DECREASING SEQUENCES OF $\boldsymbol{\sigma}$-FIELDS AND A MEASURE CHANGE FOR BROWNIAN MOTION. II

By Jacob Feldman ${ }^{1}$ and Boris Tsirelson
University of California at Berkeley and Tel Aviv University

Sharpening the main result of the preceding paper, it is shown that if $B_{t}, 0 \leq t<\infty$, is a standard Brownian motion on (Ω, \mathscr{F}, P), then for any $\varepsilon>0$ there is a probability measure Q with $(1-\varepsilon) P \leq Q \leq(1+\varepsilon) P$ such that the filtration of B cannot be generated by any Brownian motion on (Ω, \mathscr{F}, Q).

1. Description of results. The main result of this paper is a strengthening of Theorem 2.6 of the immediately preceding paper by Dubins, Feldman, Smorodinsky and Tsirelson, "Decreasing sequences of σ-fields and a measure change for Brownian motion," hereafter referred to as [I]. As in [I], $\mathscr{X}=\{0,1\}^{\mathbb{N}}$, and $\mathbf{F}=\left(\mathscr{F}_{n}\right)_{n=0}^{\infty}$, where \mathscr{F}_{n} is the σ-field generated by coordinates greater than n completed with respect to Bernoulli $(1 / 2,1 / 2)$ product measure, which we call λ. For terminology and background concerning "reverse filtrations," see [I], Section 2. All measures are assumed to be probability measures.

Theorem 1. For any $\varepsilon>0$ there is a measure m such that $(1-\varepsilon) \lambda<$ $m<(1+\varepsilon) \lambda$ and the reverse filtration $(\mathscr{X}, \mathbf{F}, m)$ admits no standard extension.

It will be helpful to have [I] available while reading this paper.

Corollary 2. Let $\left(\mathscr{X}^{\prime}, \mathbf{F}^{\prime}, \lambda^{\prime}\right)$ be a standard reverse filtration. Then there is a measure m^{\prime} such that $(1-\varepsilon) \lambda^{\prime}<m^{\prime}<(1+\varepsilon) \lambda^{\prime}$ and $\left(\mathscr{X}^{\prime}, \mathbf{F}^{\prime}, m^{\prime}\right)$ has no standard extension.

Proof. The product ($\mathscr{X}^{\prime} \times \mathscr{X}, \mathbf{F}^{\prime} \otimes \mathbf{F}, \lambda^{\prime} \otimes \lambda$) is again standard and therefore isomorphic to ($\mathscr{X}^{\prime}, \mathbf{F}^{\prime}, \lambda^{\prime}$). The isomorphism carries $\lambda^{\prime} \otimes m$ to a measure m^{\prime}, and $(1-\varepsilon) \lambda^{\prime}<m^{\prime}<(1+\varepsilon) \lambda^{\prime}$. Furthermore, since any extension of $\left(\mathscr{X}^{\prime} \times \mathscr{X}, \mathbf{F}^{\prime} \otimes \mathbf{F}, \lambda^{\prime} \otimes m\right.$) is also an extension of $(\mathscr{X}, \mathbf{F}, m$), such an extension cannot be standard.

[^0]Corollary 3. If $\left(\Omega,\left(\mathscr{F}_{t}\right)_{t \geq 0}, P\right)$ is the Brownian filtration, there is a probability measure Q with $(1-\varepsilon) P<Q<(1+\varepsilon) P$ such that the filtration $\left(\Omega,\left(\mathscr{F}_{t}\right)_{t \geq 0}, Q\right)$ is not Brownian.

