
which we obtain necessary and sufficient conditions for the continuity of .7 for
Markov processes with symmetric transition probability density functions.

Local times exist only for a relatively narrow class of Markov processes. A
Lévy process in R" has a local time only when n = 1. When local times do
not exist, and even when they do, one can consider continuous additive
functionals of a Markov process determined by measures on the state space of
the process. We may think of these as

(1.2) Ly = tim [ [, (X,) dsdu(x),

07870
where p is a positive measure on S. In this case, depending on the measure,
such limits exist for all Lévy processes in R”, for all n > 1. For some family
of measures .# for which (1.2) exists, endowed with some topology, we
consider the question of the continuity of L ={L/, (¢, n) € R*X.#}. The
papers of Bass [2] and Bass and Khoshnevisan [3] are the only prior works
we know that pursue this question.

In [14], in studying the continuity of the local time process .7, we used an
isomorphism theorem of Dynkin, which enabled us to show that the continu-
ity of & was equivalent to the continuity of an associated Gaussian process on
S. Since the sample path properties of Gaussian processes are very well
understood, we were able to use them to obtain many new results about local
times of Markov processes. A different version of Dynkin’s isomorphism
theorem associates a second-order Gaussian chaos on .# with L. In this
paper we first prove a general theorem which shows that the continuity of
this Gaussian chaos implies the continuity of L, subject to various additional
conditions. These conditions are removed when we specialize to the case of
Lévy processes in R" and T", the n-dimensional torus, with .# taken to be
the set of translates of a fixed measure. Furthermore, using known results
about sample path properties of Gaussian chaoses, concrete sufficient condi-
tions for the continuity and modulus of continuity of L are obtained.

Even when .7 is restricted to the set of translates of a fixed finite measure,
the diversity of the processes L is vastly greater than its subset .7. In some
cases descriptions of L in terms of the associated Gaussian chaoses lead to
weak results. In other cases the estimates obtained are quite sharp and for
certain important Lévy processes, including Brownian motion and other
stable processes in 7’3, taken together with certain finite measures, we show
that L is continuous if and only if the associated Gaussian chaos is continu-
ous.

Let X = (Q,7, X,, P*), t € R, denote a strongly symmetric Hunt process
with lifetime ¢ and locally compact separable state space S with reference
measure m. The full definition of these terms is given in [14]. For the
purposes of this paper, it is enough to just say that X has a symmetric
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transition probability density p,(x, y). Let « > 0. As usual, we define the
a-potential density

(1.3) u(x,y) = fo e “'p,(x,y)dt
and, setting

(1.4) ug(x,y) = f@ e “'p(x,y)dt,
assume that, for all 6 > 0,

(1.5) uf(x,y) <~ Vzx,yeS.

We also consider u’(x,y) for a = 0 and define u2(x, y) as in (1.4). When
dealing with ©°(x, y) we assume that (1.5) holds. As usual, we sometimes
drop the superscript 0 when dealing with u° or u). We are primarily
concerned with Markov processes for which u*(x, x) = « for some, or all,
x € S. This is the fundamental difference between the processes considered in
this paper and those considered in [14].

We assume that [u*(x, y)f(y) dm(y) is a bounded continuous function on
S for some, equivalently all, « > 0, for all bounded measurable functions f on
S which vanish outside of a compact subset of S. When we consider u(x, y)
we assume that this is also the case for [u(x, y)f(y) dm(y). These are the
smoothness hypotheses on the potential given in Chapter 6, 4.1 and 4.2, of [4].
Theorem 1.1 is expressed in terms of an auxiliary function 4, By the
smoothness hypotheses on the potential, we can always find strictly positive
bounded functions f in L'(dm) such that

(1.6) (%) = [u(x,9)F(y) dm(y)

is continuous and bounded. We define U%h,,, u(-) = [u®(, ) ,\(y) duly).

To any continuous additive functional A, of X we can associate a positive
o-finite measure v, called the Revuz measure of A,. The measure v, is
defined by the formula

(17) u(g) = lim %E’”([g(Xs) dAs)

for all bounded continuous functions g on S, and A, is uniquely determined
by v,. We will use the notation L/ for the continuous additive functional with
Revuz measure u, and often refer to L} as the continuous additive functional
determined by u. Not every o-finite measure is the Revuz measure of a
continuous additive functional. The set of all Revuz measures of continuous
additive functionals of X will be denoted by Rev(X). A complete characteri-
zation of Rev(X) is known; see, for example, [6] and [16]. For our purposes it
will be enough to note that a sufficient condition for u € Rev(X) is that
U“u(x) is bounded, or, more generally, that U*h ,, u(x) is bounded for some
a > 0.
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For positive measures u on S, define

(18) 7t =l ffur(x.9) dus() du() <)

and

(19) 72 = {ul [ (w2, du(x) du(y) < ).

Let %) 5, &2 p denote the set of finite measures in £, 7, respectively. The
Cauchy—Schwarz inequality shows that

(1.10) Gl CZ, g
Throughout this paper « is a fixed number greater than or equal to 0. As

usual, we denote £} and £Z by £! and £

We are concerned with the sample path properties of the stochastic process
(1.11) L={L} (t,n) ER"XZ2 ),
where £7 , = 2 N Rev(X). An isomorphism theorem of Dynkin given in [5]
associates L with a second-order Gaussian chaos H, = {H, (u), u € £%}. A
Gaussian chaos is a family of second-order terms in the Hermite polynomial
expansion of random variables in L?(y), where vy is the canonical Gaussian
product measure on R". We describe H, in Section 2 in which we also give,
in Theorems 2.1 and 2.2, proofs of versions of Dynkin’s theorem which we use.

We begin with a general theorem which states that a family of continuous
additive functionals of a Markov process is jointly continuous if the associ-
ated Gaussian chaos is continuous, subject to various additional conditions.
In several subsequent theorems we impose regularity conditions which en-
able us to eliminate or simplify these additional conditions.

For any set € we denote by (%) the set of bounded functions on & with
the topology induced by the sup-norm. Occasionally, we will simply say that a
stochastic process is continuous to mean that the process has a version which
is continuous almost surely.

THEOREM 1.1. Let X be a Markov process satisfying all the conditions
given above and let .# C Z?2. Assume that we are given a topology @ for 4
under which # is locally compact and has a countable base. Assume also
that:

@) - U and p— U%h,, p are continuous maps from .# to B(S);
(ii) the associated second-order Gaussian chaos H,(u) is continuous al-
most surely on /.

Then there exists a polar set @ C S, such that, if we restrict X and # to
S — @, we can find a continuous version of {L}, (¢, w) € [0, {) X.#}.

REMARK 1.1. When X is a Lévy process on R” or T", the n-dimensional
torus, and the set of measures .# is the set of translates of a fixed finite
measure u, the exclusion of a polar set is unnecessary and (i) can be
eliminated. These results are given in Theorems 1.3 and 3.2.
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REMARK 1.2. For many Markov processes, such as Lévy processes, the
killing of time ¢ is identically infinite. In this case the last term in Theorem
1.1 can be replaced by {L}, (¢, n) € R* X.#}. In general, when ¢ is not
infinite, in order to find a version of L/ that is also continuous at {, we must
restrict .Z to be a set of measures with common compact support. This is the
content of Theorem 3.1.

REMARK 1.3. Since measures with bounded potentials do not charge polar
sets, restricting .# to S — @ does not require us to alter the measures in .~7.

Theorem 1.1 requires the continuity of an associated Gaussian chaos
H_(w). We now describe a well-known sufficient condition for the continuity
of a Gaussian chaos. Define a metric on Z2:

d(p,v) =d,(p,v)

@z = (@) A = ) R() = ()

1/2
b

1/2

= (E(H,(p) - H,(»))))

where H_(w) is the Gaussian chaos associated with the continuous additive
functional with potential U%. [The last equality is explained in (2.10) for
a=0]

THEOREM 1.2. Let H, = {H (), p €4} be a second-order Gaussian chaos
and let .# C 2?2 be a set of measures that is compact with respect to (22, d),
where d is given in (1.12). Assume that there exists a probability measure o
on A such that

1

n
1.13 lim su loc————de =
(113) P ), 8 By o)) %

n=0 ren

0,

where B,(t, &) denotes the ball in the metric d, with center at t and radius
&> 0. Then H, has a version which is continuous almost surely.

This is Theorem 11.22 of [9]. See Remark 2.2 for further explanation.
REMARK 1.4. Note that a sufficient condition for (1.13) is that
(1.14) I(d,.#) =deff log N,(#, &) de < =,
0

where N (.Z, ¢) is the minimum number of balls of radius ¢ that covers
A [log N,(.#,-) is called the metric entropy of .# with respect to d]. How-
ever, neither (1.13) nor (1.14) is a general necessary condition for the continu-
ity of the type of second-order Gaussian chaoses considered in Theorems 2.1
and 2.2. In fact, we do not know necessary and sufficient conditions for the
continuity of these chaoses. However, of particular importance in this paper,
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is that by recent results [15] there are many examples of classes of these
chaoses for which a necessary and sufficient condition for continuity is

(1.15) T(d, #) =g [ (log Ny(A, £))"* de < =,
0

REMARK 1.5. The statement in (1.13), but with the log term replaced by
its square root, is necessary and sufficient for the continuity of Gaussian
chaoses associated with ordinary local times. In this case the set of measures
are the unit point masses. This implies that (1.15) is necessary and sufficient
for the continuity of Gaussian chaoses associated with local times of Lévy
processes. This is discussed in Section 4.

We now specialize to the case of Lévy processes in R”, or T", and for the
class of measures we consider the set of translates

(1.16) {me, x €R" (or T™)}

of a single finite measure u; that is, w (A) = w(x + A) for all measurable
sets A C R", or T". This class of measures includes the point masses which,
obviously, are the translations of the point mass at the origin. Thus the
family of continuous additive functionals that are determined by the trans-
lates of a single finite measure include the local times. It is easy to check that
w € Rev(X) implies that u, € Rev(X) for each translate of u. For a set of
measures such as (1.16), we also think of d(x, y) =4+ d,(u,, u,) as a metric
on R*, or T".

Using the added structure provided by Lévy processes in R", or T'", the
basic continuity result, Theorem 1.1, can be simplified as follows.

THEOREM 1.3. Let X ={X,, t € R"} be a symmetric Lévy process in R".
Let w € £ be a finite measure. If the associated second-order chaos H, =
{H(p,), x € R"} is continuous almost surely, then u € Rev(X) and {L}*~,
(x,t) € R" X R*} is continuous almost surely. This also holds with R" re-
placed by T".

We can do more with continuous additive functionals of Lévy processes in
T". For a certain class of these processes and for certain smooth measures
w € ZE, we can show that {L}«, x € T"} is continuous almost surely if and
only if the associated second-order chaos H; = {H,(u,), x € T"} is continu-
ous almost surely. Before presenting this we need to develop some notation
and to mention some results about continuity of Gaussian chaoses.

Let X ={X,,¢ € R"} be a symmetric Lévy process in R" with

(1.17) Eei*Xi = "M ) e R,
Similarly, let Y = {Y(¢), t € R*} be a symmetric Lévy process in T" with
(1.18) Ee'tYi = g7t0h) ke Zm,

In each case we refer to ¢ as the characteristic exponent of the process. One
reason for denoting each characteristic exponent by ¢ is that for each Lévy
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process X in R" as defined in (1.17) we can define a Lévy process Y in T"
with the same function ¢ by projecting X onto [0, 27 ]". This is explained in
Section 6.

The isomorphism theorem can also be used to obtain interesting results
about Gaussian chaoses. The next theorem, a consequence of the isomor-
phism theorem, gives necessary conditions for the continuity and bounded-
ness of a class of second-order Gaussian chaoses closely related to the
associated chaoses of certain families of continuous additive functionals. It is
proved in Section 6. In what follows let {g,}, c ;» be independent identically
distributed normal random variables with mean 0 and variance 1.

