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DECREASING SEQUENCES OF o-FIELDS AND A MEASURE
CHANGE FOR BROWNIAN MOTION. II

By JAacoB FELDMAN! AND BORIS TSIRELSON

University of California at Berkeley and Tel Aviv University

Sharpening the main result of the preceding paper, it is shown that if
B,, 0 <t < o, is a standard Brownian motion on (Q,.%, P), then for any
&£ > 0 there is a probability measure @ with (1 — )P <@ < (1 + ¢)P
such that the filtration of B cannot be generated by any Brownian motion
on (Q,.7, Q).

1. Description of results. The main result of this paper is a strength-
ening of Theorem 2.6 of the immediately preceding paper by Dubins,
Feldman, Smorodinsky and Tsirelson, “Decreasing sequences of o-fields and
a measure change for Brownian motion,” hereafter referred to as [I]. As in [I],
Z=1{0,1}", and F = (%) _,, where .7, is the o-field generated by coordinates
greater than n completed with respect to Bernoulli (1/2,1/2) product mea-
sure, which we call A. For terminology and background concerning “reverse
filtrations,” see [I], Section 2. All measures are assumed to be probability
measures.

THEOREM 1. For any & > 0 there is a measure m such that (1 — g)A <
m < (1 + &)X and the reverse filtration (Z,F, m) admits no standard exten-
sion.

It will be helpful to have [I] available while reading this paper.

COROLLARY 2. Let (Z',F', X) be a standard reverse filtration. Then there
is a measure m' such that (1 — &)X <m' <1 + &)X and (', F', m') has no
standard extension.

ProoF. The product (2’ X Z,F' ® F, X ® A) is again standard and there-
fore isomorphic to (27, F’, X'). The isomorphism carries X' ® m to a measure
m', and (1 — &)X <m' < (1 + &)X. Furthermore, since any extension of
(&' xZ,F © F, X ® m) is also an extension of (Z,F, m), such an extension

cannot be standard. O
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CoroLLARY 3. If (Q,(F),., P) is the Brownian filtration, there is a
probability measure @ with (1 — e)P < @ < (1 + &)P such that the filtration
(Q,(),. o, Q) is not Brownian.

Proor. This follows from Theorem 1 in the same way that the negative
solution to [I], Problem 1, follows from Theorem 2.6 there. O

2. Construction of the measure. The measure m which is to be con-
structed for Theorem 1 will be block-Markov, as described in [I], Section 3:
dm o,
H x) — kl:[022 pk(x(k)|x(k+1))’

where x = (x,, x5,...) €2={0,1}"; for £ = 0,1,... we denote by x*® the
following piece of the sequence x:
x(k) = (ka, Xoky1senrs x2k+1_1) ezr® = {O, 1}2k.
In addition, each p, is a Markovian transition probability from Z**1 to
Z®:
Vzezghth, Y pu(ylz) =1
yeﬁ’(k)

These p, are chosen to be arbitrary one-to-one maps p,: {0, 1} —.#, (here
and henceforth n = 2%), each .#, being a set of 22" probability measures on
{0, 1}" satisfying certain conditions (ii) and (iii). Condition (ii) was used in [I],
Section 4, during the proof of Theorem 2.6 from the fundamental lemma
there.

(i1) For any distinct u, v €.4;,

¢
KR"(u,v) =1 — —

ne,
Here C; is an absolute constant (possibly larger than the C of [I]). Condition
(iii) is new:
(iii) For any p €.,
exp(—n%,)A, < p < exp(n®/’e,)A,,
where A, is the Bernoulli (1/2,1/2) measure on {0, 1}".

The sequence (¢,) is chosen to satisfy the following two conditions:

1
(ii%) Yoo <,
2%
k &
(iii*) 22(3/4)ksk < oo,

k

Condition (ii*) was introduced in [I], Section 3, while (iii*) replaces the
weaker condition (i*), ¥2*%2 < «, which was used in [I]. Conditions (ii*) and
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(iii*) are compatible; for example, both are satisfied by ¢, = 6% with 1/2 <
6 < 1/23/%. (Compare this to the condition 1/2 < 6 < 1/2¥/2 used in [I].)