Proof. This follows from Theorem 1 in the same way that the negative solution to [I], Problem 1, follows from Theorem 2.6 there.
2. Construction of the measure. The measure m which is to be constructed for Theorem 1 will be block-Markov, as described in [I], Section 3:

$$
\frac{d m}{d \lambda}(x)=\prod_{k=0}^{\infty} 2^{2^{k}} p_{k}\left(x^{(k)} \mid x^{(k+1)}\right),
$$

where $x=\left(x_{1}, x_{2}, \ldots\right) \in \mathscr{X}=\{0,1\}^{N}$; for $k=0,1, \ldots$ we denote by $x^{(k)}$ the following piece of the sequence x :

$$
x^{(k)}=\left(x_{2^{k}}, x_{2^{k}+1}, \ldots, x_{2^{k+1}-1}\right) \in \mathscr{X}^{(k)}=\{0,1\}^{2^{k}} .
$$

In addition, each p_{k} is a Markovian transition probability from $\mathscr{X}^{(k+1)}$ to $\mathscr{X}^{(k)}$:

$$
\forall z \in \mathscr{X}^{(k+1)}, \quad \sum_{y \in \mathscr{P}^{(k)}} p_{k}(y \mid z)=1 .
$$

These p_{k} are chosen to be arbitrary one-to-one maps $p_{k}:\{0,1\}^{2 n} \rightarrow \mathscr{N}_{k}$ (here and henceforth $n=2^{k}$), each \mathscr{N}_{k} being a set of $2^{2 n}$ probability measures on $\{0,1\}^{n}$ satisfying certain conditions (ii) and (iii). Condition (ii) was used in [I], Section 4, during the proof of Theorem 2.6 from the fundamental lemma there.
(ii) For any distinct $\mu, \nu \in \mathscr{N}_{k}$,

$$
\mathrm{KR}^{n}(\mu, \nu) \geq 1-\frac{C_{1}}{n \varepsilon_{k}} .
$$

Here C_{1} is an absolute constant (possibly larger than the C of [I]). Condition (iii) is new:
(iii) For any $\mu \in \mathscr{N}_{k}$,

$$
\exp \left(-n^{3 / 4} \varepsilon_{k}\right) \lambda_{n} \leq \mu \leq \exp \left(n^{3 / 4} \varepsilon_{k}\right) \lambda_{n},
$$

where λ_{n} is the Bernoulli $(1 / 2,1 / 2)$ measure on $\{0,1\}^{n}$.
The sequence $\left(\varepsilon_{k}\right)$ is chosen to satisfy the following two conditions:

$$
\begin{equation*}
\sum_{k} \frac{1}{2^{k} \varepsilon_{k}}<\infty, \tag{ii*}
\end{equation*}
$$

$$
\text { (iii*) } \quad \sum_{k} 2^{(3 / 4) k} \varepsilon_{k}<\infty .
$$

Condition (ii*) was introduced in [I], Section 3, while (iii*) replaces the weaker condition (i^{*}), $\Sigma 2^{k} \varepsilon_{k}^{2}<\infty$, which was used in [I]. Conditions (ii*) and
(iii*) are compatible; for example, both are satisfied by $\varepsilon_{k}=\theta^{k}$ with $1 / 2<$ $\theta<1 / 2^{3 / 4}$. (Compare this to the condition $1 / 2<\theta<1 / 2^{1 / 2}$ used in [I].)

Conditions (iii) and (iii*) ensure convergence of the infinite product for the density $d m / d \lambda$, since

$$
\exp \left(-n^{3 / 4} \varepsilon_{k}\right) \leq 2^{n} p_{k}\left(x^{(k)} \mid x^{(k+1)}\right) \leq \exp \left(n^{3 / 4} \varepsilon_{k}\right)
$$

The convergence is uniform in x; hence the product is bounded and is the density of a probability measure. Taking the product over $k=k_{0}, k_{0}+1, \ldots$ with k_{0} large enough, we can force $d m / d \lambda$ to be uniformly ε-close to 1 .

Conditions (ii) and (ii*) ensure that ($\mathscr{X}, \mathbf{F}, m$) admits no standard extension: the proof given in [I], Section 4, remains valid.

So to prove Theorem 1 all we need to do is show the existence of a sequence of sets \mathscr{N}_{k} satisfying (ii) and (iii). To this end, we take the corresponding sets \mathscr{M}_{k} of [I] and adapt them; in fact, we adapt each element of \mathscr{M}_{k} separately. The following supplement to the fundamental lemma of [I] will be used.