—ikx

sup
xeT"

(1.19)

< CE| sup eltk=Dx

xeT™

THEOREM 1.4. Let {y be the characteristic exponent of a Lévy process in T™
and {b(k)}, c ;» the Fourier coefficients of a finite measure on T". Then
b(k)
% 1+ 4(k)
kezn
¥ (gjgk _Bj,k)b(k -J)
i kezn VI+¢(j)V1+ ¢(k) ’

where C is a constant independent of  and {b(k)}. Furthermore, a similar
result is obtained when the uniform norm is replaced by the Lipshitz norm,
that is, Sup ,_, -5 . yer:l |, with e”*** replaced by (e *** — e~ **¥) for all
keZ".

In preparation for the next theorem, we say that a positive function i(%),

k € Z", is almost regularly varying with index p if there is a regularly
varying function A(x), x € R*, of index p, such that

(1.20) C'h(Ikl) < h(k) < Ch(lk)

for some constant 0 < C < <o,

In the next theorem we will assume that the sequences {¢/(%)}, . ,» and
{6(R)}, < z» in Theorem 1.4 are symmetric and almost regularly varying with
index n/2 <p <n and q <0, respectively. In this case it follows from
Theorem 1.3 of [15] that the two sides of (1.19) are either both finite or both
infinite. Note that by the positivity of the Fourier coefficients {b(%)}, . ,» we
have that Uu(x) is bounded if Uw(0) < «. This allows us to obtain the
following equivalence relationships.

THEOREM 1.5. Let {X(¢), t € R*} be a Lévy process in T" with character-
istic sequence {y(R)}, c z,» and let { (R}, c ;» be the Fourier coefficients of a
finite measure w on T". Assume that {¢(k)}, c z» and { Wk}, c ;- are symmet-
ric and almost regularly varying with index n/2 < p < n and q < 0, respec-
tively, and that there exists a constant C such that, for all |j| > 1,

\RI" (k) Ll (j)
(1.21) |ks|?|;'| 1+ g(k) ~ 1+9()
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Then the following are equivalent:

1) U'n(0) < ;
() Xpemilk)/(1 + (k) < oo
(i) uwe2? and J(d, #) < », where # ={u,, x € T"};
(iii) the Gaussian chaos {H,(n,), x € T"} is continuous almost surely;
(iv) u € Rev(X) and {L}+, (x,t) € T" X R*} is continuous almost surely.

The interesting cases of this theorem are when p + |gq| = n. The next
result is a corollary of this theorem and its proof for Brownian motion in 7'3.

COROLLARY 1.1. Let {X(t), t € R*} be Brownian motion in T® and let
f(w), u €[0,°), be regularly varying at 0 such that uf(u) is decreasing on
(0,1] and f(u) = 0 for u € (1,). Define

(1.22) Z(x,t)=]:f(|X(s)—x|)ds, (x,t) € T® X R*.

Then the following are equivalent:

(1) (0, ¢) is finite almost surely;
Gi) {A(x, 1), (x,t) € T? X R} is continuous almost surely;
Gii) wf(w) € L0, 1].

We should mention that u € &7 implies that n < 3. Also Theorem 1.5 does
not apply to Brownian motion on 7'2. Note that for local times the existence of
the 1-potential does not imply the continuity of {L%*, x € T"} but for Brown-
ian motion in 7% it does for the measures considered in Theorem 1.5. We do
not know whether or not this is true in 7'2. The equivalence of the two
apparently simple statements (i) and (iv) in Theorem 1.5 suggests that
perhaps it can be obtained by a simple direct argument. Our proof is complex
and circuitous. Also Theorem 1.5 suggests that the metric d of (1.12), which
we have not seen before in potential theory, has a significant role in describ-
ing continuity properties of additive functionals of Markov processes.

An analog of Theorem 1.5 and Corollary 1.1 also holds for Lévy processes
in R". This is given in [11].

Theorem 1.5 depends very strongly on the Fourier coefficients of the
measures and on the characteristic sequences of the Lévy processes being
smooth. In [13], employing different methods from those used in this paper,
we show that there exists a large class of measures and signed measures u,
such that, for arbitrary Lévy processes on T", {L}*«, (a,t) € T" X R*} is
continuous if and only if J(7,, #) < ©, where

To( Mas 1p)
= ([ ) A ma3) = al2)) A o(3) = ()

for some « > 0 and this is valid for any n > 1. The metric in (1.23) is
associated with the energy integral of X. (In [13] we consider the more

(1.23) 12
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general class of continuous additive functionals determined by generalized
functions, as defined in [6].)

When the conditions of Theorem 1.5 are not satisfied, we can use Theorem
1.3 which generally allows us to infer continuity of {L/, (x,¢) € R" X R*}
[or (x,t) € T" X R*] when (1.14) holds and, in fact, (1.14) is not much
weaker than (1.15). Here is a concrete application of Theorem 1.3. Let
X ={X,, t € R"} be a symmetric Lévy process in R" with characteristic
exponent ¢ and let u be a finite measure on R" with characteristic function
. Assume that

f o

= < oo,
(L+¢(E=m)(1+ ¥(m))
Note that y(¢) is the Fourier transform of (z!(x))? so that

(125)  [y(OI (&) de= [[(ui(x, ) du(x) du(y).

(1.24) v(€)

THEOREM 1.6. Let X ={X,, t € R*} be a symmetric Lévy process in R"
with characteristic exponent . If

N 2 172
(1.26) /-W(f|§|2x7(§)|ﬂ(§)| df) dx < =

1 X

then p € Rev(X) and {L}+, (x,t) € R" X R"} is continuous almost surely. In
particular, for Brownian motion in R?, this is the case when

as |§ — .

1
1.27 i =0 ———
(127 i6)] - 0| |

By Theorem 1.5 we have for Brownian motion in T2 that, if u € Rev(X),
{L}+, (x,t) € R® X R"} is continuous almost surely if and only if

(k)

(1.28) Y ey -

keZz3

as long as {{(k)} is almost regularly varying in the sense of (1.20) and
satisfies (1.21).

The only other papers that we know of that deal with the joint continuity
of continuous additive functionals of Markov processes indexed by measures
are [2] and [3], which consider this question for Brownian motion in R". The
material in [3] shows that (1.14), for all compact subsets of measures .# with
bounded potential, is sufficient for the continuity of the associated continuous
additive functionals {L/, (¢, ) € R*X.#} of Brownian motion but with the
metric d replaced by

1/2

(1.29) k(m,v) = sup | [u(x = y)d(p(y) = v(¥))

xeR"
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Furthermore, this result is valid in R” for all n > 1. However, the metric «
is difficult to estimate. It is not comparable to the metric d, given in (1.12).

Restricted to R™ for n = 2 or 3, the methods of [3] seem to give somewhat
weaker results about the continuity of continuous additive functionals of
Brownian motion than the ones obtained in this paper. For example, the
result in (1.22) is implied by the existence of the 1-potential, whereas the
metric « in (1.29) is a function of the 1-potential, and for the continuity of
L} one must also have I(k, .#) < . (Pursuing this line, one is off by a factor
of the square of a logarithm.) Also in some cases, such as those that occur in
Section 7, in the study of moduli of continuity of measure-indexed continuous
additive functionals, the metric k is comparable only to d'/2.

A slightly different version of the isomorphism theorem, Theorem 2.2, can
be used to obtain the modulus of continuity of measure-indexed continuous
additive functionals. Here are two examples of such results for Brownian
motion in R? where, as above, { u,, @ € R?} denotes the set of translates of a
fixed finite measure u on R2.

Given a set A C R", let meas, A denote the Hausdorff measure of A in
dimension «. Let dim A denote the Hausdorff dimension of A. That is,
dim A = sup{almeas_ A = «}. We define the index of a measure u to be the
supremum of the numbers 6 such that
(1.30) sup u(B(x,r)) <Cr’ Vr<l,

xeR"
where B(x, r)is a Euclidean ball at x of radius r. We note that by Frostman’s
lemma dim A = B if and only if A carries a finite measure with index p.
(See, e.g., Chapter 10 of [8].)

THEOREM 1.7. Let B ={B,, t € R*} be Brownian motion in R?. Let
A Cc R? have Hausdorff dimension B, 0 < B < 2. Then there exists a finite
measure u € Rev(X), supported on A, for which

(1.31) li e S
. 1m su — e . =
bl la — bl P/P7
a,bel0,1]?

for almost all t € R* almost surely for all & > 0.

Equivalently, let u be a measure with index B. Then w is supported on a
set A with dim A > B and (1.31) holds.

For the next theorem let us note that it follows from Hélder’s inequality
that, for Brownian motion in R2, U'f(x) is bounded if f € L? for some 1 < p.

THEOREM 1.8. Let B ={B,, t € R*} be Brownian motion in R?. Let u be a
finite measure on R? such that yu = f(x) dx, where f € L? for some 1 <p < 2.
Then

LtN«a — Ltﬂh

1.32 lim sup
(132 a-bl-0 la = b*”"llogla
a,bel0,1]?

—7 < CIfl,
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for almost all t € R™ almost surely, where C is a finite constant which may
depend on p.

The Gaussian chaos H(u) that we have been referring to is carefully
defined in Section 2, in which we also give, in Theorems 2.1 and 2.2, two
versions of the isomorphism theorem. These are more complicated than the
versions given in [14], in which local times are associated with Gaussian
processes. Viewing that case in the light of this paper, we see that the
measures are point masses and, clearly, integration with respect to point
masses is trivial. Here we must carry out the relevant integrations. Thus
Section 2 in this paper does not follow easily from the material on the
isomorphism theorem in [14].

Theorem 1.1 and the comments following it are proved in Section 3. In a
brief Section 4 we show that when a Markov process has a local time,
continuity of the local time and the associated Gaussian chaos are equivalent.
Theorem 1.3, for processes in R", and Theorem 1.6 are proved in Section 5. In
Section 6 we prove Theorem 1.3 for processes in 7'". We also prove Theorems
1.4 and 1.5, Corollary 1.1 and obtain an analog of Theorem 1.6 for Lévy
processes in T". A concrete description of the Gaussian chaoses associated
with continuous additive functionals of Lévy processes on T" is also given. In
Section 7 we briefly consider the moduli of continuity of continuous additive
functionals of Markov processes and give the proofs of Theorems 1.7 and 1.8.

Throughout this paper C will denote a constant greater than 0 which is
not necessarily the same at each occurrence. Also we use the notation
f(x) ~ g(x) as x = © to mean that there exist constants 0 < C;, C, < © such
that C;g(x) < f(x) < C,g(x) for all x > x, for some x, sufficiently large,
and similarly at 0.

2. The isomorphism theorem. In[14] we presented a proof of a version
of Dynkin’s isomorphism theorem that related the local time of a symmetric
Markov process to a mean-zero Gaussian process, which had as its covariance
the 1-potential density of the Markov process. In this paper we are interested
in Markov processes which may not have local times but for which we can
define continuous additive functionals determined by positive measures on
the state space. In this section we prove a version of Dynkin’s isomorphism
theorem which relates these functionals to a Gaussian chaos on the space of
measures Z2 = ZZ, defined in (1.9). The argument that we give can be used
for any a > 0. However, to keep the notation from becoming too cumbersome,
we carry out the argument in detail only in the case a = 0.

To define the second-order Gaussian chaos H referred to in Section 1, we
first consider the Gaussian process {G,, p € & 1}, which has mean 0 and
covariance

(2.1) Eo(G,Gy) = [[u(x,) dp(x) dé(y).
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Let p, 5(dy) = p;(x, y) dm(y). It is easy to see, by assumption (1.5) for a = 0,
that p, ;(dy) € £ for all 6> 0 and x € S and that

(2.2) E(pr’aGpM,) =us (%, y).

