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COMPARISONS FOR MEASURE VALUED PROCESSES
WITH INTERACTIONS

BY SAUL JACKA AND ROGER TRIBE

University of Warwick

This paper considers some measure-valued processes {Xt : t ∈ [0, T ]}
based on an underlying critical branching particle structure with random
branching rates. In the case of constant branching these processes are
Dawson–Watanabe processes. Sufficient conditions on functionals � of
the process are given that imply that the expectations E(�(XT )) are
comparable to the constant branching case. Applications to hitting estimates
and regularity of solutions are discussed. The result is established via the
martingale optimality principle of stochastic control theory. Key steps, which
are of independent interest, are the proof of a version of Itô’s lemma for
�(Xt ), suitable for a large class of functions of measures (Theorem 3) and
the proof of various smoothing properties of the Dawson–Watanabe transition
semigroup (Section 3).

1. Introduction and statement of results.

1.1. Introduction. We start by describing the stochastic processes that we
study, which will be solutions to a certain martingale problem. Let E be a compact
metric space, with Borel sigma field E , and let M be the space of finite Borel
measures on (E,E), on which we put the topology of weak convergence. We write
either (µ,f ) or µ(f ) for the integral of a function f :E → R with respect to a
measure µ ∈ M, whenever this is well defined. Let C(E) [resp. B(E)] be the space
of continuous (resp. bounded measurable) functions on E, with the supremum
norm ‖f ‖E , and let A be the generator of a strongly continuous Markov semigroup
{Pt : t ≥ 0} on C(E).

Suppose {Xt : t ∈ [0, T ]} is an adapted process defined on a filtered probability
space (�,F ,Ft , P ) that has continuous paths with values in M. The terminal
time T will be fixed throughout the paper. Let P be the predictable sets for this
probability space. Let σ : [0, T ]×�×E → [0,∞) be P ⊗E measurable. We call
{Xt } a solution to the martingale problem M(A,σ) if for all φ ∈ D(A) the process

Zt (φ) = (Xt ,φ) − (X0, φ) −
∫ t

0
(Xs,Aφ)ds(1)
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is an Ft local martingale for t ∈ [0, T ] with quadratic variation

[Z(φ)]t =
∫ t

0
(Xs, σsφ

2) ds.(2)

One may think of Xt as a measure describing the position of an infinite cloud
of infinitesimal particles that are independently moving according to the process
with generator A, and that are continuously dying and branching into two, each
at rate σ/2. We emphasize that σt(x), the particle branching rate at time t and
position x, may be random, for instance it may depend on the position of the
other particles. This has the potential for modeling many aspects of populations,
for example competition, mutualism or clustering. The convergence of particle
systems to a measure valued limit satisfying M(A,σ) is well known for constant
branching rates (see [4], Section 4.6) and has been shown for some interacting
branching rates σ in [8]. Our arguments will need only the martingale problem
and will not use this associated particle picture.

The solutions for a constant branching rate σ c
t ≡ c are called Dawson–Watanabe

processes and have been extensively studied (see [4]). The martingale problem
M(A,σ c) has solutions that are unique in law. The constant branching rate means
that disjoint sets of particles evolve independently. This makes the process quite
tractable and a large number of qualitative properties have been established. Less is
known about the processes with random branching rates σ . Existence of solutions
to the martingale problem, studied in [7, 9–11], holds for a large class of branching
rates. Uniqueness is typically unknown. Uniqueness for an extended version of the
martingale problem (called a historical martingale problem) has been established
in [11] for a restricted class of branching rates σ .

The aim of this paper is to establish a comparison principle for expectations
E(�(Xt)) of certain functionals � :M → [0,∞]. When the branching rate
satisfies σ ≥ c we find conditions on � that ensure the expectation E(�(Xt))

is greater than the corresponding expectation for the Dawson–Watanabe process
with constant branching rate c. There is a corresponding result when σ ≤ c. The
intuition is that more branching should lead to more clustering which should
lead to certain functionals increasing in expectation. This leads to easy proofs
that certain properties of Dawson–Watanabe processes carry over to interactive
branching processes. This result should be compared to those of Cox, Fleischmann
and Greven [3], who studied a similar problem for functionals of systems of
stochastic differential equations (SDEs) on a lattice and applied it to establish
ergodic properties. By taking our processes to have a motion process on the lattice
our results apply to systems of SDEs. The results of Cox, Fleischmann and Greven
are then more general in that they treat the case of two comparable branching rates
σ1 ≤ σ2, although our results allow a greater class of interactions.

The analogous problem of comparing functionals of processes with different
drift terms, for example, with the term + ∫ t

0 (bs, φ) ds added into the martingale
problem (1), can be treated via pathwise comparison results. These allow one to
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couple two processes if one has a larger drift than the other, from which one can
deduce comparisons between the expectations of increasing functionals. There are
various pathwise comparison arguments in the literature for SPDEs (see [1] and its
bibliography). For measure valued branching processes when the drift terms come
from immigration, or from mass creation and annihilation terms [i.e., they are of
the form

∫ t
0 (Xs, bsφ) ds], a coupling can be constructed via a “thinning” procedure

(see [2], Theorem 5.1, for a related result).

1.2. Statement of main result. We now discuss the hypotheses for the theorem.
We will need two mild assumptions on the branching rate and on the underlying
spatial motion generated by A, for which we give the following two definitions:

1. The branching rate σ is called locally bounded if there exist stopping times
Tn ↑ ∞ so that σtI (t < Tn) are bounded, as functions on [0, T ] × � × E, for
each n.

2. The generator A is called a good generator if there is a dense linear subspace
D0 of C(E) that is an algebra and is closed under the mappings Pt for all t ≥ 0.

The assumption that σ is locally bounded ensures that the integral in (2) is
well defined. Most commonly studied motion processes have good generators.
Without loss of generality we may, and shall, assume that D0 contains the constant
functions. Using a lemma of Watanabe (see [6], Proposition 1.3.3) the conditions
on D0 imply that D0 is a core for A. Recall that D0 is a core for D(A) if whenever
f ∈ D(A) there exist fn ∈ D0 so that fn → f and Afn → Af .

The key hypothesis on � is the following convexity hypothesis:

E
(
�(µ + Z + Z̄) − �(µ + Z) − �(µ + Z̄) + �(µ)

) ≥ 0(3)

for all µ ∈ M and for all i.i.d. M valued variables Z, Z̄ with bounded total mass.
This is a randomized version of the following parallelogram condition:

�(µ + ν + η) − �(µ + ν) − �(µ + η) + �(µ) ≥ 0
(4)

for all µ, ν, η ∈ M.

Clearly (4) implies (3). In the case that � has two continuous directional
derivatives, as defined by (10) in Section 2, the condition (4) is equivalent to
Dxy�(µ) ≥ 0 for all x, y ∈ E, µ ∈ M. Example 5, in Section 4, does not
satisfy (4), but (3) applies. Furthermore, Example 6 in Section 4 shows that �

being convex is not a sufficiently strong hypothesis.
We require one more hypothesis on the smoothing properties of the underlying

motion process. We suppose the motion semigroup {Pt} satisfies Ptf ∈ D(A) for
t > 0, f ∈ B(E) and that there exists α < ∞ and β ∈ [0,21/2) so that

‖APtf ‖E ≤ αt−β‖f ‖E for all t ∈ [0, T ], f ∈ B(E).(5)

Here is the main result of the paper.
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THEOREM 1. Suppose {Xt } is a solution to the martingale problem M(A,σ)

for a locally bounded branching rate σ and good generator A satisfying the
smoothing hypothesis (5). Suppose that � :M → [0,∞) is continuous, satisfies
hypothesis (3) and the growth condition:

�(µ) ≤ exp(λ(µ,1)) for some λ < 1/cT and C < ∞.(6)

Let {Yt} be a solution to the problem M(A,σ c), that is a Dawson–Watanabe
process with the constant branching rate c, and whose initial condition Y0 has
the same law as X0. Then the following comparisons hold:

(a) if 0 ≤ σ ≤ c then E(�(Xt)) ≤ E(�(Yt)) for all t ∈ [0, T ];
(b) if c ≤ σ and � is bounded then E(�(Xt)) ≥ E(�(Yt)) for all t ∈ [0, T ];
(c) if c ≤ σ ≤ c̄ and λ < 1/2c̄T then E(�(Xt)) ≥ E(�(Yt)) for all t ∈ [0, T ].

REMARKS. The continuity and growth conditions on � are certainly not
necessary, and can often be weakened. For example, if the conclusions of the
theorem hold for a convergent sequence of functions �n then it is often possible
to deduce that they hold for the limit.

The smoothing hypothesis (5) on the underlying motion process should be
totally unnecessary, and hence we have not sought a best possible bound on β .
However, the hypothesis is satisfied by the Laplacian with the value β = 1 and this
is sufficient for all our examples in Section 4. We make some more remarks on this
at the end of Section 3.

A similar result, under the same hypotheses, holds for path functionals∫ T
0 f (t)�(Xt) dt where f ≥ 0. Since the comparison holds for each E(�(Xt))

it must hold for the integral.
The sketch proof below makes it clear that it is enough for the convexity

hypothesis (3) to hold at all µ in the range of Xt , that is on any set M0 ⊆ M
for which Xt ∈ M0 for all t ≤ T almost surely.

We now give a sketch of the method used for the proof of this result, restricting
for simplicity to the case 0 ≤ σ ≤ c. We write {Uc

t : t ≥ 0} for the transition
semigroup of the Dawson–Watanabe process with constant branching rate c. The
conclusions of the theorem, for example, part (a), can then be rewritten as

E(�(Xt)) ≤ E
(
Ut�(X0)

)
for all t ∈ [0, T ].

We shall use the ideas of control theory. We consider σ as a control and try to
maximize the value of E(�(Xt)) over all controls bounded above by a constant c.
Under our hypotheses on � the constant control σ c is optimal and so we define
the value function, the reward under the optimal control, by

F(t,µ) = E(�(Yt)) = Uc
t �(µ).
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The martingale optimality argument is the heuristic that, if Xs is a solution to
M(A,σ), then the process s → F(s,Xt−s) is a supermartingale if σ ≤ c and a
martingale for the constant branching case σ = c implying

E(�(Xt)) = E(F (0,Xt)) ≥ E(F (t,X0)) = E
(
Uc

t �(X0)
)

which is the desired conclusion. To implement this idea we need the drift in the
semimartingale decomposition for a process F(s,Xs). In Section 2 we show, for a
general class of functions F(s,µ), that this is given by

∫ t
0 LσF (s,Xs) ds where

Lσ F (s,µ) = DsF (s,µ)+
∫
E

(
A(x)DxF (s,µ)+σs(x)DxxF (s,µ)

)
µ(dx).(7)

The derivatives Dx and Dxx are first and second derivatives in the direction of the
point mass δx , as defined in Section 2, and we write A(x) to indicate the variable on
which the operator A is acting. This formula is well known and easy to establish
for certain simple explicit functionals F . We establish it for F which only need to
satisfy certain smoothness conditions. When σ takes the constant value c this gives
a formula for the generator Lc of the Dawson–Watanabe process acting on smooth
functions. Comparing Lσ with Lc we see they differ only in the term involving the
second directional derivative.