Main lemma. For any $\varepsilon \in(0,1), n=1,2, \ldots$, any probability measure μ on $\{0,1\}^{n}$ satisfying

$$
\begin{equation*}
\mu\left(X_{i}=1 \mid X_{i+1}^{n}\right)=(1 \pm \varepsilon) / 2 \quad \text { for any } i=1, \ldots, n \tag{a}
\end{equation*}
$$

and any $T \geq n \varepsilon^{2}$, there is a probability measure ν on $\{0,1\}^{n}$ such that

$$
\begin{gather*}
\mathrm{KR}^{n}(\mu, \nu) \leq 2 n \exp \left(-\frac{T^{2}}{2 n \varepsilon^{2}}\right) \cosh T \tag{b}\\
(1-\varepsilon) e^{-T} \lambda_{n} \leq \nu \leq(1+\varepsilon) e^{T} \lambda_{n} \tag{c}
\end{gather*}
$$

This main lemma is used as follows. Given k large enough, we put $n=2^{k}$ and take T so that $e^{T}=\left(1-\varepsilon_{k}\right) \exp \left(n^{3 / 4} \varepsilon_{k}\right)$; then $T=n^{3 / 4} \varepsilon_{k}(1+o(1)) \gg n \varepsilon_{k}^{2}$ due to (iii*). Inequality (c) of the main lemma implies condition (iii). Assuming $n \varepsilon_{k}^{2} \leq 1 / 2$ [which is ensured by (iii*) for large k] and using the wellknown inequality $\cosh T \leq \exp \left(T^{2} / 2\right)$, we have

$$
\mathrm{KR}^{n}(\mu, \nu) \leq 2 n \exp \left(-\frac{T^{2}}{2 n \varepsilon_{k}^{2}}+\frac{T^{2}}{2}\right) \leq 2 n \exp \left(-\frac{T^{2}}{4 n \varepsilon_{k}^{2}}\right)
$$

Hence $\operatorname{KR}^{n}(\mu, \nu) \leq \exp (-\sqrt{n} / 5)$ for large k. This is more than enough to conclude that

$$
\mathrm{KR}^{n}(\mu, \nu) \leq \frac{C_{0}}{n} \leq \frac{C_{0}}{n \varepsilon_{k}}
$$

with an absolute constant C_{0}. Condition (ii) is thus ensured with the constant $C_{1}=C+2 C_{0}$, where C is the constant of the fundamental lemma of [I]. So our theorem follows from the main lemma, by setting $\mathscr{N}_{k}=\left\{\nu: \mu \in \mathscr{M}_{k}\right\}$, where μ and ν are as in the statement of that lemma.
3. Proof of main lemma. The probability measure μ satisfies

$$
\mu\left(X_{i}=1 \mid X_{i+1}^{n}\right)=\frac{1}{2}\left(1+\varepsilon s_{i}\left(X_{i+1}^{n}\right)\right)
$$

for certain functions $s_{i}:\{0,1\}^{n-i} \rightarrow\{-1,+1\}$. It is more convenient to deal with $\{-1,+1\}^{n}$ instead of $\{0,1\}^{n}$. Doing so, we have

$$
\mu\left\{x_{1}^{n}\right\}=2^{-n} \prod_{i=1}^{n}\left(1+\varepsilon x_{i} s_{i}\left(x_{i+1}^{n}\right)\right)
$$

Consider the density $D=d \mu / d \lambda_{n}$ and its conditional expectation $D_{i}=$ $\mathbb{E}\left(D \mid \mathscr{F}_{i}\right)$; the expectation is taken wrt $\lambda_{n} ; \mathscr{F}_{i}$ is generated by x_{i}^{n}. Then

$$
D_{k}\left(x_{1}^{n}\right)=\prod_{i=k}^{n}\left(1+\varepsilon x_{i} s_{i}\left(x_{i+1}^{n}\right)\right)
$$