Let G, ; = pr . Then, by (2.2) and Lemma 4.5 of [14], we have that
2

(2.3) E(Gf 5G3, 5’) = 2(u5+5,( X, y)) + Uy (%, X)Uss (¥, ¥)-

Therefore

(24)  E((G,-E(G2,))(G2, — E(G2,))) = 2(uss 5(x, )"

In order to define the Gaussian chaos which occurs in the isomorphism
theorem, we first consider a simpler class of Gaussian chaoses

(2.5) H(u,8) = [(GZ, - E(G2,))dn(x)
for 6 > 0 and u € £2. It follows from (2.4) that
(2.6)  E(H(p,8)H(v,8)) =2 [(us.n(x,5))" dp(x) dv().

Therefore, for u € £%, we have that

(2.7) limH( p,8) =H( )
550

exists as a limit in L? and satisfies

(2.8) E(H(p)) =0

and

(2.9) E(H(p)H(»)) =2[[(u(x,9))" du(x) dv(y) Vu,ves?
Thus we see that

(E(H(p) — H(v))

(2.10) _ (ff(u(x,y))z(d( p(x) —v(x)))(d(mw(y) —v(y)))

Vu,ve 22

1/2
)

1/2

We explain why we call H(u, §) and H( i) Gaussian chaoses in Remark 2.1.

We continue to define the terms which appear in the isomorphism theo-
rem. Let f and % be as given in (1.6). Since u is an excessive function in each
variable, it follows that % is an excessive function and hence lower semicon-
tinuous. Moreover, 2 > 0 and 1/A is locally bounded. For g € 6. we define

1
(2.11) P{g(x) = mPt(gh)(x)-
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It is easy to see that P is a semigroup. It follows from Theorem 62.19 of
[17] that there exists a unique Markov process (Q),.7,, X,, P*/"), called the
h-transform of X, with transition operators P{"), for which

(2.12) P/M(F(0)1y < uy) P*(F(w)h(X,(0)))

1
~ h(x)
for all F € b%,. Let p € ' be a compactly supported probability measure. As
usual, we set

(2.13) E?/"(:) = [P*/"() dp(x).

For v a measure and f a function on S, we denote by f- v the measure on
S given by f(x)v(dx), x € S. Also, if g is a kernel on S X S and v is a
measure on S, then gv(-) = [g(-, y)v(dy) and gfv(-) = [g(-, y) f(y)v(dy). Let
x=1/h-p and B = f-m. It is easy to verify that y, B € £

The next theorem is contained in Theorem 6.1 of [5]. We give a more
detailed proof for the convenience of the reader. In this theorem, for a given
Markov process with O-potential density u(x, y) and measures u € £% with
bounded potential, we consider L* = lim, _,, L} and the associated Gaussian
chaos H( w).

THEOREM 2.1. Let {u,)7_; be a sequence of measures in & 2 and assume
that Un; is a bounded on S for all 1 <i < ». Set L= (L, L},...) and
H(uw) = (H(p,), H(wy),...). Then, for any compactly supported p € &' and
%-measurable nonnegative function F on R”,

(2.14) EGE*/"(F(Lt+ ;H(w))) = E¢(F(3H(1))G,Gy),
where & denotes the o-algebra generated by the cylinder sets of R”.

Proor. This theorem is a generalization of the isomorphism theorem for
Example 2 given in Section 4 of [14]. We explain how the proof of that
theorem can be modified to prove this one. Our argument is meant to be read
in conjunction with the material in [14]. According to (4.38) of [14], we have

“ Gui,SGui,S
Ey| 1 (—)GXGB

i=1 2

1
(2.15) -5 y (ZCOV,s(BO ”'COVS(B\B|))
BUC=(1,2,...,n} ' &

X ( Zua)((ywa))um(zﬂu)’ y‘n-(2)) e us B( Zﬂ-(\C\)))?

where the second sum is taken over the set of all possible pairings & of
{u};c p U {v);c p- The specific pairs in & are denoted by B, ..., B p. If, for
example, B; = (u},v}), then cov;(B)) = E(G, ;G,, ;). The last sum is taken
over all permutations (7(1),..., 7(IC|)) of C and over all ways of assigning
{t iy Vi) 00 {Y 2 iys 25} The explanation of what {y,,), z, )} are and what
we mean by “assigning” is given in the text immediately preceding (4.38) of
[14].
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For any pairing & of {u,;},c 5 U{v;};cp and subset A c{1,2,...,n}, let
84, » = 1 or 0 depending on whether or not u; is paired with v; for all i €A
Applying (2.15) to the simple identity

= Gui,Svas (Gui,BGvi,B)
EG(I__Il( 5 )GXGB
G, G, G, G,
S b s (R A A R S Ay e e
Ac{l,...,ny \i€A 2 ic A 2 X

we see that

n (G, sG, s—E(G, sG
EG(E( u;, 6 -v;, 08 ( u;, 8 vi,ﬁ))GXGB)

2

1

= on > b (- 1)‘A|(26A » €ovs(By) - COV@(B\B\))
BuC={1,2,...,n} ACB

(2.16)

(Z uS/\/(yﬂ-(l))uZS( 211> yw(z)) vt Us B(Zwucn))

BUC={1,2,...,n}

X ( dus X(Vr)U25(Z70) V@) = Us B(ZW(\CD))’

where Y, is taken over the set of all possible pairings %’ of {u;};c 5 U {v;};c 5
such that u; is not paired with v, for any i. In the last step we used

X (- 1)‘A'25A 2w (2) = Zw(@) Y (-1,

AcCB AcCB
ZW(g’)n( m@): ;’w(ga’),

where w(%) denotes any function of P.
A similar analysis shows that

EG( ]-_-[ (Gui"sti"s - E(Gui’SGvi"s)))
(2.17) er

- (;’ covs(B;) "'COV@(B‘B‘))’

Therefore if we set u; = v, = x;, we get

n (G2, — E(G?
EG(];[[( x;, 0 ( xi,S))GXGﬁ)

2

(218 - Y% EG(H(G’?““E(G’?”)))
n}

BuC={(1,2,..., i€B 2

X( Z uSX(xfr(l))LLZS(x‘n'(l)’ xﬂ(2)) usﬁ(xw(\cu) )
7(C)
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where now the last sum is taken over all permutations 7 of C. Integrating
with respect to the measures { u;} ; and recalling (2.5), we get

e ),

(219) = ¥ E(H(H“"—B)))

BuC={1,2,..., n) i€B 2

Z fué)((xw(l))u2§(xw(l)’ xw(2)) uaﬁ(qucp) ile_[C dp;(x;)

w(C)

We now show that we can take the limit as § — 0 in (2.19) to get

a2

(2200 = ¥ EG(H(H(;“))

BuC={1,2,..., n} i€B

Z /U’X(xﬂ'(l))u(xw(l)a xw(z)) uB(qucp) le_[c dp;(x;)

w(C)

To see this, we note that, since H(u,;, §) > H(u;) in L?, there exists a
sequence 8, > 0 such that H(y;, §,) > H(u,) almost surely and EH*(p;, 8))
< CEH*( ,ul) for some constant C, for all 1 < i < n. Also, for all integers m,
by the hypercontractivity of the Gaussmn chaos (see e.g., [1]),

(EcH™ (12 8,))" < Co( BEgH? (1, 8)))"

(2.21) o
< C(EH>(m))”

It follows from (2.21) and multiple uses of the Schwarz inequality that the
terms involving the Gaussian chaoses in (2.19) are uniformly integrable and
we can take the limits as §; — 0. This also shows that the limit as §; — 0 of
the last integral in (2.19) exists and since it is monotonically increasing it is
equal to the last integral in (2.20). Also, since the terms involving the
Gaussian chaoses are bounded, the integrals in (2.20) can be seen to be
bounded by induction on n. However, it is easy to see this directly since - and
Up,, 1 <i <o, are bounded and p has compact support.
We will show below that

B/ [11)

ieC

(2.22) 1

%)/mu(x’ xw(l))u(xﬁa)’ xw(z)) uB(x”(‘C‘))iIJC dp;(x;)
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Integrating (2.22) with respect to p gives

Er)/h( 1_[ Loi’“i)
ieC
(2.23)
=X /u)((xw(l))u( Xr1y Xn@) " UB(Xrcp) l_IC dpi(x;).
7(C) S
Using (2.23) in (2.20), we see that
H( Mi)
Ea(il:ll( 5 )GXGB)
H .
(2.24) - y EG( I1 ( (“’)) ><E"/”( ]_[L,,{E‘i)
BuC={1,2,..., n} i€EB 2 ieC

- EGE”/”( I (L;,‘i Bl ) .
i=1 2
This is equivalent to (4.34) of [14] in the case of Example 2, Section 4 of [14].
Theorem 1.5 now follows from the last paragraph of the proof of Theorem 4.1
of [14].
To obtain (2.22), consider (4.28) of [14] with L} replaced by L/. Thus H,
in [14] becomes

Hn=Hn(H’1""7IJ“n)

= f:dLgl fde;;z fo dL .
1

Tn-1

To obtain the analog of (4.30) and (4.31) of [14], follow the argument of (4.30)
of [14] and use Theorem 3.1, Chapter 6 of [4] to get

1 =
E*/"(Lk) = ME’C(/O h(X.) dL,f”)
Uhpy(x)

h(x)

1
= ey B din(x),

since u B(:) = h(-). Continuing a proof by induction, we now assume that

(2.25) -

1 n—1
(226) E*/'(H, ) = [ rsule, m)u(x, x) - ub(x, ) [T du(x)

andlet H, , ,=H, ,(u,,...,u,). [Note that H, in the line above (4.32) of
[14] should be H,_,.] Following (4.33) of [14], we get

1 o0
(20 BH) = e B[ B L))
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and proceeding as in (2.25), we get

1

(228) B*/'(H,) = g fuls, x)h(x) B2/ (H, ) d().

Using (2.26) in (2.28), we get (2.22). This completes the proof of Theorem 2.1.
O

Let .# be a family of measures contained in £2 N Rev(X). We present a
slightly different version of the isomorphism theorem to use in studying the
moduli of continuity of L = {L}*, (¢, u) € R*X.#}. Let A be an exponential
random variable with mean «, which is independent of the Markov process
X. We consider L}, which is simply L}, with ¢ replaced by the independent
stopping time A. We associate with L a second-order Gaussian chaos {H,( ),
u €4} which is defined exactly the same way as H( u) was in the beginning
of this section, except that in place of u(x, y) in (2.1) we use u*(x, y).

THEOREM 2.2. Let f be a positive function on S such that f-m € ZL.
Assume that U'w is bounded for each w €.# and that L} and H,( ) are both
in C(), the set of continuous functions on some compact subset ./# C Z2.
Then, for any compactly supported p € Z} and any nonnegative Borel-mea-
surable function F on C(#), we have

(2.29) EGE’E,(F(L} + $H,(n))f(X,)) = E¢(F(3H,(1))G,Gr.,).

ProoF. The proof is similar to the proof of the isomorphism theorem for
Example 1 given in Section 4 of [14]. O

REMARK 2.1. We explain why we call H( u, §) and H( u) Gaussian chaoses.
Let T be some index set and let {g,};_; be independent, identically dis-
tributed normal random variables with mean 0 and variance 1. We say that a
stochastic process { x(¢), ¢ € T'} is a second-order Gaussian chaos if it can be
written in the form

(2.30) x(t) = Zgjgk%‘,k(t) + Z(gjz - 1)€Dj,j(t)a teT,

Jj*k J

where we assume that the series converges in L? for each ¢ € T. Since we
will only be concerned with second-order chaoses, we will not bother to repeat
the words “second order” when discussing them. H( u, 8), defined in (2.5), is a
Gaussian chaos on £2. To see this, we note that the Gaussian process {Gp,
p € '} can be written in terms of its Karhunen—Loéve expansion. Therefore,
in particular, we can consider the Gaussian process

(2.31) G.s= L&¢(pr,;), xS
J
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Referring to (2.5), we see that

H(p,8) = ¥ g8 [¢,(p..5) eu( pr,5) du( )

J*k

+ X (87— 1) [0 (pr,s) dial(2).