Conditions (iii) and (iii* ) ensure convergence of the infinite product for the
density dm /d A, since

exp(—n%%,) < 2"p, (xP1x** D) < exp(n®/s;,).

The convergence is uniform in x; hence the product is bounded and is the
density of a probability measure. Taking the product over & =k, ky + 1,...
with &, large enough, we can force dm /dA to be uniformly &-close to 1.

Conditions (i1) and (ii*) ensure that (2, F, m) admits no standard exten-
sion: the proof given in [I], Section 4, remains valid.

So to prove Theorem 1 all we need to do is show the existence of a sequence
of sets .#, satisfying (ii) and (iii). To this end, we take the corresponding sets
A, of [I] and adapt them; in fact, we adapt each element of .#, separately.
The following supplement to the fundamental lemma of [I] will be used.

MAIN LEMMA. For any e € (0,1), n = 1,2,..., any probability measure u
on {0, 1}" satisfying

(a) w(X,=1UX")=1+¢e)/2 foranyi=1,...,n,

and any T > ne?, there is a probability measure v on {0, 1}" such that

2

(b) KR"(u,v) <2n exp(— 7 )cosh T,

n82

() (1—e)e D, <v<(1+¢)elr,.

This main lemma is used as follows. Given % large enough, we put n = 2*
and take T so that e” = (1 — &,)exp(n®/%,); then T = n%/%,(1 + 0o(1)) > ne?
due to (iii*). Inequality (c) of the main lemma implies condition (iii). Assum-
ing ne? < 1/2 [which is ensured by (iii*) for large k] and using the well-
known inequality cosh 7' < exp(T'? /2), we have

TZ
<2n exp( - ) .

2
4dnej

T? T?
7 T
2nej 2

KR"(u,v) <2n exp(—

Hence KR"( u, v) < exp(— Vn /5) for large k. This is more than enough to
conclude that

with an absolute constant C,. Condition (ii) is thus ensured with the constant
C, = C + 2C,, where C is the constant of the fundamental lemma of [I]. So
our theorem follows from the main lemma, by setting .#, = {v: u €.#,}, where
u and v are as in the statement of that lemma.
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3. Proof of main lemma. The probability measure w satisfies
w(X; = 1X7 ) = 3(1 + es; (X7 0))

for certain functions s;: {0, 1}"~% - {—1, +1}. It is more convenient to deal
with {—1, +1}" instead of {0, 1}". Doing so, we have

wlxr) =27" 11(1 + ex;5;,( % 1))

Consider the density D = du/d), and its conditional expectation D, =
E(D|%); the expectation is taken wrt A,; .% is generated by x!. Then

n

Dy (x7) = Q(l +ex;s;( x4 1))-

13

Clearly, (D;,) is a reverse martingale. (The reversal of time is, of course, due
to the fact that we are dealing with reverse filtrations rather than filtrations.)
Consider the (backward) stopping time 7: {—1, +1}* — {1,..., n} defined by

max{i: Dj[e ", e”]}, when thereis such i,

1, otherwise.
Define a measure v on {—1, + 1}" by
dv
d_An = D’T'

Doob’s stopping time theorem ensures that v is a probability measure. We
have D,,, €[e T,e”] (here D,,, = 1); hence D. € [(1 — &)e T,(1 + &)e”],
which is inequality (c). Inequality (b) follows from the two following facts:

2

v{r > 1} s2nexp(—2 )coshT,

ne?
KR"(u,v) < v{r> 1}.

n

The proof of the first fact is as follows. The sequence (x;s;(x", ,)), with respect
to A,, has the same Bernoulli distribution A, as (x,); see [I], proof of Lemma
3.1. Thus

1 1 ‘ _ i
fDi“ di, = (E(l — &)+ 5(1 + 8)a) < cosh’ ae < exp(Eazsz)
for any « > 0,7 = 1,..., n. Hence

v{D, > exp T}

IA

exp( —aT)/Di“ dv = exp( —aT)fDi”“r1 da,

IA

i
eXp(—aT+ E(a + 1)282)
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and
. n 2 9
v{max D; > expT} < infnexp|—aT + E(a +1)°¢
a>0

TZ
= nexp(— on e’ +T

>

since T > ne?. Similarly,
v{min D, < exp — T} < ) inf exp(—aT)/Di’“ dv
; a>0

n
<n infexp(—aT + E(a — 1)282)

a>0

T2
= nexp(— ons? T).