Clearly, $\left(D_{i}\right)$ is a reverse martingale. (The reversal of time is, of course, due to the fact that we are dealing with reverse filtrations rather than filtrations.) Consider the (backward) stopping time $\tau:\{-1,+1\}^{n} \rightarrow\{1, \ldots, n\}$ defined by

$$
\tau= \begin{cases}\max \left\{i: D_{i}^{\prime}\left[e^{-T}, e^{T}\right]\right\}, & \text { when there is such } i \\ 1, & \text { otherwise }\end{cases}
$$

Define a measure ν on $\{-1,+1\}^{n}$ by

$$
\frac{d \nu}{d \lambda_{n}}=D_{\tau}
$$

Doob's stopping time theorem ensures that ν is a probability measure. We have $D_{\tau+1} \in\left[e^{-T}, e^{T}\right]$ (here $\left.D_{n+1}=1\right)$; hence $D_{\tau} \in\left[(1-\varepsilon) e^{-T},(1+\varepsilon) e^{T}\right]$, which is inequality (c). Inequality (b) follows from the two following facts:

$$
\begin{aligned}
\nu\{\tau>1\} & \leq 2 n \exp \left(-\frac{T^{2}}{2 n \varepsilon^{2}}\right) \cosh T \\
\mathrm{KR}^{n}(\mu, \nu) & \leq \nu\{\tau>1\}
\end{aligned}
$$

The proof of the first fact is as follows. The sequence $\left(x_{i} s_{i}\left(x_{i+1}^{n}\right)\right)$, with respect to λ_{n}, has the same Bernoulli distribution λ_{n} as $\left(x_{i}\right)$; see [I], proof of Lemma 3.1. Thus

$$
\int D_{i}^{\alpha} d \lambda_{n}=\left(\frac{1}{2}(1-\varepsilon)^{\alpha}+\frac{1}{2}(1+\varepsilon)^{\alpha}\right)^{i} \leq \cosh ^{i} \alpha \varepsilon \leq \exp \left(\frac{i}{2} \alpha^{2} \varepsilon^{2}\right)
$$

for any $\alpha>0, i=1, \ldots, n$. Hence

$$
\begin{aligned}
\nu\left\{D_{i}>\exp T\right\} & \leq \exp (-\alpha T) \int D_{i}^{\alpha} d \nu=\exp (-\alpha T) \int D_{i}^{\alpha+1} d \lambda_{n} \\
& \leq \exp \left(-\alpha T+\frac{i}{2}(\alpha+1)^{2} \varepsilon^{2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\nu\left\{\max D_{i}>\exp T\right\} & \leq \inf _{\alpha>0} n \exp \left(-\alpha T+\frac{n}{2}(\alpha+1)^{2} \varepsilon^{2}\right) \\
& =n \exp \left(-\frac{T^{2}}{2 n \varepsilon^{2}}+T\right)
\end{aligned}
$$

since $T \geq n \varepsilon^{2}$. Similarly,

$$
\begin{aligned}
\nu\left\{\min D_{i}<\exp -T\right\} & \leq \sum_{i} \inf _{\alpha>0} \exp (-\alpha T) \int D_{i}^{-\alpha} d \nu \\
& \leq n \inf _{\alpha>0} \exp \left(-\alpha T+\frac{n}{2}(\alpha-1)^{2} \varepsilon^{2}\right) \\
& =n \exp \left(-\frac{T^{2}}{2 n \varepsilon^{2}}-T\right) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\nu\{\tau>1\} & \leq \nu\left\{\max D_{i}>\exp T\right\}+\nu\left\{\min D_{i}<\exp (-T)\right\} \\
& \leq n \exp \left(-\frac{T^{2}}{2 n \varepsilon^{2}}\right)(\exp T+\exp (-T)) .
\end{aligned}
$$

This proves the first fact. The proof of the second fact will be carried out in two lemmas.