(2.32)

Since the L? limit of a Gaussian chaos is a Gaussian chaos, by Theorem 3.1 of
[1], we see that H(u) is a Gaussian chaos. In fact, {H( ), u € £2} has an
expansion as in (2.30) for u € £2, although we do not know what it is
explicitly.

Note that in [1] a Gaussian chaos is defined as the closure in L? of
expressions of the form (2.30). Here we are using the definition of Gaussian
chaos given in [9]. It follows from Theorem 3.1 of [1] that the two definitions
are equivalent.

REMARK 2.2. The continuity condition for Gaussian chaoses given in
Theorem 1.2 is contained in Theorem 11.22 of [9]. To see this, it is only
necessary to note that the metric d, is smaller than the metric d; (in the
notation of [9]).

3. Continuity theorems. In this section we give the proofs of Theorems
1.1 and its refinements, Theorems 3.1 and 3.2.

Proor orF THEOREM 1.1. We first consider the case a = 0. Recall that we
are denoting h,, u°, U°, 5, £¢ and so on by &, u, U, €', £2 and so forth.
Let us also recall that, by (2.13) and (2.25),

Uhp(x)

(3.1) E*/"(L}) = Th(x)

and, for p € £! a probability measure with compact support,

Pe/h(:) = [P*/"(-) dp(x).

By working locally it suffices to consider .# compact. Let & C.#Z be a
countable dense set. Using the proof of Theorem 6.1 of [14] together with a
version of Dynkin’s isomorphism theorem, Theorem 2.1 of this paper, we can
see that {L}, (¢, pn) € R*X 2} is uniformly continuous almost surely with
respect to P?/", where R*= [0,] is the compactification of R* obtained by
adding the point at «. (Thus, e *: R*~ [0, 1] is an isomorphism of compact
sets.)

Let

(3.2) Q = {wlL#( ) is uniformly continuous on R*XxZ}.
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We have that
(3.3) [P/"(Q) dp(x) = P/"(Q) = 1

for all finite measures p € & ! with compact support.

Let @ = {x|P*/*(Q)) < 1}. By (3.3) and standard arguments (see the dis-
cussion on page 285 of [4]), we see that @ is a polar set.

We henceforth restrict our Markov process and measures to S — @, noting
that under our assumptions the measures in .# do not charge polar sets.

Thus, in effect, we are considering a Markov process defined on S =S — @
for which

(3.4) P¥/")=1 Vxeb.

We then extend {L}, (¢, n) € R*X9) to {I: (t, w) € R* X.#} by continuity.
Since we may assume that the L} are perfect continuous additive functionals
for all p €9, we immediately see that the same is true for L“ for each
uw €#. We now show that L“ is a version of L} for the A- transformed
process. For this, by Theorem 36 3 of [17], it sufﬁces to show that L"“ has the
same potential as L}, that is, that

. Uhu(x) —

x/h MY = — — > 7

(3.5) E (Lw) h(x) VxeS8.
By the definition of f,[’“, (3.5) holds for all u €2, and, for any u €.#, if we
choose a sequence { u1,}7_, of measures in & such that w; — u, then L* — L*
almost surely. Since, by assumption (i) of this theorem, Uhp,(x) - Uhu(x),
we can complete the proof of (3.5) by showing that {L"t}jo 1 are uniformly
integrable. For this it suffices to show that {L“l}“’ 1 are uniformly bounded in
L? with respect to P*/" This is easily seen since by (2.22) we have

.2 2
(3.6) E*/"((L0)") = ity V(i) ) (),
which is uniformly bounded in i by assumption (i).
Redefine L}(w) by setting it equal to
(3.7) lim inf L*( o)
s1 {(w)

s rational

for all ¢ > {(w). As in the proof of Theorem 6.1 of [14], we see that f,t“ and
L} agree on [0, ¢ ), P* almost surely. We now see that the above limit inferior
is a true limit and that L/(w) = L/(w) for all ¢ € R*. Therefore L}/ is a
version of L/ for the Markov process X. Finally, as in the proof of Theorem
6.1 of [14], we see that the P*/" almost sure continuity of{Lt ,(t,w) € R X
A} implies the P* almost sure continuity of {L (¢, w) €[0,¢) X#}. This
completes the proof in the case « = 0.

We now give the proof for @ = 1. The proof for any other « > 0 is similar.
Let X be a Markov process which satisfies the hypotheses of this theorem in
the case « = 1. Let Y be the Markov process obtained by killing X at an
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independent exponential time A with mean 1. Let (Q,.%, P*) be the probabil-
ity space of X. As usual, we take (O X R*, X%, P* X 1), where 1(dt) =
e~ ' dt, to be the probability space for Y, where Y,(w, ) = X,(w) for ¢ < A and
Y,(w, ) = A, the cemetary state, for ¢ > A. It is easy to check that the
0-potential density of Y and the 1-potential density of X are equal and that
Y satisfies the hypotheses of this theorem with « = 0. Furthermore, we can
check that if L} is a continuous additive functional of X with 1-potential
U'w, then L#, , is a continuous additive functional of Y with 0-potential U'u.
We have already proved this theorem in the case a = 0. Therefore, for

{( w, ) € Q X RY|L}, ,(w) is uniformly continuous on E+><9},

we have
(3.8) (P*/"x7)(V)=1 VxeS—-@Q
for some polar set @ € S. We restrict X, and consequently Y, and the
measures .# to S — @ and thus can consider that both X and Y have state
space S = S — Q.

Let

O = {wlL#( ) is locally uniformly continuous on R*X &}

and note that () X R*C V. Fubini’s theorem and a monotonicity argument
now show that

(3.9) P¥/"())=1 VxeSb.

From the definition of (), we see that, for each o € Q, {LMw), (t,pn) €
RJr X 2} can be extended to a locally uniformly continuous stochastic process
{L“(w) (t, n) € R*X.#}. Set L“(w) = 0 for o € O°. By taking the limit over
sequences of measures in &, we see that L“ is a continuous additive
functional for each u €.7.

We now show that L/ has 1-potential (U'h u(x))/h(x) with respect to the
h-transform of X and consequently is a continuous version of {L(w), (¢, n)
€ R X#}. According to the proof in the case o = 0 applied to the A-trans-
form of Y, {L}, ,(w), (¢, n) € R* X2} has a continuous extension to R*X.Z
for all (w, )\) € O X R*. We denote this extension by {L*(w, A), (t, n) € R*X
)} and recall that it has 0-potential (U'hu(x))/k(x). Integrating by parts
and using Fubini’s theorem, we have

Ex/h([we-Sdm(w,s)) - E"/h(fxe‘sl:oé‘(w,s) ds
0 0

(3.10) = (E*/" x 7)(L*( 0, )))
_ Ulhp(x)
h(x)

Clearly, L*(w, s) = L“(w) for all o € O and s € R", since both sides are
continuous extensions of L¥, () = L*(w) for u €. Thus we see that L*
has 1-potential (U'hu(x))/h(x) for the h-transform of X. The transition
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from the A-transformed process to the original process is the same as in the
case a = 0. This completes the proof of Theorem 1.1. O

The next theorem relates to Remark 1.2.

THEOREM 3.1. Let X be a Markov process as in Theorem 1.1 and let
M CZ2 be a set of measures with common compact support. Assume that we
are given a topology @ for # under which # is locally compact and has a
countable base. Assume also that:

@) p > U, p is a continuous map from # to B(S);
(ii) the associated second-order Gaussian chaos H,(u) is continuous al-
most surely on /.

Then there exists a polar set @ C S such that, if we restrict X and .# to S — @,
we can find a continuous version of {L}, (t, n) € R*X.#}.

Proor. The condition that u — U% is a continuous map from .# to .Z(S)
of Theorem 1.1 was used only to enable us to satisfy the requirement of the
isomorphism theorem that U is bounded for each u €.# and to obtain
upper bounds in (3.6). Actually, we only used the weaker condition:

(i) w— U%h,,m is a continuous map from .# to Z(S) and u - U is a
bounded map from % to %(S) for all compact sets % C.#; that is,
Sup,, ., sup, s Ulu(x) < .

The first condition of (i') implies that sup, ., sup, c sU%h,, u(x) < . Then
the second condition in (i') follows from this, since infx 4 ,,(x) > 0, where
K c S denotes a compact neighborhood containing the supports of all the
measures u €.#. The rest of the proof follows from the proof of Theorem 6.3
of [14] and the fact that none of the continuous additive functionals L} are
increasing unless X, € K. (See Chapter 6, Theorem 3.1, of [4].) O

We now develop the material to explain Remark 1.1. Let I" be a separable
locally compact group and let X be a Lévy process in I', with a-potential
density u*(x, y) = u“(xy '). We will use the canonical representation for X
in which Q is the set of cadlag paths w: R*— T, X, = w(¢) and

E*(f(w)) = E°(f(0x)).

For these processes L} denotes the continuous additive functional of X
with a-potential U%u(x) = [u“(xy ) du(y). For each measure u on I' and
x € I', we define the measure u, to be the unique measure on I' for which

[(2) du(2) = [g(=x") du(2)

for all bounded continuous functions g on I'. Note that (u,), = u,, and
w(Ax) = p (A) for all Borel sets A cT. Let T, denote the bijection on the
space of measures defined by T.(u) = u,. We say that a set .# of measures
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on I' is translation invariant if it is invariant under T, for each x € I' and
that a topology @ on such a set .# is homogeneous if 7, is an isomorphism
for each x € T'.

The next theorem relates to Remark 1.1.

THEOREM 3.2. Let X be a symmetric Lévy process in I and let .# C 2 be a
translation-invariant set of measures on I'. Assume that there is a homoge-
neous topology @ for # under which # is locally compact and has a
countable base and that:

@) pu— U and p— U%h,, p are continuous maps from # to Z(I');
(ii) the associated second-order Gaussian chaos H, (u) is continuous al-
most surely on /.

Then there exists a continuous version of {L}*, (¢, n) € R*™ X.#}.

ProoOF. We give the proofin the case a = 1. The same proof is valid for all
a > 0 and also for a = 0 for transient processes. For any x € I' and p €7,
set
Al(w) = L¥(wx).

Clearly, A, is a continuous additive functional. Computing its 1-potential
Ey(fwetdAt(w)) =Ey(fooetst“(wx))
0 0
_ ny(fwet st“(a)))

0

(3.11) — [ut(yaz ) dia(2)
= [ul(y(zx"") ") dus(2)

= [u(y27") du.(2),
we see that
(3.12) L{(wx) =L+(w) a.s.

for each x € I" and p ..

Let & c# be the countable dense set of measures that enters into the
proof of Theorem 1.1. The proof of Theorem 1.1 shows that {L}*, (¢, u) € R*X
27} is locally uniformly continuous, P almost surely, for all a € Q°, where
Q €T is a polar set. As in Theorem 1.1, we extend L/(w) by continuity to
{LM(w), (t, n) € R"X.#} for all paths w starting in @°. However, this proce-
dure provides no way to extend {L}, (¢, u) € R*X.#} to paths o starting in
Q. That is why, in Theorem 1.1, we found it necessary to restrict the Markov
process to @°. In this theorem we use the translation invariance of .Z to
extend {L}, (¢, u) € R*X.#} to paths o starting in Q.
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We can assume that (3.12) holds for all u € 2, almost surely. Therefore, by
continuity, we have that

(3.13) LM wx) =LM(0) VYwpes#, P’as.

for each x €' and y € Q° such that yx € @°. This suggests how we can
extend {L}, (¢, u) € R*X.#} to paths o starting in . Fix ¢ € @° and for
each path w starting at a and each y € @ set

(3.14) Li(wa ty) =g L (o).

We note that w — wa 'y is a bijection from the set of cadlag paths in T’
starting at a to those paths starting at y.