Hence

v{r>1} < v{max D; > expT} + v{min D, < exp(—T')}
2

- )(expT +exp(—T)).

Snexp(—2

This proves the first fact. The proof of the second fact will be carried out in
two lemmas.

LEMMA 4. Let two probability measures u, v be concentrated on disjoint
two-point sets, w on {a, b} and v on {c, d}, in a space with metric p. Suppose

p(a,c) <1, p(b,d) <1,
p(a,d) =1, p(b,c) = 1.
Then
1~ (7 7) = (1 - p(a, ¢))min( {a), 7{c))
+(1 - (b, d))min( (b}, 7{d)).
(In fact, equality holds; the opposite inequality was [I], Lemma 5.2. Only the

special case u{a} = v{c}, u{b} = v{d} will be used, but the general case is not
much more complicated.)

Proor.

a7 7) = int{ [3(x, ) dN(x,): A €SB D),
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where 7( 1, 7) is the set of joinings of m with . Without loss of generality, we
may suppose that u{a} > 7{c}; then u{b} < v{d}. Take the following joining:

M(a,e)} = 9e},
M(a,d)) = Bla) — #{c},
M(b,d)} =1~ B{a).

Then
Per( B, 7) < [p(x,5) dA(x, )

e} p(a,¢) + (Ala) - »{c))p(a, d) + (1 - E{a))p(b, d)
{e}p(a,c) + 1 - R(b) — 7c) + R(b)A(b, d);

<

hence
1~ piw(B:7) = (1 - p(a,e)){c) + (1 - p(b,d)E(b). O

A Markov time on {0, 1}" (with the direction of time reversed) is defined as
a function 7: {0, 1}" — {1,..., n} satisfying the condition {r > i} € %, for i =
1,...,n; the o-field % is generated by x!. The o-field % is defined as
consisting of all E c {0, 1}" satisfying

En{r>i}eg fori=1,...,n.

LEMMA 5. Let 7 be any Markov time on {0, 1}", and u, v any two probabil-
ity measures on {0, 1}" coinciding on Z, and positive on all points. Then

KR"( p,v) < v{r> 1}.

(The positivity assumption is not really necessary, but it avoids consider-
ing special cases and is satisfied in our application.)

Proor oF LEMMA 5. Induct on n. For n = 1 we have 7 = 1 identically;
hence ¥ =%, and v = u. Consider n > 1. Introduce conditional measures
/"(‘07/*"17 V()7 V] on {07 l}nil:

p(fo Ye,) = wefap ™) w({af Yxn) = wfa )
In the discussion preceding [I], Lemma 5.2, it was shown that p, @, 7 may be
so chosen that p(a,c) = KR" '(u,,v,), p(b,d) =KR" pu,vy), wa)=
W(Ey), Tle) = w(Ey), 7(b) = v(Ey), 7(d) = v(E,) and pyyp(F, 7) = KR (1, »).
This applies equally well here, so Lemma 4 gives
1-KR"(u,v) = (1 — KR (o, vo))min( w(Ey), v(Ey))

+(1 = KR*"'( g, v1))min( w(E,), v(Ey)),
where E, = {x]: x, = s}.
We have E,, E, € %, cZ; hence v(E,) = W(E,), v(E;) = n(E;), and the
relation becomes

KR"(p, v) < v(Eg)KR" (g, vo) + v(E)KR" (g, vy).
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The induction assumption gives
KR" (g, vo) < v{r < 1|E,},

provided that v{r = n|E,} = 0. Otherwise v{r = n|E,} = 1, since {7 = n} € 7,
and the inequality reduces to KR '(u,, v,) < 1, which holds trivially. The
same reasoning holds for KR" ™ !( u,, v,), giving

KR"(p,v) < V(EO)V{’T> 1|E0} + V(EI)V{’T > 1|E1} =v{r>1}.

This completes the proof of Lemma 5 and the main lemma. O
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