Using the semigroup property of Uc
t one expects that

LcF (T − s,µ) = 0 for all µ ∈ M and 0 < s ≤ T .(8)

Then suppose X is a solution to M(σ,A). Formally, we expect

E(�(Xt)) − E
(
Uc

t �(X0)
)

= E(F (0,Xt)) − E(F (t,X0))

= E

(∫ t

0
LσF (t − s,Xs) ds

)

= E

(∫ t

0
LcF (t − s,Xs) ds

)

+ E

(∫ t

0

∫ (
σs(x) − c

)
DxxF (t − s,Xs)Xs(dx) ds

)

= E

(∫ t

0

∫ (
σs(x) − c

)
DxxF (t − s,Xs)Xs (dx) ds

)
[using (8)].

So what is needed to complete the proof is that

DxxF (s,µ) = DxxU
c
s �(µ) ≥ 0.(9)

We will show that the convexity hypothesis (3) implies this by finding a
representation, in Section 3, for the derivative DxxU

c
s �(µ).

The main technical difficulty in implementing this heuristic proof is that
we do not know whether the value function Uc

t �(µ) satisfies the smoothness
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assumptions required to apply the formula (7). In Section 3 we investigate
smoothing properties of the Dawson–Watanabe transition semigroup {Uc

t } and
show that directional derivatives always exist. In Section 4 we complete the proof
of Theorem 1 and we give a number of examples of functions � satisfying all the
required assumptions. We use the one point compactification of a locally compact
space to show how our results apply to processes on R

d and Z
d . We then choose

suitable functionals � to establish several properties of interacting measure-valued
processes that are already known for the constant branching case, such as local
extinction, hitting estimates and absolute continuity or singularity of the measures.
The heuristic that “more branching leads to more clustering” always holds true.
In many cases the proofs of these properties for the Dawson–Watanabe process
would carry over to the interacting processes. However application of a comparison
argument, when applicable, is very simple. It would be good to find a comparison
result for two random branching rates that are comparable, σ1 ≤ σ2, as may occur
when there is a scalar parameter in front of an interacting branching mechanism.
However our control theory argument, which we felt was a natural approach
to the problem, fell foul of the problem of smoothing an infinite dimensional
value function. The present proof uses the fact that we are comparing with a
constant branching rate to show the smoothness of the value function, which,
given integrability, follows from explicit formulae for the required derivatives,
established by exploiting the branching property for Dawson–Watanabe processes.

We end this section with a moment estimate, useful throughout the paper, for
the total mass (Xt ,1) of solutions to M(A,σ).

LEMMA 2. Suppose {Xt } is a solution to the martingale problem M(A,σ)

satisfying (X0,1) ≤ K and σ ≤ L, almost surely. Then

E

(
sup
t≤T

exp
(
(Xt ,1)/LT

)) ≤ 4 exp(2K/LT ).

PROOF. The stopping times Tn = inf{t : (Xt ,1) ≥ n} reduce the local mar-
tingales Zt(1), as follows from (2) and the bound on σ . Set Et = exp(2(Xt,1)/

L(T + t)). Using Itô’s formula and the martingale problem M(A,σ), we have

dEt ≤ (
2Et/L(T + t)

)
dZt (1).

The right-hand side is also reduced by Tn so by optional stopping, for t ≤ T ,

E
(
exp

(
(Xt∧Tn,1)/LT

)) ≤ E(Et∧Tn) ≤ E(E0)

= E
(
exp

(
2(X0,1)/LT

)) ≤ exp(2K/LT ).

Itô’s formula also implies that exp(λ(Xt∧Tn ,1)) is a submartingale for any λ. So
by Doob’s L2 inequality we have

E

(
sup
t≤T

exp
(
(Xt∧Tn,1)/LT

)) ≤ 4 exp(2K/LT ).

Letting n → ∞ and applying monotone convergence completes the proof. �
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2. Semimartingale decompositions. In this section we suppose {Xt } is a
solution to the martingale problem M(A,σ) for a locally bounded branching rate σ

and good generator A. We shall show that for sufficiently smooth functions F(t,µ)

the process F(t,Xt ) is a semimartingale and give an expression for the finite
variation part.

We define the first directional derivatives DxF :E × M → R by

DxF(µ) = lim
ε→0

1

ε

(
F(µ + εδx) − F(µ)

)
.(10)

We will need only these derivatives in the directions of point masses. When
DxF(µ) is continuous, directional derivatives in the direction of a general element
ν ∈ M can be expressed in terms of the function DxF(µ) [see Lemma 4(a)]. We
define second directional derivatives DxyF :E2 × M → R by taking a further
derivative so that DxyF = DxDyF . For derivatives in time and mixed derivatives
we write DsF,DsxF,DsxyF . If the mixed derivatives are continuous then they

may be taken in any order. We write A(x) or P
(x)
t for the generator or semigroup

applied in the variable x, whenever the action is unclear.

THEOREM 3. Suppose F : [0, T ] × M → R satisfies:

(i) the functions F,DxF,DxyF,DxyzF,DsF,DsxF,DsxyF,DsxyzF exist
and are continuous,

(ii) for fixed s, y, z,µ the maps x → DxF(s,µ), x → DxyF (s,µ), x →
DxyzF (s,µ) are in the domain of the generator A,

(iii) the functions A(x)DxF (s,µ), A(x)DxyF (s,µ), A(x)DxyzF (s,µ) are
continuous in s, x, y, z,µ.

Then F(t,Xt ) − ∫ t
0 LσF (s,Xs) ds is a local (Ft ) martingale for t ∈ [0, T ] where

LσF is given by (7), which can be written in short as LσF = DsF + (A(x)DxF +
σDxxF,µ(dx)).

REMARKS. In the case of constant branching σ = σ c, the theorem shows
that (7) is a deterministic formula for the Markov generator of the Dawson–
Watanabe process acting on suitably smooth F . The Dawson–Watanabe semigroup
can be generated (see [14]) via a Trotter product formula that mixes the semigroup
due to pure branching and the dual semigroup P ∗

t describing the heat flow
of measures. Therefore we expect the generator to be the sum of the two
corresponding generators and the last two terms of (7) can be identified as such
(for the heat flow see Lemma 7).

It would be natural to require hypotheses only on those derivatives that are
involved in the expression LσF . The reason for requiring DxyzF in the domain
D(A) and not just DxF is that we shall approximate the worst derivatives DxyzF

and A(x)DxyzF first and then integrate up to get all the lesser derivatives.
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The rest of this section contains the proof of this result. Formula (7), at least as
a formal expression, is well known. This is presumably based on the fact that it is
easy to verify for a class of simple functions F , as we now show. Let C1([0, T ])
be the space of bounded functions ψ : [0, T ] → R with one bounded continuous
derivative. Suppose that ψ ∈ C1([0, T ]), φi ∈ D(A) for i = 1, . . . , n and define

F(µ, t) = ψ(t)

n∏
i=1

(µ,φi).

Notice that we may obtain the formula for the covariation of Z(φ1) and Z(φ2):

[Z(φ1),Z(φ2)]t =
∫ t

0
(Xs, σsφ1φ2) ds,(11)

from equation (2) by polarisation. Then applying Itô’s formula, using (11) and the
decompositions (1) and (2), we have that

F(Xt , t) − F(X0,0) =
∫ t

0
Dsψ(s)

n∏
i=1

(Xs,φi) ds

+
∫ t

0
ψ(s)

n∑
i=1

(∏
j 
=i

(Xs,φj )

)
(Xs,Aφi) ds

+
∫ t

0
ψ(s)

n∑
i,j=1,j 
=i

( ∏
k 
=i,j

(Xs,φk)

)
(Xs, σsφiφj ) ds

+
∫ t

0
ψ(s)

n∑
i=1

(∏
j 
=i

(Xs,φj )

)
dZs(φi).

(12)

The last term is a local martingale and the first three terms on the right-hand
side can easily be identified with the three terms of the expression for the weak
generator (7) applied to the simple product function F . The proof for general F

now consists of an approximation argument using the simple functions above. We
shall simultaneously approximate F and all the derivatives of F that occur in the
formula for LσF . For functions on R

n approximating derivatives can be done
elegantly using Fourier transforms. In this infinite-dimensional setting we shall
do it the hard way, approximating the second derivative DxyF first and integrating
up to get approximations to lesser derivatives. We need to take care to ensure that,
after integrating up, we remain in the class of simple product functions. Readers
who believe this can be done will wish to skip to the next section.

In what follows we shall repeatedly need a type of fundamental theorem of
calculus for functions F :M → R to allow us to reconstruct F from its derivatives.

LEMMA 4. (a) Suppose F :M → R is continuous and has a continuous
derivative DxF :E × M → R. Then, writing 0 for the zero measure,

F(µ) = F(0) +
∫ 1

0

∫
DxF(θµ)µ(dx) dθ.(13)
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(b) Suppose G(x,µ) is continuous and has one spatial derivative DyG(x,µ)

that is continuous in x, y ∈ E, µ ∈ M. Suppose also that DyG(x,µ) =
DxG(y,µ). Define

F(µ) =
∫ 1

0

∫
G(y, θµ)µ(dy) dθ.(14)

Then DxF(µ) = G(x,µ) for x ∈ E, µ ∈ M.

In particular, this holds if G(x,µ) = ∫
φ(x, z)µk(dz) for some φ ∈ C(Ek+1)

which is symmetric under permutations of its variables.

PROOF. The continuity of DxF(µ) implies that the function

H(θ1, . . . , θn) := F(θ1δx1 + · · · + θnδxn)

is continuously differentiable on [0,∞)n. For a weighted sum of point masses
µ = ∑n

i=1 ciδxi
, part (a) holds by applying the fundamental theorem of calculus

on [0,1] to the function θ → H(θc1, . . . , θcn) = F(θµ). Weighted sums of point
masses are dense in M and, for fixed µ ∈ M, we may take a sequence of such
sums µε so that µε → µ in the weak topology. Then we can pass to the limit in
equation (13) for µε, to obtain the same equation for µ, by using the fact that
DxF(θµε) → DxF(θµ) uniformly over x ∈ E.