We must verify that with this definition {L}, (¢, n) € R X.#} satisfies the
requirements of this theorem, that is, it is continuous almost surely, and
that, for each pu €, L} is a continuous additive functional of X with
1-potential U . 3

We first show that {L}*, (¢, u) € R™X.#} are continuous additive function-
als for the Lévy process X. The only part requiring proof is the additivity:
(3.15) Lt (o) =L (w) + LX(6,0), P?as.

forall y €eI' and p €.

If vy € Q¢ (3.15) follows by continuity since it holds for all u €2. Note
that, since @ is a polar set, 6, w(0) = w(¢) € Q°, P almost surely.

Consider now that y € @. By definition (3.14) we have that, P* almost
surely,

Ly (wa™'y) = L (o)

(3.16) =Lt v (w) + L (6,0)
= L(wa™ly) + Lo (6,0).

Assume that (3.13) holds without restriction on x € I, that is, that
(3.17) LM wx)=L(0) Vues PYas.
for each x € I' and y € Q°. Then, using the Markov property, we see that

P"(I:S“(Qtwafly) = fls‘*“’1~V(0tw))
(3.18) = P*(P¥(Lt(waty) = Lt ()

=1.

The final equality follows from (3.17), since, by the polarity of @, we have
X, € Q°, P almost surely. Using (3.16) and (3.18), we see that

(319)  Lf (wa 'y) =L wa 'y)+LH6,0a'y), P®as,

which is equivalent to (3.15).
To show that L}* has 1-potential U'w, we note that, by Theorem 1.1,

(3.20) B[t dle(o)] - Uk(n)
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for all y € T — @, and, since both sides of (3.20) are excessive functions, they
will be equal for all y € I' by Theorem 3.2, Chapter 2 of [4]. [Alternately, we
can use the calculation in (3.11).] Again, by Theorem 1.1, since { = = for Lévy
processes, {L}, (¢, u) € R*X.#} is jointly continuous, P almost surely, for
all y e T' — @ and hence for all y € ' by definition (3.14) and the fact that 7',
is an isomorphism for each x € I.

We now return to the proof of (3.17). If yx € Q°, this is precisely the
content of (3.13). If yx € @, then by (3.14) we have

(3.21) L (wa tyx) = L (o), P%as.
Now, since both @ € Q° and a(a"'y) =y € Q¢, it follows from (3.13) that
(3.22) Li(wa™ly) = L) b(w) = L (w), P%as.

Combining (3.21) and (3.22), we obtain
L (wa lyx) = Li(wa™ly), P®as,
which is equivalent to (3.17). O

4. Local times. In this section we explain how local times fit into our
framework. Suppose that the Markov process X has a local time. Consider
the set of measures .# = {5,, a € S}, where §, denotes the unit point mass at
a. We set L} = L¢ and note that it is the ordinary local time of X at a. Let
{H(5,), 8, €4} be the associated Gaussian chaos. When a Markov process
has a local time, continuity of the local time and the associated Gaussian
chaos are equivalent, and we obtain the results discussed in Remark 1.5.

Let

-0 ter”0 o(By(t, ¢))
where d, o, .# and B are defined in Theorem 1.2.

) 1 1/2
(4.1) T (d, #) =4 lim supf (log—) de,
0

THEOREM 4.1. Let X be a Markov process as in Theorem 1.1 with state
space S and assume that a local time exists for X at all points a € S. Then the
following are equivalent:

() {L{, a € S} has a continuous version almost surely;
() {H,(8,), 8, €4} has a continuous version almost surely;
(iii) for all compact subsets .4 of 4, there exists a probability measure o
on # such T .(d,.#) = 0.

Furthermore, if X is a Lévy process in R", or T", (iii) can be replaced by
(il") J(d, #) < © for all compact subsets 4 of ..
ProoF. It is enough to prove this theorem for S compact. In this case we
can take .#Z to be compact and we denote it by .#Z. If X has a local time for all

x € S, then ul(x, x) < o for all x € S. (See, e.g., Theorem 3.2 of [14].) In this
case the Gaussian process {G(3,), 8, €.}, defined in Section 2, is the same
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as the Gaussian process {G(a), a € S} with covariance ul(x,y). (As we
remarked in Section 2 the construction can be carried out for all «.) It follows
from Theorem 1 of [14] that {L}, a € S} has a continuous version almost
surely if and only if {G(a), a € S} is continuous. We see from the construction
of the chaos H,(8,) associated with L% = L that H,(8,) = G*(a) — EG*(a).
Thus, obviously, {H(3,), 8§, €4} is continuous if and only if {G(a), a € S} is
continuous. Thus we see that (i) and (ii) are equivalent.

A necessary and sufficient condition for the continuity of {G(a), a € S} is
that there exists a probability measure o on S such that 7, ( p, S) = 0, where

(4.2) p(x,y) = (u'(x, 2) + ul(y,y) - 2u'(x, )"
For the measures in .#, the metric defined in (1.12) is
d(8,,8,) = ((u'(x,2))" + (u'(3, )" = 2(u}(x, )’
< \/g((ul(x, x) —u'(x,y))ul(x, x)

)1/2

(4.3) +(u(y,y) — ul(x,9)ul(y, )"’
<2 sup (u'(x, )" p(x, y)
xeS
<Cip(x,y).
Similarly,
d(s,,8,) = ing(ul(x, x))l/zp(x, y)
> Cyp(x,y).

We know that C, > 0. (See, e.g., Lemma 3.6 of [14].) Thus, if there exists a
probability measure o on S such that 7, (p,S) # 0, then T (d, .#) # 0. On
the other hand, if there exists a probability measure ¢ on S such that
T (p,S) =0, then{L9, (a,t) € S X R*} is continuous and hence, by Theorem
3.7 of [14], u'(x, x) is continuous on S. Hence C, < » and consequently
T (d, #) = 0. Since {G(a), a € S} is continuous if and only if there exists a
probability measure o on S such that 7, (p,S) = 0, it follows that (ii) and
(iii) are equivalent.

It is clear from the first line of (4.3) that d is also a metric on R, or T'".
Thus we can write (4.1) as

i ) 1 1/2
4.4 T7.(d,]0,27w]) = lim su log———— de

( ) )L( ’[ ’ ]) ”—’Oxe[o,};w]jo ( g/\(Bd(t’g))) ’

where A is a probability measure on [0,27]. Furthermore, if X is a Lévy
process d is translation invariant. It is well known that for translation-
invariant metrics on R" and 7" we can take the measure A in (4.4) to be
normalized Lebesgue measure and that 7,(d,[0,27]) = 0 if and only if

J(d,[0,27]) < «. However, now considering d as a metric on .#, we see that

J(d,[0,27]) = J(d, #). Thus, when X is a Lévy process in R", or T, (iii)
can be replaced by (iii’). O
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5. Lévy processes in R". We now specialize to Lévy processes in R"
and families of measures .# = {u,, x € R"} which consist of translates of a
fixed measure pu on R”. We first develop material leading to the proof of
Theorem 1.3. We then prove Theorem 1.6 and lastly consider the relationship
between the 1-potential and the metric entropy integral (1.15).

Let us define

Vi(xy,.005x4)(2)

5.1 k
OV F [l mw () (e 500 T die (),

where the sum runs over all permutations 7 of {1, ..., k}. Note that
Vi(x)(2) = Uthp,(2)
and also that functions such as V,(x,,..., x,)(z) arise in the proof of the

isomorphism theorem, as in (2.26). The next theorem is used in the proof of
Theorem 1.3.

THEOREM 5.1. Let X ={X,, t € R"} be a symmetric Lévy process in R".
Let w € %2 be a finite measure on R". If {H(n,), x € R"} is continuous
almost surely, then for any h = U'f, where f € A(R") is strictly positive,
x = Ulhp, is a bounded and uniformly continuous map from R" to B(R"),
and, more generally,

(5.2) {x1, %9,y 24} = Vi (xq,...,2,)(2)

is a bounded and uniformly continuous map from (R™)* to #(R™).

ProoF. We will first show that x — U'hpu, is a bounded and uniformly
continuous map from R" to #(R"). That is,

(5.3) sup Ulhp,(z) <
x,z€ER™
for each x € R", and

(5.4) lim sup sup |U'hp,(2) - Ulhu,(2)] = 0.
3—>0|x,y\sazeR"

Let us assume first that u = g(x) dx, where g(x) is bounded and uni-
formly continuous. In particular, this guarantees that

(5.5) Lt-= [g(X,+x)dr, x<R",
0

is continuous almost surely and has bounded 1-potential U'g (-), where
g.() =4 8(x + ). We now obtain bounds on U'hpu. in terms of H,(u)
which will extend to all finite u € 2.

We begin by noting that

(5.6) U'hu(z) = EF(LEF(X))) = B} (L= f.- (X))
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The first equality is particularly easy to see for L}/ of the form (5.5). The
second inequality follows by a change of variables.
Let B, = {x € R"| x| < r}. Asin (5.6), for x, z,v € B; we have that

(5.7) U'hp,(2) = EY(L{=f,_ (X))
Therefore
(5.8) sup Uthp(z) <E!| sup L{f(X,)],
z€B, zex+B,
where
(5.9) f(x) = sup £.().
z€B,
We note that, since f €. AR?), f has the property that
(5.10) J[u (e, 3) F(2) F(y) dxdy < =,

Therefore, integrating (5.8) with respect to dm(v) restricted to B; and using
the isomorphism theorem, Theorem 2.2, and the stationarity of H,, we see
that

(5.11) sup Uhp,(2) <C

z€B;

sup H,( p,)

ZEBZ 2

K

uniformly in x € R". Finally, using the stationarity of H, again and the fact
that

(5.12) Uhypy, (2) =Uhp(z +y)
and that (5.10) is unchanged if we replace f by f;, we see that (5.11) gives

(513) Ulh/“(‘x(z) =< C sup Hl( lu'z)

ZEB2 2

for all x,z € R™.
Similarly, for x, y, z,v € B; we have, as in (5.6), that

(5.14) U'hp,(2) — U'hpy(2) = B (L= — Liv =) f._(X,)).
Hence
sup U'hp,(2) — U'hp,(2) <Ef| sup (Lt —LA“y)f(XA)),

lx—yl<é [x—yl<$
x,y,2€B; x,y€EBjy

where £ is defined in (5.9). As above, the isomorphism theorem, Theorem 2.2,
now shows that

(5.15)  sup |U'hu,(z) — U'hu,(2)|<C| sup Hy(p,) — Hy(p,)
lx—yl<d [x—yl<d
x,y,2€B; x,yEBg
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and that (5.15) implies that

(5.16)  sup |U'hp,(z) — U'hp,(2)|<C

lx—yl<$§

sup Hl( /'Lx) - Hl( My)

lx—yl<$
x,yEBg3

for all z € R™.

We now prove the assumption, that u has a bounded uniformly continuous
density, in (5.13) and (5.16). Let b(x) be a positive continuous and symmetric
function supported on B; with [b(x)dx = 1. Let

b7 ! b(x)
x) = —blZ
(x) i
and set w”= pu*b? =g"(x)dx. Note that g”(x) = [b"(x — y)uldy) is
bounded and uniformly continuous when p is a finite measure. We apply
(5.13) with w replaced by w” to obtain

sup U'hp(z) < C| sup Hy( nY)

x€R™ xE€B, 2
(5.17) = C|| sup H,(p.) *b”(x)
x632 2

< ¢ sup Hy(n,)

xEBB 2
In the second line of (5.17) we use the fact that
(5.18) Hy(ul) = Hy(p)*b7(x),

which follows easily from (2.9).
We now take the limit in (5.17) as y —» 0. We show below that, for any
x € R,

(5.19) Uthpl(z) = U'hp,(2)
in L'(R", dz) as y — 0. Therefore for some subsequence y, — 0 we have
(5.20) Uthp'(z) > Ulhp,(2)
for almost all z with respect to Lebesgue measure. This implies that
(5.21) U'hu,(z) < C| sup Hy(n,)

x€B; 9

for almost all z. However, since U'hu (2) is 1-excessive, it follows that (5.21)
holds for all z.
Let us now prove (5.19). It suffices to consider the case x = 0. Since

(5.22) U'hp(2) = [U'hp,(2)b7(x) dx,

it is enough to show that x — U'hu,(2) is a bounded and uniformly continu-
ous map from R" to L'(R", dz). To see this, it suffices to note that

(5.23) 1T Rl < [A(y) p(dy) < Il w(R™)
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and
Uhp, — Ulhpll

=f‘ Ju'(z = »h(y)n(dy) — [u'(z -
(5.24) =/‘fu1(z—y—x)h(y+x)lu(dy)_ful(z_

r(R™)

< ( sup f|u1(z —y—x)h(y +x) —u(z —y)h(y)|dz

yER™
< (lluy — w'llhlialle + llwtllilif, — All) w(R™).