Lemma 4. Let two probability measures $\bar{\mu}, \bar{\nu}$ be concentrated on disjoint two-point sets, $\bar{\mu}$ on $\{a, b\}$ and $\bar{\nu}$ on $\{c, d\}$, in a space with metric $\bar{\rho}$. Suppose

$$
\begin{array}{ll}
\bar{\rho}(a, c) \leq 1, & \bar{\rho}(b, d) \leq 1 \\
\bar{\rho}(a, d)=1, & \bar{\rho}(b, c)=1 .
\end{array}
$$

Then

$$
\begin{aligned}
1-\bar{\rho}_{\mathrm{KR}}(\bar{\mu}, \bar{\nu}) \geq & (1-\bar{\rho}(a, c)) \min (\bar{\mu}\{a\}, \bar{\nu}\{c\}) \\
& +(1-\bar{\rho}(b, d)) \min (\bar{\mu}\{b\}, \bar{\nu}\{d\}) .
\end{aligned}
$$

(In fact, equality holds; the opposite inequality was [I], Lemma 5.2. Only the special case $\bar{\mu}\{a\}=\bar{\nu}\{c\}, \bar{\mu}\{b\}=\bar{\nu}\{d\}$ will be used, but the general case is not much more complicated.)

Proof.

$$
\rho_{\mathrm{KR}}(\bar{\mu}, \bar{\nu})=\inf \left\{\int \bar{\rho}(x, y) d \lambda(x, y): \lambda \in \mathscr{T}(\bar{\mu}, \bar{\nu})\right\},
$$

where $\mathscr{T}(\bar{\mu}, \bar{\nu})$ is the set of joinings of $\bar{\mu}$ with $\bar{\nu}$. Without loss of generality, we may suppose that $\bar{\mu}\{a\} \geq \bar{\nu}\{c\}$; then $\bar{\mu}\{b\} \leq \bar{\nu}\{d\}$. Take the following joining:

$$
\begin{aligned}
\lambda\{(a, c)\} & =\bar{\nu}\{c\} \\
\lambda\{(a, d)\} & =\bar{\mu}\{a\}-\bar{\nu}\{c\} \\
\lambda\{(b, d)\} & =1-\bar{\mu}\{a\}
\end{aligned}
$$

Then

$$
\begin{aligned}
\bar{\rho}_{\mathrm{KR}}(\bar{\mu}, \bar{\nu}) & \leq \int \rho(x, y) d \lambda(x, y) \\
& =\bar{\nu}\{c\} \bar{\rho}(a, c)+(\bar{\mu}\{a\}-\bar{\nu}\{c\}) \bar{\rho}(a, d)+(1-\bar{\mu}\{a\}) \bar{\rho}(b, d) \\
& =\bar{\nu}\{c\} \bar{\rho}(a, c)+1-\bar{\mu}\{b\}-\bar{\nu}\{c\}+\bar{\mu}\{b\} \bar{\rho}(b, d)
\end{aligned}
$$

hence

$$
1-\bar{\rho}_{\mathrm{KR}}(\bar{\mu}, \bar{\nu}) \geq(1-\bar{\rho}(a, c)) \bar{\nu}\{c\}+(1-\bar{\rho}(b, d)) \bar{\mu}\{b\}
$$

A Markov time on $\{0,1\}^{n}$ (with the direction of time reversed) is defined as a function $\tau:\{0,1\}^{n} \rightarrow\{1, \ldots, n\}$ satisfying the condition $\{\tau \geq i\} \in \mathscr{F}_{i}$ for $i=$ $1, \ldots, n$; the σ-field \mathscr{F}_{i} is generated by x_{i}^{n}. The σ-field \mathscr{F}_{τ} is defined as consisting of all $E \subset\{0,1\}^{n}$ satisfying

$$
E \cap\{\tau \geq i\} \in \mathscr{F}_{i} \quad \text { for } i=1, \ldots, n
$$

Lemma 5. Let τ be any Markov time on $\{0,1\}^{n}$, and μ, ν any two probability measures on $\{0,1\}^{n}$ coinciding on \mathscr{F}_{τ} and positive on all points. Then

$$
\mathrm{KR}^{n}(\mu, \nu) \leq \nu\{\tau>1\}
$$

(The positivity assumption is not really necessary, but it avoids considering special cases and is satisfied in our application.)