To prove part (b) of the lemma we differentiate (14) from the definition to obtain

DxF(µ) = lim
ε→0

∫ 1

0

∫
G(y, θ(µ + εδx)) − G(y, θµ)

ε
µ(dy) dθ

+ lim
ε→0

∫ 1

0
G

(
x, θ(µ + εδx)

)
dθ

= lim
ε→0

∫ 1

0

∫ ∫ 1

0
θDxG

(
y, θ(µ + θ ′εδx)

)
dθ ′ µ(dy) dθ

+
∫ 1

0
G(x, θµ)dθ

=
∫ 1

0

∫
θDxG(y, θµ)µ(dy) dθ +

∫ 1

0
G(x, θµ)dθ

=
∫ 1

0

∫
θDyG(x, θµ)µ(dy) dθ +

∫ 1

0
G(x, θµ)dθ,

(15)

where in the second equality we applied part (a) of this lemma. Using part (a) again
we have that∫ 1

0
G(x, θµ)dθ =

∫ 1

0

(
G(x,0) +

∫ 1

0

∫
DyG(x, θ ′θµ)θ µ(dy) dθ ′

)
dθ

= G(x,0) +
∫ 1

0

∫
(1 − θ ′′)DyG(x, θ ′′µ)µ(dy) dθ ′′.

(16)
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Combining (15) with (16) gives

DxF(µ) = G(x,0) +
∫ 1

0

∫
DyG(x, θµ)µ(dy) dθ = G(x,µ)

using part (a) of this lemma again. If G(x,µ) = ∫
φ(x, z)µk(dz) then

DxG(y,µ) = lim
ε→0

1

ε

(∫
φ(y, z1, . . . , zk)

(
µ(dz1) + εδx

) · · · (µ(dzk) + εδx

)
−

∫
φ(y, z)µk(dz)

)

=
k∑

i=1

∫
φ(y, z1, . . . , zi−1, x, zi+1, . . . , zk)µk−1

× (dz1, . . . , dzi−1, dzi+1, . . . , dzk),

which is symmetric in x and y if φ is symmetric in its variables. �

Iterating the fundamental theorem gives a corollary showing one way to
reconstruct F from its second partial derivatives.

COROLLARY 5. (a) Suppose F :M → R has continuous derivatives DxF ,
DxyF . Then

F(µ) = F(0) +
∫

DxF(0)µ(dx)

+
∫ 1

0

∫ 1

0

∫ ∫
DxyF (θθ ′µ)θµ(dx)µ(dy) dθ dθ ′.

(17)

(b) Suppose F : [0, T ] × M → R has continuous derivatives DxF , DxyF ,
DsF , DsxyF . Then

F(t,µ) = F(t,0) +
∫ (

DxF(0,0) +
∫ t

0
DsxF (s,0) ds

)
µ(dx)

+
∫ 1

0

∫ 1

0

∫ ∫ (
DxyF (0, θ ′θµ) +

∫ t

0
DsxyF (s, θθ ′µ)ds

)
(18)

× θ µ(dx)µ(dy) dθ dθ ′.

PROOF. Fixing x and applying (13) to DxF(θµ) gives

DxF(θµ) = DxF(0) +
∫ 1

0

∫
DyxF (θ ′θµ)θµ(dy) dθ ′.(19)

Substituting this into (13) gives (17). For part (b) fix t ∈ [0, T ] and apply (17)
to F(t,µ). Then expand the derivatives DxyF (t, θ ′θµ) and DxF(t,0) using the
usual fundamental theorem for real functions over [0, t] to obtain (18). �
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NOTATION. We write ‖f ‖X for the supremum norm on the space C(X) of
continuous functions on any compact metric space X. The space M is locally
compact with compact subsets M(K) = {µ ∈ M : (µ,1) ≤ K}. By using suitable
stopping arguments we will be able to restrict to M(K) in our proof of Theorem 3
and hence we fix K > 0 for the remainder of this section. We now define some
spaces of simple approximating functions. Let Sn denote the space of permutations
on {1, . . . , n}. For any function φ :En → R we define its symmetrization φsym by

φsym(x1, . . . , xn) = 1

n!
∑

π∈Sn

φ(xπ1, . . . , xπn).

Recall D0 is the particular dense linear subspace of C(E) described in the
definition of a good generator A. For k ≥ 1 let D

prod
0 (Ek) be the linear span

generated by the functions
∏k

i=1 φi(xi) where φi ∈ D0. If k = 0 we let this set
of functions be just the constant functions. Then define

D
sym
0 (Ek) = {

φsym :φ ∈ D
prod
0 (Ek)

}
.

Note that D
sym
0 (Ek) consists of exactly the symmetric functions in D

prod
0 (Ek).

Let µk be the k-fold product measure of µ. Let C1
0 ([0, T ]) be those ψ : [0, T ] → R

that have one continuous derivative that vanishes at T . Define, for each n ≥ 0

Asym
n =

{
m∑

i=1

∫
Eki

ψi(t)φki
(x, z)µki (dz) :

ψi ∈ C1
0 ([0, T ]), φki

∈ D
sym
0 (Eki+n), ki,m ≥ 0

}
.

The functions in A
sym
n act on the variables t ∈ [0, T ], x ∈ En and µ ∈ M(K),

and thus A
sym
n ⊆ C([0, T ] × En × M(K)). Let A

prod
n be the same set but with

D
sym
0 (Eki+n) replaced by D

prod
0 (Eki+n). The functions in A

sym
2 will be used to

approximate DxyF (s,µ). The functions F ∈ A
sym
0 are sums of the simple products

for which we used Itô’s formula directly in (12) to find LσF . Finally we define
Cn([0, T ]× M) to be the collection of functions in C([0, T ]× M(K)) possessing
n continuous directional derivatives, that is, the derivatives exist for (µ,1) < K

and have a continuous extension to the closed ball (µ,1) ≤ K . Define

Hk,n = {
Dx1··· xk

F (t,µ) :F ∈ Cn
([0, T ] × M(K)

)}
for k = 0,1, . . . , n.

LEMMA 6. For each n ≥ 0 and K > 0:

(a) A
prod
n is dense in C([0, T ] × En × M(K)).

(b) A
sym
n is a dense subset of Hn,n in C([0, T ] × En × M(K)).
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PROOF. A
prod
n is a linear subspace and it is easy to check that it is an

algebra, since C1([0, T ]) is an algebra, D0 is an algebra and if φ1 ∈ C(En+l)

and φ2 ∈ C(En+m) then∫
El

φ1(x, z)µl(dz)

∫
Em

φ2(x,w)µm(dw) =
∫
El+m

φ(x, z,w)µl+m(dzdw),

where φ(x, z,w) = φ1(x, z)φ2(x,w). Moreover, it is not hard to show that
A

prod
n separates points. Part (a) follows by the Stone–Weierstrass theorem.
Since A

prod
0 = A

sym
0 , we may now consider n ≥ 1 in part (b). If G ∈ A

sym
n and

we define

F(t, x1, . . . , xn−1,µ) =
∫ 1

0

∫
G(t, x1, . . . , xn, θµ)µ(dxn) dθ,

it is easy to verify that F ∈ A
sym
n−1. Moreover, DxnF (t, x1, . . . , xn−1,µ) =

G(t, x1, . . . , xn,µ), which follows either by direct calculation or from Lemma 4(b).
Using this and induction we see that A

sym
n is a subset of Hn,n. In the rest of

this proof we shall show that Hn,n+1 ⊆ A
sym
n . In Corollary 12 we show that

Hn,n ⊆ Hn,n+1 which will therefore complete the proof.
Fix Dx1···xnF (t,µ) ∈ Hn,n+1. Then Dx1··· xnxn+1F(t,µ) ∈ Hn+1,n+1 and so, by

part (a) of this lemma, for any ε > 0 and K ≥ 0, we can find G1 ∈ A
prod
n+1 with∥∥G1(t, x1, . . . , xn+1,µ) − Dx1··· xn+1F(t,µ)

∥∥[0,T ]×En+1×M(K) ≤ ε.(20)

Since Dx1···xn+1F(t,µ) is symmetric in the variables x1, . . . , xn+1, we may
symmetrize G1 in these variables without changing the bound (20) and still have
G1 ∈ A

prod
n+1. In the same way we may find G0 ∈ A

prod
n that lies within ε of

Dx1···xnF (t,0) and is symmetric in x1, . . . , xn. Now define

Fε(t, x1, . . . , xn,µ) = G0(t, x1, . . . , xn,µ)

+
∫ 1

0

∫
E

G1(t, x1, . . . , xn, xn+1, θµ)µ(dxn+1) dθ.
(21)

If we compare this with the reconstruction formula (13) for Dx1···xnF (t,µ) in terms
of Dx1··· xn+1F , we see that∥∥Fε(t, x1, . . . , xn,µ) − Dx1··· xnF (t,µ)

∥∥[0,T ]×En×M(K) ≤ (1 + K)ε.

It remains only to show that Fε ∈ A
sym
n . Since Dx1···xnF (t,0) does not de-

pend on µ, we may choose G0 independent of µ (indeed we may replace
G0(t, x1, . . . , xn,µ) by G0(t, x1, . . . , xn,0)). This, and the symmetry in x1, . . . , xn

imply that G0 is actually a member of A
sym
n . The function G1 may, since it was

chosen from A
prod
n+1, be written as a linear combination of terms of the form∫

Ek
ψ(t)φk(x1, . . . , xn, xn+1, z1, . . . , zk)µ

k(dz)

with ψ ∈ C1
0([0, T ]) and φk ∈ C(En+k+1).
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By our earlier remark, we may assume that φk is symmetric in the variables
x1, . . . xn+1. This term enters into the formula (21) for Fε as

θk+1

k + 1

∫
E

∫
Ek

φk(x1, . . . , xn, xn+1, z1, . . . , zk)µ
k(dz)µ(dxn+1).(22)

The integral in (22) is with respect to the product measure µk+1 so we may
symmetrize φk in its last k + 1 arguments. Since φk is also symmetric in its
first n + 1 arguments, and Sn+k+1 is generated by the collection consisting of
permutations of {1, . . . , n + 1} and of {n + 1, . . . , n + k + 1}, φk may be replaced
by φ

sym
k and hence Fε ∈ A

sym
n . �

The above lemma shows we can approximate DxyF by elements of A
sym
2 . We

now turn to the approximation of DsF and
∫
E A(x)DxFµ(dx). To do this we

introduce some more notation.

NOTATION. For each n ≥ 0, define the (stopped) semigroup (V n
t ) on

C([0, T ] × En × M(K)) by

V n
s F (t, x1, . . . , xn,µ) =




P
(x1)
s · · ·P (xn)

s F (t + s, x1, . . . , xn,P
∗
s µ),

if s + t ≤ T,

P
(x1)
T −t · · ·P (xn)

T −t F (T , x1, . . . , xn,P
∗
T −tµ),

if s + t ≥ T .