Similarly, we can now remove the assumption, that u has a bounded
uniformly continuous density in (5.16), by arguing exactly as above, with
respect to the L'-function z — U'hu,(2z) — U'hp,(2). This shows that (5.16)
holds for all finite u € £2. This completes the proof of (5.13) and (5.16) in the
general case, and verifies (5.3) and (5.4).

We now prove that (5.2) is bounded and uniformly continuous. As above,
let us assume first that u = g(x) dx, where g(x) is bounded and uniformly
continuous. Note that

k

Vi1, 23)(2) =Ef( l_[ v f (X, ))

(5.25) .

=EA(];[LI"x+z yf y(X))
The first equality is straightforward for L/ of the form (5.5). [See also (2.22).]
The second equality follows by a change of variables. Therefore

supVh(xl,...,xk)(z)sEA”( sup HL“Zf(X))

z€B; z,€x;+By 1
where, as before,
(5.26) f(x) = sup f.(x).
z€B,

As above, Theorem 2.2, Holder’s inequality and the stationarity of H; show
us that

(5.27) sup V,,(%1,...,%;)(2) < C|| sup HF ()| ,
z€B, z€B, 9
uniformly in {x,,..., x,} € (R™*. Again, by stationarity, as above, we see
that
(5.28) sup Vy(x,...,x,)(2) <C| sup Hf ()| »
z€R" zZ€B, 2
uniformly in {x,..., x,} € (R™")*. The assumption that u has a bounded

uniformly continuous density can be removed exactly as before. This shows
that (5.2) is bounded. The proof of uniform continuity is similar. O
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PrOOF OF THEOREM 1.3. By Theorem 5.1, U'hy, u(z) is bounded so that
u € Rev(X). Let {x,}7_; be a sequence of points in R”. We will first show that
the version of the isomorphism theorem, Theorem 2.1, still holds if we take
{p, )i_, for the sequence of measures { ,ul}l 1, even without the assumption
that the U’ . (z) are bounded on R". We first note that, for each i,

(5.29) Ulp,(x) <o qe. x,

which follows from the fact, (1.10), that u, € £} so that [U'w, (x) dp(x) < =
for all p € Z1. (See, e.g., Theorem 3.3.2 of [6] ) Furthermore,

(5.30) dLio+,

t
L+r = _
' '/(-) h(l)(Xs)

since both sides are continuous additive functionals with the same Revuz
measure u. Together with (5.29) and Theorem 3.1, Chapter 6, of [4], this
shows that

(5.31) E*(Lt+) = Ulp,xi(x) <o g.e. x.

This, together with Theorem 5.1 which enables us to control the integrals in
(2.26), allows us to establish (2.22) for g.e. x which is sufficient to establish
the isomorphism theorem, Theorem 2.1.

We then follow the proof of Theorem 1.1. Here, the assumptions of that
theorem concerning U, (z) are used only in bounding (3.6), and, once again,
Theorem 5.1 allows us to do this. Finally, in the proof of Theorem 3.2 we can
use the relationship (5.30) between L/ and Lho# to establish (3.12) and to
identify L“ Putting all this together completes the proof of Theorem 1.3. O

Proor oF THEOREM 1.6. By Theorem 1.2, Remark 1.4 and Theorem 1.3,
we need only show that (1.14) holds with d = d;. By (1.12) and (1.25),

£h , 1/2
(532)  di(y+h,y) = 2(/ sin’ =y (€)] 7€) dg) .
EER™
[Recall that di(y + h, y) = d(u,, u,,).] For x > 0 define

(5.33) F(x) = flglng(f)lﬁ(f)IQdf

and note that
L1nl 1/2
dl(y+h,y)sC(|h|2j;)/ uzdF(u)+(1—F(1/|h|)))

= $(IRl).

A slight modification of the argument on pages 152 of [7] [take {(u) = 1/u]
or of the proof of Lemma 1.1, Chapter 7, of [10] shows that (1.26) implies that

fol d(lul) d

u

(5.34)

(5.35)

u < o,
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It is easy to see that (5.35) implies that (1.14) holds. (See, e.g., Lemma 5.3,
Chapter 4, of [7] or the proof of Lemma 3.6, Chapter 2, of [10].) O

The equivalence of (i) and (ii) in Theorem 1.5 is a surprising relationship
between the 1-potential of a Lévy process in T and the square-root metric
entropy of the Gaussian chaos associated with certain of its continuous
additive functionals. In the next theorem we see that a similar result holds
for processes and measures in R".

THEOREM 5.2. Let X be a Lévy process in R"™ with characteristic sequence
¢ and let u be a finite measure on R", n = 2,3. Assume that:

@) a(é) = 0;
G1) (&) and (&) are radially symmetric;
(iii) there exist constants 0 < C;, Cy < % such that

v(€) 1 v(€)

c < <C
e = (1+ ¢(&))° =g

for [¢l = 1;
(iv) there exist a decreasing sequence {a;};_, of positive numbers and
constants 0 < C}, Cy < © such that

GRS
Gu= T <
for 2771 < |¢ < 27.
Then
(5.36) U(0) < = < [(log Ny(R*, )" de < =.

We use Boas’s lemma, Lemma 2.2, Chapter 4, of [7].

LeEmmA 5.1. Let {s}};_, be a sequence of positive real numbers. Suppose
s; | asj — . Then there exist constants 0 < Cy, Cy < © such that

1/2

<Cy ) s,

j=1

(5.37) Clisjs i( Zs

j=1 n=1

Furthermore, the left-hand side of (5.37) remains valid without the condition
that s;| asj — .

PROOF OF THEOREM 5.2. By (iv) there exist constants 0 < C;, C, < % such
that

(5.38) Cia; <

A& .
! /2 L) d¢ < Cya;, Jj=1.

imlc))< 27 1+ lﬂ(f)
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Therefore it follows from Lemma 5.1 that

(5.39) Un(0) = [ Ae)

2 di< o
e T p(e) 5 °

if and only if
. . 1/2
= 22 p2)[
— < oo
& (1 + ¢(27))
By (iii), (5.40) holds if and only if

= |1
5.40 —
( ) k§2 ( k J

1/2
<

EoN I

(5.41) y ( ¥ 2niy(27)| a2
k=2 \R j=z

or, equivalently, if and only if

o (f\flzxy(f)l ﬂ(§)|2 d§)1/2

1/2

x < ©,

(5.42) )

2 x(log x)

An argument similar to the one used in the proof of Theorem 1.6 shows that
(5.42) implies that the integral on the right-hand side of (5.36) is finite. Thus
we get the implication to the right in (5.36). To get the reverse implication, by
Lemma 6.2, Chapter 4, of [7], it is enough to show that

(5.43) Cf . YOIMOF dE<di(y +hoy)

for some C > 0. Note that, by (i1), y(£) is also radially symmetric. Therefore
di(y +h,y)

agy Lt MOl de

= j:(fsinZ(v|h|(h/|h|)u) do(u)|y(wh)( a(v))*v" tdv,

where o (u) is uniform measure on the unit sphere in R”. It is easy to verify
that

(5.45) [sin?(vlhl(h/IRlyu) do(u) = € >0

for v|h| = 1. Thus

(5.46) Ay +h,y)2C[  y(0)| Av) 0" dv,
1/1h|

which gives us (5.43). O
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The next result gives an upper bound for the supremum of the 1-potential
of a Lévy process under much weaker conditions than those required in
Theorem 5.2. The term on the right-hand side of (5.48) is an upper bound for
the metric entropy integral in (5.36) and is equivalent to it when the Fourier
coefficients of the measure and the characteristic exponent of the Lévy
process are sufficiently smooth.

LEMMA 5.2. Suppose that

1 y(§)

5.47 <C
(547 (1+¢(£))” "

VéeE R
Then

(-["f|2x y(&)| [;,(g)lz d§)1/2
<(ogz)"?

X,

(548)  sup |Uw(x)| < cflw

xeR"

where y(&) is given in (1.24).

Proor. This is a simple application of Lemma 5.1 and the Schwarz
inequality. Without loss of generality, we assume that

[ | 2(¢) dé> 0

e>1 1+ ¢(€)

and obtain (5.48) from the following sequence of inequalities:

(5.49)

SC;& %ji(fzf‘klgszllf(—lf()fl)dg)z :
(5.50) = Cki %jézjn(fzflqgsw%dg)w
Scké %J‘ézjn(éﬂdszf%wdg)v

1/2

(qulﬂjy(g)l Mo dg)
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The next lemma gives conditions under which (5.47) holds.
LeEMMA 5.3. If ¢(€&) = (1) is regularly varying at «©, then (5.47) holds.

PrOOF. By the assumption of regular variation,

dn
SO B sy s s wrap e

Cf Inl"~* dlnl
 Ls2ie (1 + g (Iml))?
l&"
(1+w(ld))*

(5.51)

which is (5.47). O

6. Lévy processes in T". We begin by showing how to obtain a large
and interesting class of Lévy processes taking values in an n-dimensional
torus. Let X be a symmetric Lévy process in R", n > 1, with transition
probability density p,(x,0) =4 p,(x) and characteristic function

(6.1) EeirXt = o=ty
Let w: R" — T" denote the natural projection, w(x) = x(mod 27), onto the
n-dimensional torus. Consider
Y, = m(X,).

It is easy to see that Y ={Y,, ¢ € T"} is a Markov process with transition
probability density
(6.2) q.(x,y) =2m)" Y p(x—y+2m)) Vx,yeTn,

JjEZ"

with respect to the normalized Lebesgue measure dx/(27)" on T". Since X
is a Lévy process, q,(x,y) = g (x —¥,0) =4.; q,(x — y), where x — y is sub-
traction in 7. We have

NN 1 ijx
W)= G [, e a(x) dx

e’ Y p,(x+ 2mk) dx
(63) f” kezn t( )

=/ e p,(x) dx
Rn
=p,(J) =e V.

Therefore, in particular, Y is determined by its characteristic sequence as in
(1.18).
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Lévy processes on the torus are recurrent. Therefore we consider the
1-potential density of Y denoted by

oo

vl(x) =f e 'q,(x)dt

(6.4) 0 .
=(2m)" Y ul(x+ 27))
jez"
from which it follows that
1
6.5 ol(j) = al(j) = ———.
(6.5) D) =2 = 155057

The following useful inequalities relating the 1-potential of Lévy processes
in T" with the associated Gaussian chaos is an immediate consequence of
Theorem 5.1.

THEOREM 6.1. Let X ={X,, t € R"} be a symmetric Lévy process in T".
Let yu € &2 be a finite measure on T". Then

(6.6) sup U'u(x) <| sup Hy( 1)
xeT" xeTn 2
and, for any 6 > 0,
6.7)  sup Ul(x) ~ Un(y) <| sup Hy(w,) — Hy(p,)
[x—yl<é lx—yl< 8
myéT” myéT” 2

In particular, if H, is continuous almost surely, then U'w(x) is continuous
on T".