Here {P ∗
t } is the dual semigroup to {Pt}, acting on M. Let Ds + Qn be the

generator of (V n
s ) acting on C([0, T ] × En × M(K)).

The operator V n
s acts independently on the variables t, x1, . . . , xn,µ and this

makes the semigroup property clear. The domain of its generator is described in
the following lemma.

LEMMA 7. Fix K > 0.

(a) Suppose for some F ∈ C([0, T ] × En × M(K)) that DsF , A(xi)F , DzF

and A(z)DzF exist and are continuous in all variables. Then F is in the domain of
Ds + Qn and

(Ds + Qn)F (t, x1, . . . , xn,µ)

= DsF (t, x1, . . . , xn,µ) +
n∑

i=1

A(xi)F (t, x1, . . . , xn,µ)

+
∫
E

A(z)DzF (t, x1, . . . , xn,µ)µ(dz).

(23)
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(b) Suppose F ∈ Cn([0, T ]×M(K)) and that Dx1···xnF satisfies the hypothe-
ses of part (a). Then

Dx1···xn

(
(Ds + Q0)F (t,µ)

) = (Ds + Qn)Dx1··· xnF (t,µ).

PROOF. The proofs of both of parts of this lemma are fairly routine. We only
sketch some steps and leave the details to the reader. For part (a) one can use the
fact that the semigroup (V n

t ) is made up of separate semigroups acting in each
variable. The expression (23) is simply the sum of the generators for the individual
semigroups. In particular, the derivative of the heat flow µ → P ∗

t µ is given, for
suitable G, by

d

dt
G(P ∗

t µ) =
∫
E

A(z)DzG(P ∗
t µ)µ(dz).

Part (b) follows once one has shown that

Dxk

(
(Ds + Qk−1)Dx1··· xk−1F(t,µ)

) = (Ds + Qk)Dx1···xk
F (t,µ)

for k = 1, . . . , n. To show this, one applies directly the definition of the directional
derivative Dxk

. The key point is the fact that, for i ∈ {1, . . . , k − 1},
Dxk

(
A(xi)Dx1···xk−1F(t,µ)

)
= lim

ε↓0

A(xi)Dx1··· xk−1F(t,µ + εδxk
) − A(xi)Dx1···xk−1F(t,µ)

ε

= lim
ε↓0

lim
u↓0

P
(xi)
u − I

u

Dx1··· xk−1F(t,µ + εδxk
) − Dx1···xk−1F(t,µ)

ε

= lim
ε↓0

lim
u↓0

1

u

∫ 1

0

∫ u

0
P (xi)

s A(xi)Dx1··· xk
F (t,µ + εθδxk

) ds dθ [using (13)]

= A(xi)Dx1···xk
F (t,µ).

The fact that (x1, . . . , xk, θ, s) → P
(xi)
s A(xi)Dx1···xk

F (t,µ + εθδxk
) is uniformly

continuous in all variables means that the limits t ↓ 0 and ε ↓ 0 can be taken
in either order and that the convergence is uniform in the other variables
(x1, . . . , xk−1). �

We now briefly explain our strategy in the rest of the proof. Note that (Ds +
Q0)F gives precisely the terms DsF and

∫
E A(x)DxFµ(dx) which we need

to approximate in the drift (7) of F(Xt) in Theorem 3. To approximate F ,
(Ds + Q0)F and DxyF simultaneously however we shall approximate DxyF

and (Ds + Q2)DxyF simultaneously and integrate up twice to show we have
approximated F and (Ds + Q0)F as well. The following lemma is the key to
implementing this idea.
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LEMMA 8. For each n ≥ 0:

(a) Hn,n is a closed linear subspace of C([0, T ] × En × M(K));
(b) V n

t :Hn,n → Hn,n for all t ≥ 0;
(c) A

sym
n is a core for the generator Ds + Qn of the semigroup (V n

t ) acting
on Hn,n.

PROOF. The standard proof of part (a) uses induction on n. The result
is trivial for n = 0 since H 0,0 = C([0, T ] × M(K)). Take a sequence Fm ∈
Hn,n converging to F ∈ C([0, T ] × En × M(K)). We may suppose that
Fm(t, x1, . . . , xn,µ) = Dx1··· xnGm(t,µ). Define

Hm(t, x1, . . . , xn−1,µ) =
∫ 1

0

∫
Fm(t, x1, . . . , xn−1, xn, θµ)µ(dxn) dθ.(24)

By Lemma 4(a) we know that Hm differs from Dx1··· xn−1Gm by a function
independent of µ, namely Dx1···xn−1Gm(t,0). For any symmetric continuous
F :En → R, by differentiating from the definition, we have

F(x1, . . . , xn) = 1

n!Dx1···xn

(∫
En

F (y1, . . . , yn)µ
n(dy)

)
.

Applying this to Dx1··· xn−1Gm(t,0), we see that Dx1··· xn−1Gm(t,0) ∈ Hn−1,n−1.
Thus Hm ∈ Hn−1,n−1 also. Using the uniform convergence of Fm to F ,
(24) implies that Hm converge uniformly to continuous H . Also by Lemma 4(a),
we have

Hm(t, x1, . . . , xn−1,µ + εδx) − Hm(t, x1, . . . , xn−1,µ)

=
∫ ε

0
Fm(t, x1, . . . , xn,µ + ηδx) dη.

Taking the limit m → ∞ we obtain the same identity with Hm,Fm replaced
by H,F . But this identity implies that DzH = F . By the inductive hypothesis
H ∈ Hn−1,n−1 and this implies the conclusion of part (a).

For part (b) we suppose G(t, x1, . . . , xn,µ) = Dx1··· xnG(t,µ) for some G ∈
Cn([0, T ] × M(K)). Then, when t + s ≤ T , by direct differentiation, one can
check that (t,µ) → G(t +s,P ∗

s µ) ∈ Cn([0, T ]×M(K)) and that Dx1··· xnG(t +s,

P ∗
s µ) = V n

s F (t, x1, . . . , xn,µ). This proves part (b) when t + s ≤ T . The proof
when t + s ≥ T is entirely similar.

Since A
sym
n is a dense subspace of Hn,n, we can apply again Watanabe’s lemma

(given in [6], Proposition 1.3.3). This shows it is sufficient, to prove part (c), to
establish, for each s, that V n

s :Asym
n → A

sym
n . Applying V n

s to a typical term in
the sum which constitutes an element of A

sym
n , we have, for some ψ ∈ C1

0 ([0, T ])
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and φ ∈ D
sym
0 (Ek+n),

V n
s

(
ψ(t)

∫
Ek

φ(x1, . . . , xn, z1, . . . , zk)µ
k(dz)

)

=




ψ(t + s)

∫
Ek

P (x1)
s · · ·P (xn)

s φ(x1, . . . , xn, z1, . . . zk)(P
∗
s µ)k(dz),

if t + s ≤ T,

ψ(T )

∫
Ek

P
(x1)
T −t · · ·P (xn)

T −t φ(x1, . . . , xn, z1, . . . zk)(P
∗
T −tµ)k(dz),

if t + s ≥ T,

=




ψ(t + s)

∫
Ek

P (x1)
s · · ·P (xn)

s P (z1)
s · · ·P (zk)

s φ(x1, . . . , xn, z1, . . . zk)µ
k(dz),

if t + s ≤ T,

ψ(T )

∫
Ek

P
(x1)
T −t · · ·P (xn)

T −t P
(z1)
T −t · · ·P (zk)

T −tφ(x1, . . . , xn, z1, . . . zk)µ
k(dz)

if t + s ≥ T .

The definition of C1
0([0, T ]) implies that for ψ ∈ C1

0([0, T ]) the function t →
ψ(t + s ∧ T ) is still an element of C1

0 ([0, T ]). Recalling the form of φ ∈
D

sym
0 (Ek+n), and that Pt : D0 → D0, the result follows. �

LEMMA 9. For any F satisfying the conditions of Theorem 3, and any ε > 0
and K > 0, there exists Fε ∈ A

sym
0 such that

‖F − Fε‖[0,T ]×M(K) ≤ ε,

‖DxyF − DxyF
ε‖[0,T ]×E2×M(K) ≤ ε,

‖(Ds + Q0)F − (Ds + Q0)F ε‖[0,T ]×M(K) ≤ ε.

PROOF. Throughout this proof K is fixed and the norm ‖ · ‖, without a
subscript, is the supremum norm of C([0, T ] × Em × M(K)) for a relevant value
of m.

Fix F : [0, T ] × M → R as in the statement of Theorem 3. By Lemma 7 the
hypotheses on F imply that DxyF (t,µ) is in the domain of the generator Ds +Q2,
that DxF(t,0) is in the domain of Ds + Q1 and that F(t,0) is in the domain of
Ds +Q0. Hence, given ε > 0, we may, by Lemma 8, pick Gε

2 ∈ A
sym
2 , Gε

1 ∈ A
sym
1 ,

and Gε
0 ∈ A

sym
0 so that

‖Gε
2 − DxyF‖ + ‖(Ds + Q2)(Gε

2 − DxyF )‖ ≤ ε,

‖Gε
1 − DxF | + ‖(Ds + Q1)(Gε

1 − DxF)‖ ≤ ε,(25)

‖Gε
0 − F‖ + ‖(Ds + Q0)(Gε

0 − F)‖ ≤ ε.
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Since F(t,0) and DxF(t,0) are independent of µ, we may also pick Gε
1 and Gε

0
independent of µ. Now we define

Fε(t,µ) = Gε
0(t) +

∫
E

Gε
1(t, x)µ(dx)

+
∫ 1

0

∫ 1

0

∫
E

∫
E

Gε
2(t, x, y, θθ ′µ)dθ dθ ′ µ(dx)µ(dy) dθ dθ ′.

(26)

Note that Fε is an element of A
sym
0 and, using Lemma 4(b), that DxyF

ε(t,µ) =
Gε

2(t, x, y,µ) and DxF
ε(t,0) = Gε

1(t, x). The bound ‖DxyF ε − DxyF‖ ≤ ε fol-
lows immediately from (25). Comparing (26) and the reconstruction formula (17)
for F , and using the estimates from (25), we see that ‖Fε −F‖ ≤ ε(1 +K +K2).

Lemma 7 also shows that (Ds + Q0)F is twice differentiable and identifies the
derivatives. Applying the reconstruction (18), we get

(Ds + Q0)F (t,µ)

= DsF (t,0) +
∫
E
(Ds + Q1)DxF (t,0)µ(dx)

+
∫ 1

0

∫ 1

0

∫
E

∫
E
(Ds + Q2)DxyF (t, θθ ′µ)dθ dθ ′ µ(dx)µ(dy).

(27)

Applying this formula with the choice F = Fε gives

(Ds + Q0)F ε(t,µ)

= DsG
ε
0(t) +

∫
E
(Ds + Q1)Gε

1(t, x)µ(dx)

+
∫ 1

0

∫ 1

0

∫
E

∫
E
(Ds + Q2)Gε

2(t, x, y, θθ ′µ)dθ dθ ′µ(dx)µ(dy).

(28)

Comparing (27) and (28) and using the estimates in (25) shows that

‖(Ds + Q0)F ε − (Ds + Q0)F‖ ≤ ε(1 + K + K2)

which completes the proof. �

PROOF OF THEOREM 3. We make the following reductive assumption: there
exists K > 0 so that, with probability 1,

(Xt ,1) ≤ K and |σt | ≤ K for all t ∈ [0, T ].(29)

We claim that if we can prove Theorem 3 when this assumption holds then we
can prove the general case. To see this suppose that {Xt } is as in the statement
of Theorem 3. Using the local boundedness of σ , choose stopping times T 1

K
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so that σK
t := σtI (t < TK) is bounded by K and T 1

K ↑ ∞ as K → ∞. Set
T 2

K = inf{t : (Xt ,1) ≥ K} and TK = T 1
K ∧ T 2

K . Let �K = {(X0,1) ≤ K} and define

XK
t =




0, on �c
K,

Xt , on �K ∩ {t < TK },
P ∗

t−TK
XTK

, on �K ∩ {t ≥ TK }.
(30)

It is straightforward to show that (XK
t ) is a solution on (�,Ft , P ) to the martingale

problem M(σK,A). Moreover, d(XK
t ,1) = 0 for t > TK so the total mass process

never exceeds K . So (XK
t ) and (σK

t ) satisfy the assumption (29) and so MK
t :=

F(t,XK
t )− ∫ t

0 LσK
F (s,XK

s ) ds is a local martingale on [0, T ]. But on the set �K

F
(
t ∧ TK,Xt∧TK

) −
∫ t∧TK

0
Lσ F (s,Xs) ds = MK

t∧TK
.

Since �K is F0 measurable the process F(t ∧ TK,Xt∧Tk
) − ∫ t∧TK

0 LσF (s,Xs) ds

is also a local martingale on [0, T ]. Since TK ↑ ∞ this completes the reduction of
Theorem 3 to the case where assumption (29) holds.

We now fix a constant K where (29) holds. For F as in the hypotheses of
Theorem 3, we pick Fε as in Lemma 9. The function Fε is an element of A

sym
0

so we may apply Itô’s formula to Fε(t,Xt ) as in (12) to see that Fε(t,Xt ) −∫ t
0 LσFε(s,Xs) ds is a local martingale. Since, by assumption (29), both σ and

the total mass (Xt ,1) are bounded by K , the functions F and LσF are evaluated
only on the compact set and hence are bounded. So the process is a true martingale
and for any bounded Fs measurable variable Zs we have

E

(
Zs

(
Fε(t,Xt ) − Fε(s,Xs) −

∫ t

s
LσFε(r,Xr) dr

))
= 0

(31)
for s ≤ t ≤ T .

Now let ε → 0 in this expectation. Using the various uniform convergence
estimates in Lemma 9 and the fact that (Xt ,1) ≤ K , we obtain the same (31)
with Fε replaced by F . Hence F(t,Xt ) − ∫ t

0 LσF (s,Xs) is an (Ft ) martingale
on [0, T ], completing the proof of Theorem 3. �

3. Smoothing properties of the Dawson–Watanabe semigroup. It is not
always obvious how to smooth functions on infinite-dimensional spaces. The
properties we develop in this section suggest that smoothing using the Dawson–
Watanabe transition semigroup (Uc

t ) is a useful method. The key to our proof of the
smoothness of Uc

t �(µ) is the branching structure underlying Dawson–Watanabe
processes. The branching rate c > 0 will be fixed throughout this section. We start
by collecting the three facts we shall use.
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FACT 1. Define Qt
µ to be the law of a Dawson–Watanabe process at time t ,

with initial condition µ and constant branching c, so that Uc
t �(µ) = Qt

µ(�). The
branching property of the Dawson–Watanabe process can be expressed as

Qt
µ+λ(�) = Qt

µ ∗ Qt
λ(�) :=

∫∫
�(ν1 + ν2)Q

t
µ(dν1)Q

t
λ(dν2).(32)

This is thought of intuitively as the fact that disjoint sets of particles evolve
independently.

FACT 2. Qt
µ is the law of a Cox cluster random measure (see [4], Sections

3 and 4). Intuitively the measure is thought of as a Poisson number of clusters,
rooted at points chosen according to µ, where each cluster represents the surviving
ancestors of one individual at time zero. This can be expressed as follows: For
each t > 0 and x ∈ E, there is a probability kernel (Rt

x(A) :A ⊆ M), satisfying
Rt

x({0}) = 0, so that Qt
µ is the law of

∫
M ν η

µ
t (dν), where η

µ
t is a Poisson random

measure on M with finite intensity (2/ct)
∫
E µ(dx)Rt

x(dν). The kernel Rt
x(A) is

characterized by its Laplace functional given, for continuous φ :E → [0,∞), by∫
M

exp(−(ν,φ))Rt
x(dν) = 1 − ct

2
ut(x)(33)

where (us(x) : 0 ≤ s ≤ t, x ∈ E) is the unique nonnegative solution to the
differential equation

∂tu = Au − cu2

2
, u0(x) = φ(x).(34)

In the case that µ = εδx we can write the measure
∫

ν η
µ
t (dν) as a finite sum of

a Poisson number N , mean 2ε/ct , of i.i.d. random measures {Zi
t }, independent

of N , as follows:
∫
M

ν η
εδx
t (dν) =

N∑
i=1

Zi
t(35)

where each Zi
t has the law P (Zi

t ∈ A) = Rt
x(A). The sum is zero if N = 0. The

Laplace functional of Rt
x can be used to show that (2/ct)Zi

t converge in law, as
t ↓ 0, to a point mass at x, with a weight given by an exponential variable with
mean 1.

FACT 3. The total mass (ν,1) under the law Rt
x(dν) has an exponential

distribution with mean ct/2, as can be checked from (33). We can form a further
disintegration by conditioning on this total mass to obtain, for each m > 0,
t > s > 0, x ∈ E, a probability kernel (Rs,t

x,m(A) :A ⊆ M) so that

Rt
x(�) =

∫ ∞
0

dmet(m)R0,t
x,m(�) where et (m) = 2

ct
e−2m/ct .(36)
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The kernels Rs,t
x,m can be defined via the following probabilistic description, due

to Dawson and Perkins (see [4], Theorem 12.4.6), which they call the “splitting
atom process.” A particle of mass m starts at x at time s and moves according to
the underlying motion process. At the inhomogeneous rate 2mtc−1(t − r)−2 dr ,
for r ∈ [s, t), the particle splits. At the splitting time two particles are formed with
masses um and (1 − u)m where u is chosen independently and uniformly over
[0,1]. After the splitting the two particles continue independently using the same
rules as the parent particle. This measure valued process converges to a limit at
time t and the law of this limiting random measure is Rs,t

x,m(dν). Note that the
inhomogeneous rate has infinite intensity on [s, t) ensuring that a split (and then
infinitely many splits) occur. Write pt(x, dy) for a measurable probability kernel
that generates the operators {Pt }. By conditioning on the time of the first split, we
have that

Rs,t
x,m(�) =

∫ t

s
dr πm,s,t (r)

∫
E

pr−s(x, dy)

∫ 1

0
duRr,t

y,um ∗ R
r,t
y,(1−u)m(�),(37)

where

πm,s,t (r) = 2mt

c(t − r)2
exp

(
−

∫ r

s

2mt

c(t − q)2
dq

)

= 2mt

c(t − r)2
exp

(
− 2mt(r − s)

c(t − r)(t − s)

)
.

This representation implies a certain smoothness of the law Rt
x(dν) in x and will

lead, for suitable underlying motion, to the regularity of the derivatives DxU
c
t �

in x.

One immediate consequence of the last fact is the following lemma:

LEMMA 10. If {Pt} is a strong Feller semigroup then, for bounded measurable
� :M → R, the map (t,µ) → Uc

t �(µ) is continuous on (0,∞) × M. In
particular, {Uc

t } is a strong Feller semigroup.

PROOF. Fix a bounded measurable �. By subtracting a constant we may
assume that that �(0) = 0. The representation of Qt

µ as the law of a Poisson
random measure allows us to calculate Uc

t �(µ) = Qt
µ(�) in terms of the intensity

of the Poisson random measure as

Uc
t �(µ) = 2

ct

∫
E

µ(dx)Rt
x(�)

=
∫
E

µ(dx)

∫ t

0
dr

∫
E

pr(x, dy)H�(r, t, y)

(38)
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where, using the decompositions (36) and (37), H�(r, t, y) is defined by

H�(r, t, y) = 2

ct

∫ ∞
0

dmet(m)πm,0,t (r)

∫ 1

0
duRr,t

y,um ∗ R
r,t
y,(1−u)m(�).

We can bound |H�(r, t, y)| by

2

ct

∫ ∞
0

dmet(m)πm,0,t (r)‖�‖M

= 2t

c(rt + t − r)2
‖�‖M

≤ 2

c
max

{
t−1, t−3}‖�‖M.

The strong Feller property of {Pt} imply that the map x → ∫ t
0 dr

∫
E pr(x, dy) ×

H�(r, t, y) is bounded and continuous. This and (38) show that Uc
t �(µ) is

continuous in µ. In particular, the semigroup {Uc
t } is strong Feller. For the joint

continuity in (t,µ), we fix s < t and write Uc
t �(µ) = Uc

t−s�(µ) where � = Uc
s �

is bounded and continuous. The joint continuity is now a consequence of the Feller
property of {Uc

t }. �

The next result shows that smoothing with the Dawson–Watanabe semigroup
yields derivatives of all orders.

LEMMA 11. Fix � :M → [0,∞) and x1, . . . , xn ∈ E.

(a) Suppose, for some t > 0, that Uc
t �(µ) < ∞ for all µ ∈ M. Then the

derivatives Dx1···xnU
c
t �(µ) exist and are given by the following expression:

Dx1···xnU
c
t �(µ) =

(
2

ct

)n ∑
A⊆{1,...,n}

(−1)n−|A|E
(
�

(
Yt,µ + ∑

i∈A

Zi
t

))
,

where Yt,µ has the law Qt
µ of a Dawson–Watanabe process at time t started at µ,

(Zi
t : i = 1,2, . . .) is an independent sequence of independent random measures

and Zi
t has the cluster law Rt,xi

. The sum above is over all subsets A of {1, . . . , n}
and |A| denotes the cardinality of A.