Note that we can always assume that we are working with a measurable
and separable version of H,. Inequalities such as (6.6) and (6.7) should be
understood to be applying to such versions.

Proor. Following the proof of Theorem 5.1 but with R” replaced by 7",
we see that f can be taken to be identically 1 in (1.6) and hence A = 1. This
theorem now follows immediately from (5.13) and (5.16) since we can take B,
or B, equal to T". [Doing this carefully, one sees that the constant can be
taken to be 1 in (6.6) and (6.7).] O

We now obtain concrete sufficient conditions for the continuity of continu-
ous additive functionals of Lévy processes in T, which are analogous to
those obtained in Theorem 1.6 for Lévy processes in R™ Let w be a finite
measure on T'" with Fourier coefficients { i(k), k € Z"}; that is,

ai) = [ erdu(x), ez

Assume that

(6.8) B(Jj) = kEZZn L+ ok A+ wk)
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Note that B(j) are the Fourier coefficients of (z!(x))? so that

(6.9) Y B BN = [[(u'(x, ) din(x) du(y).

JjEZ"

THEOREM 6.2. Let Y =1{Y,, t € R} be a symmetric Lévy process in T"
with characteristic exponent . Let u be a finite measure on T". If

1/2
= (Zym 0 BRI
(6.10) Y (= ) <o,
n=1 n
then p € Rev(X) and {L}*, (a,t) € T" X R} has a continuous version. In
particular, for Brownian motion on T2, this is the case when

1
(6.11) |ﬂ(k)|=O(W) as |k| - «©
for any & > 0.

ProoOF. Writing (1.12) in terms of its Fourier series, we have

d( s 1) = (B(H( ,) = H( ub))Q)”
(6.12) b
=2\/§( Y B()| ()| sin? 5 ) ,

jezZ"

since [,(j) = (e Let # ={u,, a € T"}. It follows from Lemma 3.6,
Chapter 2, of [10] and Lemma 1.1, Chapter 7, of [10] that (6.10) implies (1.14).
Therefore we see by Theorem 1.2 that {H(pu,), a € T"} has a continuous
version almost surely. O

The next lemma describes the Gaussian chaos associated with a continu-
ous additive functional of a Lévy process on T'" by the isomorphism theorem.
This is interesting in its own right and also leads, in Theorem 1.4, to
remarkable necessary conditions for the continuity and boundedness of cer-
tain second-order Gaussian chaoses.

LEMMA 6.1. Let Y ={Y,, ¢ € R"} be a symmetric Lévy process with char-
acteristic exponent . For all u € %, the Gaussian chaos H,( ) associated
with L}, the continuous additive functional of Y determined by w, is given by

1
i = Jkgzn VI+ (i) V1+e(k)

(6.13) x{(a(j+k) +a(j—k)) (g8 — 8.1)
—2(b(j+k) —b(j—k))g;gh
+(a(j—k) —a(j+k))(gigh — 5.4)}
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where {gj} and { g}}, J € Z", are independent normal random variables with
mean 0 and variance 1, {a(j)} and {b(j)} denote the real and imaginary parts
of \(j) and §;;, =1 if j =k and is equal to O otherwise. Furthermore, for
veZE

E(Hy(p)Hy(v)) = 2[[(v'(x ~ )" du(x) dv(y)

(6.14) —2
=2 ¥ (0 (DA,
where
—2 1
(6.15) WH =X

pezn (L4 9k =J))(1+ (k)

PrROOF. If u, v are measures in 2,

1 _ 1 AC N~
(616)  [[e'(x =) du(x)dv(y) = T o i),

Therefore the Gaussian process that is used to construct the Gaussian chaos
associated with Y (see Section 2) can be represented by

1
G.= L ———Re[A(j)(g, + i)
I jezr 1+ lp(‘]) { ( J J)}
(6.17) )
= L —————(a())g; —b())sg))

jezn 1+ d’(.]) ( J J)
Letting ¢(j) and d(j) denote the real and imaginary parts of 9(j), we have

E(GG,)= L

Z. m(a(j)c(j) +b(j)d(J))

(6.18)

1 A o\ A .
=jeZZn—1+ ) () v (=J),

where we use the facts that () is real and even, a(j) and c(j) are even and
b(j) and d(j) are odd, for all j.
In particular, if u, ;= q,(y —x)dy/@2m)" [see (6.2)]

(6.19) iy 5 = €% 20 = cos(jx)e **Y) + isin(jx)e V).
Therefore
Gx,ﬁ “def G,u.x’,S

(6.20) = -0 j—l ix)g: — sin( jx)g'
_jezzne w()m(cos(.] )g; — sin(}J )gj)
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and

e S+ (k)

GoamEG) =5 L oo ie o

X {cos((j + k)x) + cos((j — k)x)(8;8, — 8.2)
—2(sin((j + k)x) — sin((j — k)x))gjg}e
+(cos((j —k)x) —cos((j+k)x))(gig) — 8j,k)}.
Integrating with respect to u, we get

e~ 3+ Yk

1
H(u, =5 ;
(#.9) 2j,k§Z" VI+¢(j)V1+ ¢(k)

(6.21) x{(a(j+ k) +a(j—k))(gg: — 8.1)
—2(b(j+k) —b(j—k))g;8k
+(a(j—k) —a(j +k))(gjer — 8,4)}.

Taking the limit in (6.21), as § - 0, we get (6.13).

The first line in (6.14) follows from the construction of H,( w). It is given in
(2.9) and, of course, the same analysis holds for the 1-potential as for the
O-potential. Taking its Fourier transform gives the rest of (6.14) and (6.15).
[We will verify the transition between the first and second lines of (6.14) by a
computation in the proof of Lemma 6.2.] O

The next lemma enables us to study questions of continuity and bounded-
ness of Gaussian chaoses associated with continuous additive functionals of
Lévy processes on T in terms of simpler Gaussian chaoses.

LEMMA 6.2. Let # C %} and assume that (0) = C for all u €4#. Let
H, ={H,(w), u €4} be as given in (6.13). Then H, has a continuous version
if and only if {x(w), n €2} or { x'(w), w €4} has a continuous version,
where

88k a(j—k)

6.22 =

(6:22) R RNl
and

(6.23) O T e L Lt A

she VI+ 0 () V1 + y(k)
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Furthermore,
g, — 8 V() —k
(6.24) sup H,( IL) < Cy|| sup Z (g_]gk .J,k)/*"(] )
ned 2 wed j kez" V1+w(j) 1+ w(k) \

and

sup H,(pn) — Hy(v)

w, ved 9
(6.25)

cp Y (g8, — 8;.)((J— k) — P(j—k))
poved jkezn V1+¢())V1+y(k)

where C, and C, are constants independent of  and .

<C,

ki

2

Proor. Define

1
(6.26) G.= L ————mJ)g
jezr V1 + ¢()) !
where g; = g; + ig’. Note that

(627) é,ux 5 “def Gx,ﬁ = Gx,S + iG;c,87

where G ; is an independent copy of G, ; given in (6.20). Using the fact that
#(-) is symmetric, one can check that E(G, ;G ;) = 0, that is, that {G, ;,
x € T"} and {G;’ s> X € T"} are independent, identically distributed Gaussian
processes. Therefore

Hi(1) =g ;E% f(|G~x,,3|2 - E|Gx,,5|2) du(x)

=H,(p) +H'(p),

where H,(p) and H'( w) are independent copies of H;( 1) given in (6.13). We
now see that

(6.29) EH,( ) Hy(v) = 2EH,(w) Hy(v).
Furthermore, by (6.19) and (6.26), we have that

(6.28)

Gx,8 “def G~p.xy5
(6.30) - ¥ e—awm; ijx g

. €¢"§;
jeEZ" 1+ lrl’(.]) !

and so, by (6.28),

~ . ,&,(_] - k) ~ =
O30 = F Ry G2



PATH PROPERTIES OF ADDITIVE FUNCTIONALS 1169

Using the facts that E(g~J-)2 =0, E|g~j|2 = 2 and Elg,‘rjl4 = 8, we see that
5 . a(j—k)o(k —J)

(6.32) EH(w)H(v) =4 ) - .
' ' ihezr L+ 9 ()1 + ¢ (k)

Note that (6.29) and (6.32) together give an independent verification of (6.14)
and (6.15).
We can rewrite (6.31) as

~ _ :a’(.]_k) ~ =
B = & e Gy Vi a e S
(6.33) .
T B -2)

Note that the condition that w € £ implies, by (6.14) and (6.15), that
Yrcz(1+ (k)2 < . Thus we see that the last term in (6.33) is a fixed
random variable and hence it plays no role in the question of the continuity of
H,(w) on /. Letting a(j) and b(j) denote the real and imaginary parts of
(j), as above, the first term to the right of the equal sign in (6.33) can be
written as

s o k) (g8 tgigr) T O~ k)(8;8k — gj8k)
(634) HO( /-L) - j§k ‘/1 + df(.]) ‘/1 T l,ll(k) :

It is clear by (6.28) and the above remark on the diagonal terms of H,(w)
that the continuity of H,(u) and H,(n) are equivalent. Consider

~ a(j—k)g;8
(6.35) (W) = L e SV (k)
and
b(j—k)g,gi
(6.36) xo(m) = ¥ Ltk

Je Y1+ () V1 + (k)

for w € Z7. It is obvious that if { x,(pn), u € &7} and { x,(w), n € Z7} are
continuous, then so is H,(u) and hence H,(w). It is also easy to see, taking
into account the equivalence of continuity for the coupled and decoupled
Gaussian chaoses, that y,(u) and y,(u) are continuous if and only if () is
continuous. Thus we see that the continuity of y( ) implies the continuity of
H,(). The equivalence of the continuity of y(w) and x'(w) follows from the
decoupling property and the above remark on the diagonal of H,(u). One can
also show that the continuity of H,( ) implies the continuity of yx,(w) and
x2( ) and hence of y(w) and x'(w).

Inequalities (6.24) and (6.25) follow from (6.28) and (6.31) and simple
comparison theorems between the norms of coupled and decoupled Gaussian
chaoses. (See, e.g., Section 2 of [1].) This completes the proof of Lemma 6.2. O
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ProOOF OF THEOREM 1.4. The proof follows immediately from the inequali-
ties in Theorem 6.1 and Lemma 6.2, replacing the 1-potential by its Fourier
series. We use the fact that all the moments of a norm of a Gaussian chaos
are equivalent to express (1.19) in terms of the first moment of the norm. O

ProOF OF THEOREM 1.5. The expression in (i') is, except for a constant
multiple, the Fourier series of Uu(x) at x = 0. Since (k) > 0 for all & € Z",
the Fourier series of Ulu(x) converges uniformly. Thus (i) and (') are
equivalent. That (iii) implies (i) follows from Theorem 1.4 and (ii) implies (iii)
follows from Theorem 1.2 of [15]. That (i) implies (ii) is a simple manipulation
of the metric entropy integral J(d,.#). It is done for processes in R" and
measures on R", n = 2,3, in Theorem 5.2; however, the upper bound in this
theorem is also valid when n = 1. [Note that the conditions on {(%)} imply
that (iii) of Theorem 5.2 holds.]

Theorem 1.3 shows that (iii) implies (iv). We now complete the proof by
showing that (iv) implies (i). Assume that {L/+, (x,¢) € T" X R"} is continu-
ous almost surely. Let

bY(x) = Yeikze vIk
k

denote the Poisson kernel on 7. Set u? = u* b? =;,; g7(x) dx and note that
g"(x) = [b7(x — y)uldy). A straightforward calculation shows that

(6.37) Lyt = [Lib7(x —y) dy,

since, in view of the continuity of {L}~, (x,¢) € T" X R"}, the right-hand side
of (6.37) is a continuous additive functional with Revuz measure u). Further-
more, L/ converges almost surely, as y |0, to L} which is finite. Hence for
any ¢ > 0 we can find a finite constant K such that

(6.38) E'(Lf = K) <c/2.

We show that (6.38) implies (i). Assume, to the contrary, that Uwuw(0) = .
Then

- B [L(k)e*y‘k‘
(6.39) U'u (0)—§—1+¢/(k)

By the Paley—Zygmund inequality we see that

U (0) = .

E°(L}
(6.40) E°(L{" = 8E°(LF)) = (1 - 5)2((—Ay)
E°((LY)
for any 0 < 6 < 1. Also,

(6.41) E°(LY) = Un?(0)
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and
E°((LE7)') = 2[ul(0, ) (Ul () dp?(y)

< 2(Uw(0)),
where, in the last inequality, we use the fact that (%) > 0 for all & € Z"
which implies that Uw”(0) > Uw”(x) for all x € T".
Using these inequalities in (6.40), we see that for 0 < y < v,, for some vy,
sufficiently small,

(6.42)

1
(6.43) E°|L} > EU{M(O) >c

for the same constant ¢ as in (6.38). This contradiction proves that (iv)
implies (1). O

PrROOF OF COROLLARY 1.1. It is convenient to take 7% = ; (— 7, w]%. Let
{h(¢), € € T3} be radially symmetric such that A(¢) = f(|£]) and let u be a
measure on T3 with density A(&). Clearly, Uw(0) < = if and only if uf(u) €
L0, 1).

We first show that (iii) implies (ii). Let us assume that (iii) holds. This
implies that f is regularly varying at 0 with index greater than or equal to
—2 and that {Z(«, t), (x,t) € T® X R*} is stochastically equivalent to L =
{LF+, (x,t) € T? X R"}. We show that the Gaussian chaos associated with L
is continuous almost surely which implies, by Theorem 1.3, that L is continu-
ous almost surely. To begin, we estimate the Fourier coefficients { ((n)}, c 4
of w. We have

f(n) = (277)*3/'

(cos ¢n)f(1él) dé
£l<1

(6.44)
—3 1 9
= (27) /0 (fcos(vlnI(n/InI)u) do(u)|vef(v) dv,
where o(u) is a uniform measure on the unit sphere in R?. Let n # 0. Since

the last integral in (6.44) is independent of n/|n|, we take n/|n| = (0,0, 1).
Then

a(n) = (2m) > [ [ cos(vlnlcos ¢)sin ¢ dg vf(v) dv
070

(6.45) L
:Wfo sin(vlnl)vf(v) dv.

Since vf(v) is decreasing and f is regularly varying at 0 with index greater
than or equal to —2, we see that

1(1/Inl)

(6.46) Os;&(n)sz—lgfw/lnv%‘(v)d(v)sc -
T 0 n]
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If f is regularly varying at 0 with index greater than —2, it follows from
(6.46) and Theorem 6.2 that L is continuous almost surely. Thus we need
only consider the case when f is regularly varying at 0 with index —2. By
(6.46) and the fact that in Lemma 2.2 of [15] we can work with a majorant of
i, we see that the Gaussian chaos

g, — 8 )Vu(j— k)elRx
(6.47) Z (gjgk j,k)l“(’(] )
Jhezn V1+[2V1+ &P

is continuous almost surely. Therefore, by Lemma 6.2, the Gaussian chaos
associated with L is continuous almost surely. Thus we see that (iii) implies
(i1).

Obviously, (ii) implies (i). Now assume that (i) holds. For v € (0, 1] define
1/v, 1/v>f(1/m),
fo),  1/v<f(1/m).
Let w,, be the measure on T? with density 4,(¢) = £,,(I€). Since vf,,(v) is
nonincreasing on (0, ), it follows from (6.46) that i, (n) > 0 for all n € Z3.

This implies that U, (0) > U'w,(x) for all x € T3. Note that U, (0) is
finite for all m € Z* and U'w,,(0)1 U'w(0) as m — o. Also,

3
R xeT?,

fu(v) =

(6.48) [ Fa(X,) dst [F(X,) ds asm - .
0 0

Using these facts and the Paley-Zygmund inequality, as in the preceding
proof, we see that (i) implies (iii). O

7. Moduli of continuity. Let X be a Markov process with 1-potential
density u'(x, y). Let .# c £% N Rev(X) be compact with respect to the metric
d; given in (1.12). We consider L = {L}, (¢, u) € R* X.#} and the associated
Gaussian chaos H, = {H,(w), u €4} defined just before Theorem 2.2 and
assume that both of these processes are continuous almost surely. As in [12],
we can use the isomorphism theorem to carry over some results about the
moduli of continuity of H, to L.

THEOREM 7.1. Let H, and L be as defined above and let T be a real-valued
function on # X.#. Assume that

(7.1) lim sup |H1(M)_H1(V)|s

920 r(u,1)<8 (1, v)

C a.s.

for some constant 0 < C < . Then

. |LtM_L]t/|
(7.2) lim sup ————

<C, P*a.s.
8407(;%1/)33 T(,LL,V)

for almost all t €[0,¢), for all x € S — Q, for some polar set Q.
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ProoOF. We assume for simplicity that ¢ = o; essentially the same proof
works for general (. Take f to be strictly positive and F = 15. in Theorem
2.2, where
lg(w) —e()| _C

B ={geC(x)|lim <
T(p,v)<$§ T( M V) 2

60

Assumption (7.1) implies that
(7.3) F(3Hy(p)) =0, Pgas,

where P, is the probability measure on the probability space of H,. Hence
the left-hand side of (2.29) is equal to 0. Since f is strictly positive, this
implies that

(7.4) F(L{ + SH( w)) =0, Pz XPP’XP, as.

or, equivalently, that

|L)fL + %Hl( m) — (LK + %HI(V)”
T(m,v)

lim sup
(7.5) RN

- ki

C
<3 P; X PP X P, as.

Using (7.1) again, we see that
: IL{ — Ll
(7.6) lim sup ——— <C, P’XP as.
-0 T(p,v)<é T( IU"V)
Using the argument in the paragraph following (3.3), in the proof of Theorem
1.1, we see that
: IL{ — Ll
(7.7) lim sup ——— <C, P*XP as.
5-0 T(u,v)<8 T( ,LL,V)
for all x € S outside some polar set @ c S. It is clear that (7.7) implies (7.2).
This completes the proof of Theorem 7.1. O

Similar to Theorem 3.2, for continuous additive functionals of a Lévy
process on a group determined by a translation-invariant set of measures, we
can remove the restriction on the starting point of the process. For simplicity,
we consider Lévy processes on R" and measures .# = {u,, a € R"}, a set of
translations of a fixed finite measure u on R".

THEOREM 7.2. Let X be a Lévy process on R". Let u be a finite measure in
22 and let p, = W(A + a) foralla € R" and Borel sets A ¢ R". Let .# = {p,,
a € R"} with p € Rev(X) and let H, and L be as defined in the beginning of
this section with respect to X and #. Assume that, for some real-valued
function t,

H -H
(7.8) lim sup 1 o) 1 o) <C a.s.

la—bl->0 7(la — bl)
a,bel0,1]"
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for some constant 0 < C < . Then

(7.9) I Liv 2L ¢
. 1m su —— <
b0 T(la = bl)
a,bel0,1]”

for almost all t € R* almost surely.

Proor. This follows immediately from Theorem 7.1 and the fact that
(3.12) holds for these processes. O

In order to use Theorem 7.2, we need to know the moduli of continuity for
{H(p,), a €[0,1]"}. Actually, not much is known about the moduli of
continuity of second-order Gaussian chaoses. We make do here with some
simple consequences of the well-known fact that for any second-order Gauss-
ian chaos, say {H(¢), t € T}, where T is some index set,

H(a) — H(b)

(7.10) E D)

exp A <C Va,beT

for some A > 0, where
- ~ 1/2
(7.11) 0(a,b) = (E(H(a) — H(b))) "
LEMMA 7.1. Let {H(a), a € R"} be a second-order Gaussian chaos satis-
fying
- ~ o\1/2
(7.12) (E(H(a) - H(b))) " <p(a - bl),
where p is a regularly varying function, at 0, with index greater than 0. Then
there exists a constant 0 < C < o such that
. H(a) - H(b)
(7.13) lim sup <C a.s.

la—bl—>0 p(la — bl)llogla — bl | —
a,bel0,1]”

ProoF. There are many well-known techniques for obtaining a result
such as this one. We will use a lemma of Garcia, Rodemich and Rumsey.
Since p is regularly varying with index greater than 0, without loss of
generality we can assume that p(lu|)| 0 and |«|| 0 and that it is continuous
in some neighborhood of 0. It is well known that

|H(a) - H(b)|
4p(la — b])

for some constant C < «. (See, e.g., Corollary 3.9 of [9].) Furthermore, since p

is regularly varying with index greater than 0, it is easy to see that (1.14)

holds. Thus {H(a), a € R"} has a continuous version. Let {(x) = exp(|x| /4).
It is clear from (7.14) that

(7.14) Eex

)<C Va,b e R"

|H(a) — H(b)|
(7.15) f{o,l]nf[mnz( 1p(a b)) )dadb<C<oo
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on a set of measure 1. The statement in (7.13) now follows from Lemma 4.1,
Chapter 4, of [7]. (See also Lemma 3.3.13 of [18].) O

PrOOF OF THEOREM 1.7. By the hypotheses on the dimension of A, there
exists a finite measure u supported on A such that

'/‘/d/-‘“(x) du(y) < o

7.16 Va<pB.
(7.16) = a<p
This implies that

(&)l
7.17 — s —d{<»

Let a < B. Consider the Gaussian chaos {H,(u,), a € [0, 1]"} associated with
B. Taking the Fourier transform in (1.12), we get

/ (sin® éa)log(1 + [&)| A(€) |2

dl( I"La’ I’L) < C 1 + |§|2 dé
1/2
in® ga)log(1 +16)  |a(&)
(7.18) (sin? £a)log
=Cl ER f(1 +1g?)* ¢

1/2

< C(lal* log(1 + 1/lal))

< |a|B/2fg

for all & > 0, for |a| < a,, for some a, sufficiently small. Since d{(p,_,, n) =
dy(p,, 1p), we can use (7.18) in Lemma 7.1 to get
H,(p,) — Hy(py)

(7.19) ll;rilbillo) @ b P/ =0 a.s.

a,bel0,1]?
Therefore (1.31) will follow from Theorem 7.2 once we show that H; and L
are continuous. Obviously, (7.19) implies that H, is continuous. Theorem 1.3
now completes the proof of Theorem 1.7. O

PrOOF OF THEOREM 1.8. As in the above proof, everything follows from an
upper bound for d,(u,, ). In this case, for p = 2, we have

1/2
Isin? £allog(1 + 18)| £(&)]]
1(ua,u)sC(/sn a01(+|§|2) (¢) f)

(7.20)
<C

lsin? &allog(1 + &)
sup 5
£ 1+ [¢

< Clal(log(1 + 1/lal))"?IIfll

1/2
) 11 £l
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and, for 1 < p < 2, we have
1/@2r)

Isi 12"(log(1 + &))" A
sin {a (og(2 i &) dé 1£1lg,
(1+14°)

where 1/p+1/g=1 and 1/r + 2/q = 1. By Young’s inequality IIfllq <
ClIfll,. Also, by a simple estimate,

/Isin £al* (log(1 + 1&))” ac

(721)  dy( e p) <C| [

2 r
(22 e ( 1€0))"
. log(1 + 1&)
< lal* log(1 d —
< lal /\élsl/lal( cg(1 +1d)) de+ flf\zl/la\ 8%
Thus
(7.23) dy( gy, 1) < Clal*™Y"(log(1 + 1/lal)) I fll,.

Using this in Lemma 7.1, we get

H(p,) — H( )
_”me <Clfl, as.

7.24 lim su
(7:24) mm»g la — b1*~*P|logla
a,bel0,1]?

Therefore, as in the proof of Theorem 1.7, (1.32) follows from Theorem 7.2.
This completes the proof of Theorem 1.8. O
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