(b) If Uc
t �(µ) is continuous for t ∈ (0, T ], µ ∈ M then the derivatives

Dx1··· xnU
c
t �(µ) are continuous for xi ∈ E, µ ∈ M, t ∈ (0, T ].

(c) If � is continuous and satisfies the growth condition (6) then Uc
t �(µ) is

continuous over t ∈ [0, T ], µ ∈ M.

PROOF. Consider the case n = 1. Fix x ∈ E and let (Zi
t,x : i = 1,2, . . .) be an

i.i.d. sequence of random measures with the cluster law Rt,x . Let N be a Poisson
variable, with mean 2ε/ct , independent of Yt,µ and of (Zi

t,x : i = 1,2, . . .). Using
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the branching property (32) and the representation (35) we have

DxU
c
t �(µ) = lim

ε→0

1

ε
E

(
�

(
Yt,µ +

N∑
i=1

Zi
t,x

)
− �(Yt,µ)

)

= lim
ε→0

1

ε

∞∑
k=1

e−2ε/ct (2ε/ct)k

k! E

(
�

(
Yt,µ +

k∑
i=1

Zi
t,x

)
− �(Yt,µ)

)

=
(

2

ct

)
E

(
�(Yt,µ + Z1

t,x) − �(Yt,µ)
)
.

To justify the interchange of the limit and the sum over k, we use the dominated
convergence theorem with the domination, over ε ∈ (0,1],

∞∑
k=0

(2/ct)k

k! E

(
�

(
Yt,µ +

k∑
i=1

Zi
t,x

)
+ �(Yt,µ)

)

= e2c/t(Uc
t �(µ + δx) + Uc

t �(µ)
)(39)

which is finite by assumption. The existence of the nth order derivative follows
by a very similar argument, using induction on n, and using the finiteness of
Uc

t �(µ + nδx) for the dominated convergence step.
The map x → δx ∈ M is continuous. So under the continuity assumption of

part (b) the map Uc
t �(µ + εδx) is continuous in x ∈ E,µ ∈ M, t ∈ (0, T ]. The

definition of the derivative shows that DxU
c
t �(µ) is the limit of functions that

are continuous in x,µ, t . The domination above can be used to show the limit
is uniform over t ∈ (t0, T ] for any t0 > 0. Again the argument for the higher
derivatives is similar.

If � is continuous then the Feller property of (Uc
t ) implies that Uc

t (�∧n)(µ) is
continuous for t ∈ [0, T ], µ ∈ M. Under the growth condition, we have for some
p > 1, using Lemma 2, that

sup
µ∈M(K)

sup
t∈[0,T ]

Uc
t (�p)(µ) ≤ 4 exp(2K/cT ) < ∞.

Using this one can show Uc
t �(µ) is the limit of Uc

t (� ∧ n)(µ) as n → ∞,
uniformly over t ∈ [0, T ], µ ∈ M(K). �

We now finish one unproved step from Section 2.

COROLLARY 12. Using the notation introduced before Lemma 6 in Section 2,

Hn,n+1 is dense in Hn,n.

PROOF. Fix K > 0, F ∈ Hn,n and G ∈ Cn([0, T ] × M(K)) with F =
Dx1···xnG. Extend G to a function G̃ defined on [0, T ] × M, that is continuous
and bounded. Now set, for ε, δ > 0,

Gε,δ(t,µ) = Uc
ε G̃(t, (1 + δ)−1µ) and Fε,δ = Dx1···xnGε,δ.
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By Lemma 11, we have Gε,δ ∈ Cn+1([0, T ] × M) and hence Fε,δ ∈ Hn,n+1. We
shall show that

lim
δ↓0

lim
ε↓0

‖Fε,δ − F‖[0,T ]×En×M(K) = 0(40)

which will complete the proof. Using the representation for the derivatives of Fε,δ

from Lemma 11, we obtain

Fε,δ(t, x1, . . . , xn,µ)

=
(

2

cε

)n ∑
A⊆{1,...,n}

(−1)n−|A|

× E

(
G̃

(
t, (1 + δ)−1

(
Yε,µ + ∑

i∈A

Zi
ε

)))

=
(

2

cε

)n ∑
A⊆{1,...,n}

(−1)n−|A|

× E

(
G

(
t, (1 + δ)−1

(
Yε,µ + ∑

i∈A

Zi
ε

))

× I

(
(Yε,µ,1) +

n∑
i=1

(Zi
ε,1) ≤ K(1 + δ)

))

+ Error(t, x1, . . . , xn,µ),

(41)

where

|Error(t, x1, . . . , xn,µ)|

≤
(

2

cε

)n

2n‖G̃‖[0,T ]×MP

(
(Yε,µ,1) +

n∑
i=1

(Zi
ε,1) > K(1 + δ)

)
.

The process (Yt,µ,1) follows a Feller diffusion. There are positive exponential
moments given by

E
(
exp(λYt,µ(1))

) = exp
(
2λµ(1)/(2 − cλt)

)
when λ < 2/ct.

A Chebyshev argument using these moments shows that P ((Yε,µ,1) > (µ,1)+η)

is exponentially small in ε−1. Using the the Laplace transform of the independent
masses (Zi

ε,1) given by (33) and corresponding exponential moments, a Cheby-
shev argument shows a similar bound for P ((Zi

ε,1) > η). Together these show
that the probability in the error term, for fixed δ > 0, is exponentially small in ε−1,
uniformly over (µ,1) ≤ K . We omit the details.

So we may concentrate on the first term on the right-hand side of (41). Note
that the terms in the summation evaluate G at the vertices of a n-dimensional
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parallelopiped. The alternating sign allows us to combine the terms in terms of the
derivatives of G using Lemma 4(a) n times, yielding(

2

cε

)n ∫ 1

0
dθ1 · · ·

∫ 1

0
dθn

∫
En

E

(
Dz1··· znG

(
t, (1 + δ)−1

(
Yε,µ +

n∑
i=1

θiZ
i
ε

))

× Z1
ε (dz1) · · ·Zn

ε (dzn)I

(
(Yε,µ,1) +

n∑
i=1

(Zi
ε,1) ≤ K(1 + δ)

))
.

Now we use convergence of the measures Yε,µ → µ and (2/cε)Zi
ε → Eiδxi

in
law, where Ei are i.i.d. exponential variables with mean 1. We may, changing the
probability space if necessary via Skorokhod’s lemma, assume the convergence is
almost sure. Then applying the dominated convergence theorem to (42) we may
pass to the limit, as ε ↓ 0, to obtain Dx1···xnG(t, (1 + δ)−1µ). Moreover, it is not
too hard to show that this convergence is uniform on (µ,1) ≤ K . Finally, using the
continuity of Dx1··· xnG, we let δ ↓ 0 to complete the proof of (40). �

The example where the underlying motion is uniform motion on a torus shows
that the map x → DxU

c
t � need not be in the domain D(A) and further smoothing

is required to apply Theorem 3. We failed to find a smoothing of � that would work
and thus we are led to making the smoothing assumption (5) on the underlying
motion process.

LEMMA 13. Suppose the motion semigroup {Pt} satisfies the smoothing
property (5). Suppose also that � is continuous and satisfies the growth
condition (6). Then for some T ′ > T , the maps A(x1)Dx1···xnU

c
t �(µ) exist and

are continuous in xi ∈ E, µ ∈ M, and A(x1)Dx1···xnU
c
t �(µ) is locally bounded in

t ∈ (0, T ′], uniformly over xi ∈ E,µ ∈ M(m) for any m.

PROOF. In this proof C(t,α, . . .) will denote a quantity whose value may
change from line to line, but which is locally bounded as a function of t . We first
claim, for continuous � and t > 0, that∣∣Rs,t

y,m(�) − R0,t
y,m(�)

∣∣ ≤ C(t, c,α)(1 + m)s1/(1+β)‖�‖M(m)
(42)

for s ≤ t/2.

Indeed, we may use the decomposition (37) to write the difference R0,t
y,m(�) −

Rs,t
y,m(�) as ∫ s

0
dr πm,0,t (r)

∫
E

pr(x, dy)

∫ 1

0
duRr,t

y,um ∗ R
r,t
y,(1−u)m(�)

+
∫ t

s
dr

(
πm,0,t (r) − πm,s,t (r)

)

×
∫
E

pr(x, dy)

∫ 1

0
duRr,t

y,um ∗ R
r,t
y,(1−u)m(�)(43)
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+
∫ t

s
dr πm,s,t (r)

∫
E

(
pr(x, dy) − pr−s(x, dy)

)

×
∫ 1

0
duRr,t

y,um ∗ R
r,t
y,(1−u)m(�).

Apply the inequality πm,0,t (r) ≤ 2mtc−1(t − r)−2 ≤ 32mt−1c−1 when r ≤ 3t/4
to bound the first term of (43) by C(c)mst−1‖�‖M(m). Using the estimate

|πm,0,t (r) − πm,s,t (r)| ≤ πm,s,t (r)2msc−1(t − s)−1,

we can bound the second term of (43) by the same quantity. From the smoothing
hypothesis (5) on {Pt}, we have

‖Prφ − Pr−sφ‖E =
∥∥∥∥

∫ r

r−s
APqφ dq

∥∥∥∥
E

≤ αs(r − s)−β‖φ‖E.

Using this we can bound the third term of (43), when s1/(1+β) ≤ t/4, by

‖�‖M(m)

∫ t

s
πm,s,t (r)min

{
αs(r − s)−β,2

}
dr

≤ ‖�‖M(m)

(
2

∫ s+s1/(1+β)

s
πm,s,t (r) dr + αs1/(1+β)

∫ t

s+s1/(1+β)
πm,s,t (r) dr

)

≤ ‖�‖M(m)

(
2

∫ (s+s1/(1+β))

s

2mt

c(t − r)2
dr + αs1/(1+β)

∫ t

s
πm,s,t (r) dr

)

≤ C(t, c,α)(1 + m)s1/(1+β)‖�‖M(m).

When s1/(1+β) ≥ t/4 we use the simple bound 2‖�‖M(m) ≤ C(t)s‖�‖M(m) .
Combining the bounds on the terms in (43) establishes the claim (42).

Our second claim is that the map x → R0,t
x,m(�) is in D(A) and∣∣AR0,t

x,m(�)
∣∣ ≤ C(t, c,α)(1 + m)‖�‖M(m) for all x ∈ E.(44)

To show this, we use (37) to write

R0,t
x,m(�) =

∫ t

0
πm,0,t (r)PrHr(x) dr

=
∫ t

0
πm,0,t (r)PrH0(x) dr +

∫ t

0
πm,0,t (r)Pr(Hr − H0)(x) dr

(45)

where Hr(y) = ∫ 1
0 duRr,t

y,um ∗ R
r,t
y,(1−u)m(�). A standard argument shows that the

first term on the right-hand side of (45) is in the domain D(A) and

A

(∫ t

0
πm,0,t (s)PsH0 ds

)

= −πm,0,t (0)H0 −
∫ t

0
∂rπm,0,t (r)PrH0 dr

= πm,0,t (0)(PtH0 − H0) +
∫ t

0
∂rπm,0,t (r)(Pt − Pr)H0 dr.
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[The unusual rearrangement here is to avoid a term of the form∫ t
0 |∂rπm,0,t (r)|dr = O(m−1).] We now estimate the size of these two terms.

Using ‖Hs‖ ≤ ‖�‖M(m), we can bound the first term by 4mt−1c−1‖�‖M(m).
Using (5), we have ‖(Pt − Pr)H0‖E ≤ C(t − r)αr−β‖�‖M(m). Combining this
with the trivial bound ‖(Pt − Pr)H0‖E ≤ 2‖�‖M(m) leads to

‖(Pt − Pr)H0‖E ≤ C(t,α)(t − r)‖�‖M(m) for all 0 < r ≤ t.

So ∥∥∥∥
∫ t

0
∂rπm,0,t (r)(Pt − Pr)H0 dr

∥∥∥∥
E

≤ C(t, c,α)‖�‖M(m)

∫ t

0
|∂rπm,0,t (r)|(t − r) dr,

and an explicit computation shows this is bounded by C(t, c,α)(1 + m)‖�‖M(m).
For the second term on the right-hand side of (45) we claim that

A

(∫ t

0
πm,0,t (r)Pr(Hr − H0) dr

)
= lim

δ→0

∫ t

0
πm,0,t (r)

Pδ − I

δ
Pr(Hr − H0) dr

=
∫ t

0
πm,0,t (r)APr(Hr − H0) dr.

To justify this we use (42) twice to bound ‖Hr − H0‖E ≤ C(t, c,α)(1 +
m)r1/(1+β)‖�‖M(m) for r ≤ t/2. Then, using (5), we bound∥∥∥∥Pδ − I

δ
Pr(Hr − H0)

∥∥∥∥
E

≤ ‖APr(Hr − H0)‖E

≤ C(t, c,α)(1 + m)r−βr1/(1+β)‖�‖M(m)

whenever r ≤ t/2. The power r−βr1/(1+β) is integrable near zero when β ∈
(0,21/2). This leads to the domination required to pass to the limit δ → 0 in the
above and also can be used to show that the result is bounded by C(t, c,α)(1 +
m)‖�‖M(m). Combining the various estimates, we have completed the proof of
the claim (44).

Now we prove the lemma for a first derivative DxU
c
t �. Take � satisfying the

growth conditions and let �ν(µ) = �(ν + µ). Lemma 11(a) shows that

Pδ − I

δ
DxU

c
t �(µ) = 2

ct

Pδ − I

δ

∫∫
�(ν1 + ν2)R

t
x(dν1)Q

t
µ(dν2)

= 2

ct

∫∫ ∞
0

(
Pδ − I

δ
R0,t

x,m(�ν)

)
et (m)dmQt

µ(dν)

→ 2

ct

∫∫ ∞
0

AR0,t
x,m(�ν)et (m)dmQt

µ(dν).
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To justify taking the limit under the integrals here we use the bound from (44) and
the growth bound on � to show the domination

2

ct

∫ ∫ ∞
0

∥∥AR0,t
x,m(�ν)

∥∥et (m)dmQt
µ(dν)

≤ C(t, c,α)

∫ ∫ ∞
0

‖�ν‖M(m)(1 + m)et (m)dmQt
µ(dν)

≤ C(t, c,α)

∫ ∫ ∞
0

exp
(
λ
(
m + (ν,1)

))
(1 + m)et (m)dmQt

µ(dν)

≤ C(t, c,α)

∫
exp(λ(ν,1))Qt

µ(dν)

≤ C(t, c,α) exp
(
2(µ,1)/cT

)
.

The final inequality is valid for t ≤ T ′, for suitably chosen T ′ > T , by Lemma 2.
A similar argument shows that the higher derivatives x1 → Dx1··· xnU

c
t � are also

in the domain D(A).
Finally we come to the regularity of the first derivatives. The argument for

the higher derivatives is very similar. Presumably the derivative ADxU
c
t �(µ) is

continuous in t > 0, x,µ. We prove the slightly weaker conclusion of the theorem
as this is all we need in the next section.

Examining all the terms in the expression for AR0,t
x,m(�) given in this proof one

sees, using the assumed continuity of PrHq and APrHq when r > 0, that for fixed
t > 0 and ν the map x → AR0,t

x,m(�ν) is continuous. Using this in (46) one finds
that, for fixed t > 0 and µ, the map x → ADxU

c
t �(µ) is continuous. Using the

growth condition on � and the bound (44), one can show that the maps(
ν →

∫ ∞
0

AR
0,t
x,m′(�ν)et (m

′) dm′
)

x∈E

are equicontinuous on M(m). Using this in (46), the growth condition and the
Feller property of Uc

t , one finds that, for fixed t > 0, the map µ → ADxU
c
t �(µ)

is continuous, uniformly in x. Finally, the domination that guaranteed (46) also
shows that ADxU

c
t �(µ) is locally bounded in t , uniformly over x ∈ E,µ ∈ M(m)

for any m. �

4. The martingale optimality argument and examples.

PROOF OF THEOREM 1. We fix � as in the statement of the theorem. We
need to smooth the value function in time. Choose a mollifier as follows: Let
h : (0,∞) → [0,∞) be smooth, supported in (1,2) and satisfy

∫
h(r) dr = 1. For

δ > 0, set hδ(r) = δ−1h(rδ−1). Define

Fδ(t,µ) =
∫ ∞

0
hδ(s)U

c
t+s�(µ)ds.(46)
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The growth condition (6) on � involves the strict inequality λ < 1/cT . It therefore
holds also for some λ′ < 1/cT ′ where T ′ > T . So, for δ > 0 small enough,
Lemma 11(c) implies that

the functions Dx1··· xnUt�(µ)
(47)

are continuous for t ≤ T + 2δ, xi ∈ E, µ ∈ M.

After the smoothing in time we find, using Lemma 13, that Fδ(t,µ) satisfies all
the hypotheses of Theorem 3. �

To follow the argument sketched in the Introduction, we need the next two
lemmas, which are rigorous versions of (8) and (9).

LEMMA 14. For δ > 0 sufficiently small, we have

LcFδ(t,µ) = 0 for all µ ∈ M and t ≤ T .

PROOF. We work with δ small enough that (47) applies. Let {Yt } be a
Dawson–Watanabe process with motion semigroup {Pt}, constant branching rate c

and initial condition Y0 = µ. Fix t so that t ≤ T + 2δ. For s ≤ t , let τ s
K =

inf{r : (Yr ,1) ≥ K} ∧ s for values of K > (µ,1). Applying the strong Markov
property for this stopping time, we have

Uc
t � = E (�(Yt)) = E

(
Uc

t−τ s
K
�(Yτs

K
)
)
.

By integrating over the t variable, we obtain

Fδ(t,µ) = E
(
Fδ(t − τ s

K,Yτs
K
)
)

when t ≤ T .

Now apply Theorem 3 to the function Fδ(t − q,Yq) for q ∈ [0, τ s
K]. The stopping

time and the continuity of Fδ and LcFδ ensure that the local martingale in this
theorem is a true martingale. Hence we obtain

0 = 1

s

(
E

(
Fδ(t − τ s

K,Yτs
K
)
) − Fδ(t,µ)

)

= E

(
1

s

∫ τ s
K

0
LcFδ(t − q,Yq) dq

)

= E

(
1

s

∫ s

0
I{(Yq,1)<K}LcFδ(t − q,Yq) dq

)
.

Using the continuity of LcFδ and the continuous paths, we may let s ↓ 0 in this
equation and by dominated convergence obtain LcFδ(t,µ) = 0. �

LEMMA 15. For δ > 0 sufficiently small, we have

DxxFδ(t,µ) ≥ 0 for all µ ∈ M and t ≤ T .



PROCESSES OF MEASURE: COMPARISONS 1707

PROOF. We use Lemma 11 to represent the derivative DxxU
c
t �(µ). Let

(Y 1
t , Y 2

t ) be independent identically distributed random measures with law Rt
x .

Let Y i
t (n) be finite approximations given by Y i

t (n) = nY i
t (n ∨ (Y i

t ,1))−1. Then

DxxU
c
t �(µ)

= E
(
�(Xt,µ + Y 1

t + Y 2
t ) − �(Xt,µ + Y 1

t ) − �(Xt,µ + Y 2
t ) + �(Xt,µ)

)
= lim

n→∞E
(
�

(
Xt,µ + Y 1

t (n) + Y 2
t (n)

)
− �

(
Xt,µ + Y 1

t (n)
) − �

(
Xt,µ + Y 2

t (n)
) + �(Xt,µ)

)
.

The second equality follows from the growth bound on �. Since (Y 1
t , Y 2

t ) are
independent of Xt,µ, the convexity hypothesis (3) implies that DxxU

c
t �(µ) ≥ 0

and integrating over the t variable completes the proof. �

Before starting the proof of Theorem 1, we make a reduction. Suppose that
{Xt } is a solution to M(A,σ). We claim we may assume that (X0,1) ≤ L

for some L. Suppose the theorem is proved under such a restriction. Define
�L = {(X0,1) ≤ L} and XL

t = Xt I�L
. Then XL is a still a solution to M(σ,A)

and has initial mass bounded by L. The conclusion of the theorem then compares
E(�(XL

t )) and E(Uc
t �(XL

0 )). Splitting both expectations into two parts, one
over �L and one over �c

L, we can apply monotone convergence as L → ∞ to
obtain the conclusion for Xt . Thus we now assume (X0,1) ≤ L.

Using the local boundedness of σ , choose stopping times T 1
K so that T 1

K ↑ ∞
as K → ∞ and |σt |I (t < T 1

K) ≤ K . Set T 2
K = inf{t : (Xt ,1) ≥ K}, TK = T 1

K ∧T 2
K .

Fix t ∈ (0, T ]. We apply Theorem 3 to the function Fδ(t −s,Xs) for s ∈ [0, t ∧TK ].
The definition of the stopped processes and the continuity of Fδ and its derivatives
imply that the local martingale in this theorem is a true martingale. Hence

E
(
Fδ

(
t − (t ∧ TK),Xt∧TK

)) − E(Fδ(t,X0))

= E

(∫ t∧TK

0
LσFδ

(
t − s,Xs

)
ds

)

= E

(∫ t∧TK

0
LcFδ(t − s,Xs) ds

)

+ E

(∫ t∧TK

0

∫ (
σs(x) − c

)
DxxFδ(t − s,Xs)Xs(dx) ds

)
.

(48)

The second equality follows by comparing the expressions for Lσ and Lc. The first
term on the right-hand side of (48) is zero by Lemma 14. Lemma 15 shows that
the last term on the right-hand side of (48) is nonnegative if σ ≥ c and nonpositive
if σ ≤ c.
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Turning to the left-hand side of (48), we know that Fδ(t,µ) → Uc
t �(µ) as

δ → 0, uniformly over compacts in t,µ. Passing to this limit in (48), we obtain

E
(
Uc

t−(t∧TK)�(Xt∧TK
)
) ≤ E

(
Uc

t �(X0)
)

(49)

when σ ≤ c and the reverse inequality when σ ≥ c. It remains only to let K → ∞
and we consider each of the three cases stated in the theorem. When σ ≤ c we
can use Fatou’s lemma to obtain the desired comparison. When � is bounded we
can apply the dominated convergence theorem. This leaves only case (c) where
c ≤ σ ≤ c̄ and �(µ) ≤ C exp(λ(µ,1)) for some λ < 1/2c̄T . We split the left-hand
side of (49) into two parts. On the set {TK > t} we have

E
(
�(Xt)I{TK>t}

) → E(�(Xt)) as K → ∞.

Lemma 2 implies that Uc
t �(µ) ≤ C exp(2λ(µ,1)) for all t ≤ T . So on the set

{TK ≤ t} we have

E
(
Uc

t−TK
�(XTK

)I{TK≤t}
)

≤ C exp(2λK)P (TK ≤ t)

≤ C exp(2λK) exp(−K/c̄T )E

(
sup
t≤T

exp
(
(1/c̄T )(Xs,1)

))

≤ C exp(2λK) exp(−K/c̄T ) exp(2L/c̄T ),

using Markov’s inequality and Lemma 2 for the last two inequalities. Letting
K → ∞ and combining the two parts gives the comparison in the third and final
case. �

EXAMPLES.

Extension to locally compact E. Many examples of measure valued processes
are studied when E = R

d or E = Z
d . To apply the comparison in these cases one

can consider them as living on the compactification of E, as follows. Let E be a
locally compact metric space and let C0(E) be the space of continuous functions
on E that converge to 0 at infinity. Let {Pt} be a strongly continuous Markov C0(E)

semigroup with generator A. Suppose {Xt } is a process taking values in the space
of finite measures on E and that:

(i) t → Xt(φ) is continuous for all φ ∈ C0(E) and for the constant function
φ = 1;

(ii) {Xt } solves equations (1) and (2), for some locally bounded σ , for all
φ ∈ D(A) and for the constant function φ = 1 (where we set A1 = 0).

Let Ē be the one point compactification of E. We can identify the space C(Ē)

with the functions on E that have a limit at infinity, each of which can be written
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as a constant plus a function in C0(E). The semigroup {Pt } extends to a semigroup
{P̄t} on C(Ē) by setting, for φ̄ ∈ C(Ē),

P̄t φ̄(x) =
{

Ptφ(x), if x 
= ∞, where φ := φ̄|E,

φ̄(∞), if x = ∞, where φ̄(∞) = lim
x→∞ φ̄(x).

It can then be checked that {P̄t} is still strongly continuous and Markov and has
generator Ā where D(Ā) = {φ̄ : φ̄|E − φ̄(∞) is an element of D(A)} and

Āφ̄(x) =
{

Aφ(x), if x 
= ∞,

0, if x = ∞.

Finally, we extend σ to σ̄ by setting σ̄ (t,∞) = 0. If we now consider {Xt } as a
process taking values in the space of finite measures on Ē, giving no mass to the
point at infinity, then t → Xt(φ̄) is continuous for all φ̄ ∈ C(Ē) and {Xt } is a so-
lution to M(Ā, σ̄ ) and we may apply the results of the theorem.

To apply our results to two important cases discussed in the literature, we need
to check the hypothesis on the generator A. If A is the Laplacian on R

d , we may
take the good core to consist of the algebra generated by the Schwarz space of
rapidly decaying test functions and the function 1. If A is a bounded generator
on the lattice Z

d , for example the generator of a continuous time Markov chain
with bounded jump rates, we may take the algebra generated by C0(Z

d) and the
function 1. In both cases the smoothing hypothesis (5) holds.

Ergodicity. The application studied in Cox, Fleischmann and Greven [3]
was to studying ergodicity problems for systems of interacting SDEs indexed
by the lattice Z

d . Here the interest is in translation invariant initial conditions.
Therefore, to obtain analogous results, one needs to extend our results to processes
with infinite mass. Typically one expects, although uniqueness in law would
be a usual ingredient of the proof, that solutions with initial conditions having
infinite mass can be approximated by solutions with finite initial mass, and
then the comparison results will extend to the more general setting. As an
example consider the case of Dawson–Watanabe process with a Brownian motion
process, which is known as super-Brownian motion. In dimensions d = 1,2
solutions with translation invariant initial conditions become locally extinct, in that
Xt(φ) → 0 in probability, for compactly supported φ ≥ 0. Using the functional
�(µ) = exp(−λµ(φ)), one can use the comparison argument to show the same
holds for interacting processes with branching rates that are bounded below. In
dimensions d ≥ 3 there are nonzero stationary measures. Using second moments
�(µ) = (µ(φ))2, one can then use the comparison principle to show that local
extinction does not occur for interacting models with branching rates bounded
above. Together with compactness arguments this leads to the proof of existence
of nonzero invariant measures. See [3] and cited references for these techniques.
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Hitting sets. For super-Brownian motion on R
d there are useful bounds on

the probability of charging small balls, see Dawson, Iscoe and Perkins [5]. For
example, in d ≥ 3, if Y0 = µ,

P
(
Yt (B(x0, ε) > 0

) ≤ Cεd−2
∫

(2πt)−d/2 exp(−|x0 − x|2/2t)µ(dx).(50)

These imply that if C has zero d − 2 Hausdorff measure then P (Yt(C) > 0) = 0.
Let d be the metric on the space E and fix a closed subset C. Define, for α, ε > 0,

φε(x) = 1 − d(x,C) ∧ ε

ε
, �(µ) = exp

(−α(µ,φε)
)
.

Function � is continuous and satisfies the parallelogram rule (4). Letting ε ↓ 0 the
function φε converges to the indicator of C and then as α → ∞ the function �

converges to the indicator of the set {µ(C) = 0}. Applying the comparison
result to � and taking the above limits, we obtain the following comparison: If
{Xt } solves M(A,σ) and {Yt } is a Dawson–Watanabe process with branching
rate c and with the same initial condition then

P
(
Xt(C) > 0

) ≥ P
(
Yt (C) > 0

)
for closed C,

when σ ≤ c and the reverse inequality when σ ≥ c. This confirms the intuition that
the more branching there is the greater the clustering and the lower the chance of
hitting sets.

Regularity of solutions. It is well known (see Dawson [4]) that, for super-
Brownian motion in dimensions d ≥ 2, the closed support of Yt at time t > 0
has Hausdorff dimension 2. The hitting estimates (50) provide a simple proof of
this fact. Indeed covering R

d by a lattice of boxes of length r the hitting estimates
lead immediately to the bound E(N(r)) ≤ Cr−2 on the first moment of the number
N(r) of boxes that are charged by Yt . Using this, a Borel–Cantelli argument gives a
sequence of covers for the support of Yt showing that the 2 + ε Hausdorff measure
of the support is zero for any ε > 0. Since the hitting estimates carry over by the
comparison argument one obtains the same singularity for interacting models with
branching bounded below by a constant.

To obtain lower bounds on the dimension of the support note that the usual
Frostman energy approach uses the functional

E(�(Yt)) = E

(∫ ∫
|x − y|−αYt (dx)Yt (dy)

)
.

This energy is finite for super-Brownian motion started from deterministic finite
initial measures when α < 2 and t > 0. For φ ≥ 0 the functional �(µ) =∫∫

φ(x, y)µ(dx)µ(dy) satisfies the convexity hypothesis (4). By approximating
the energy by continuous second moments of this sort the comparison argument
applies. This implies the support has dimension at least 2 for a class of interacting
models with branching bounded above by a constant.
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Existence of densities. Super-Brownian motion process in dimension d = 1
has a continuous density. Roelly–Coppoletta [12] used spectral methods as a
simple way to investigate densities at a fixed time. Set eθ = exp(iθx), acting on
E = R, and

�N(µ) =
∫ N

−N
|µ(eθ)|2 dθ.

The randomized parallelogram rule (3) becomes, after some simplification,

E
(
�N(µ + Z + Z̄) − �N(µ + Z) − �N(µ + Z̄) + �N(µ)

)
=

∫ N

−N
E

(
Z(eθ)Z̄(e−θ ) + Z(e−θ )Z̄(eθ )

)
dθ

= 2
∫ N

−N

(
E(Z(cos(θ ·))))2 + (

E(Z(sin(θ ·))))2
dθ

≥ 0.

[Note that in this example the parallelogram rule (4) fails.] So the comparison
theorem is applicable and, by letting N → ∞, we obtain the comparison for the
function

E

(∫
R

|Xt(eθ )|2 dθ

)
.

For initial conditions µ(dx) = f (x) dx with f ∈ L1 ∩ L2, this expectation is
finite for one-dimensional super-Brownian motion. By comparison it is finite for
solutions to M(�/2, σ ) when σ ≤ c, and Plancherel’s theorem then implies that
these processes have an L2 density at any fixed time t > 0. In [8], a class of
interacting branching processes on R is shown to have continuous densities.

A counterexample. We searched for some time for simpler sufficient condi-
tions on � ensuring the comparison result holds. The following example, which
we found surprising, stopped us wasting time on certain false conjectures. Fix non-
negative f,g ∈ C(E) and consider the functional �(µ) = max{µ(f ),µ(g)}. Note
that � is nice: it has quadratic growth and, being the maximum of two linear func-
tions, � is a convex function on M. The representation for the second derivatives
in Lemma 11 and the simple fact that

max{a + b, c + d} − max{a, c} − max{b, d} ≤ 0 for all real a, b, c, d ,

show that DxxU
c
t �(0) ≤ 0 for all t > 0. Moreover, it is clear that except in very

special circumstances this will be a strict inequality, so that Uc
t � is not convex

in the direction of point masses. Moreover, using the continuity of DxxU
c
t �(µ),

one expects Theorem 1 to fail, in that for solutions Xt to the martingale problem
M(A,σ) with σ ≤ c and X0 = µ, one expects the comparison

E(�(Xt)) > Uc
t �(µ) for µ with (µ,1) sufficiently small.
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