Proof of Lemma 5. Induct on n. For $n=1$ we have $\tau=1$ identically; hence $\mathscr{F}_{\tau}=\mathscr{F}_{1}$ and $\nu=\mu$. Consider $n>1$. Introduce conditional measures $\mu_{0}, \mu_{1}, \nu_{0}, \nu_{1}$ on $\{0,1\}^{n-1}$:

$$
\mu\left(\left\{x_{1}^{n-1}\right\} \mid x_{n}\right)=\mu_{x_{n}}\left\{x_{1}^{n-1}\right\}, \quad \nu\left(\left\{x_{1}^{n-1}\right\} \mid x_{n}\right)=\nu_{x_{n}}\left\{x_{1}^{n-1}\right\} .
$$

In the discussion preceding [I], Lemma 5.2, it was shown that $\bar{\rho}, \bar{\mu}, \bar{\nu}$ may be so chosen that $\bar{\rho}(a, c)=\mathrm{KR}^{n-1}\left(\mu_{0}, \nu_{0}\right), \bar{\rho}(b, d)=\mathrm{KR}^{n-1}\left(\mu_{1}, \nu_{1}\right), \bar{\mu}(a)=$ $\mu\left(E_{0}\right), \bar{\mu}(c)=\mu\left(E_{1}\right), \bar{\nu}(b)=\nu\left(E_{0}\right), \bar{\nu}(d)=\nu\left(E_{1}\right)$ and $\bar{\rho}_{\mathrm{KR}}(\bar{\mu}, \bar{\nu})=\mathrm{KR}^{n}(\mu, \nu)$. This applies equally well here, so Lemma 4 gives

$$
\begin{aligned}
1-\mathrm{KR}^{n}(\mu, \nu) \geq & \left(1-\operatorname{KR}^{n-1}\left(\mu_{0}, \nu_{0}\right)\right) \min \left(\mu\left(E_{0}\right), \nu\left(E_{0}\right)\right) \\
& +\left(1-\operatorname{KR}^{n-1}\left(\mu_{1}, \nu_{1}\right)\right) \min \left(\mu\left(E_{1}\right), \nu\left(E_{1}\right)\right)
\end{aligned}
$$

where $E_{s}=\left\{x_{1}^{n}: x_{n}=s\right\}$.
We have $E_{0}, E_{1} \in \mathscr{F}_{n} \subset \mathscr{F}_{\tau}$; hence $\nu\left(E_{0}\right)=\mu\left(E_{0}\right), \nu\left(E_{1}\right)=\mu\left(E_{1}\right)$, and the relation becomes

$$
\operatorname{KR}^{n}(\mu, \nu) \leq \nu\left(E_{0}\right) \mathrm{KR}^{n-1}\left(\mu_{0}, \nu_{0}\right)+\nu\left(E_{1}\right) \mathrm{KR}^{n-1}\left(\mu_{1}, \nu_{1}\right) .
$$

The induction assumption gives

$$
\operatorname{KR}^{n-1}\left(\mu_{0}, \nu_{0}\right) \leq \nu\left\{\tau<1 \mid E_{0}\right\},
$$

provided that $\nu\left\{\tau=n \mid E_{0}\right\}=0$. Otherwise $\nu\left\{\tau=n \mid E_{0}\right\}=1$, since $\{\tau=n\} \in \mathscr{F}_{n}$, and the inequality reduces to $\mathrm{KR}^{n-1}\left(\mu_{0}, \nu_{0}\right) \leq 1$, which holds trivially. The same reasoning holds for $\operatorname{KR}^{n-1}\left(\mu_{1}, \nu_{1}\right)$, giving
$\operatorname{KR}^{n}(\mu, \nu) \leq \nu\left(E_{0}\right) \nu\left\{\tau>1 \mid E_{0}\right\}+\nu\left(E_{1}\right) \nu\left\{\tau>1 \mid E_{1}\right\}=\nu\{\tau>1\}$.
This completes the proof of Lemma 5 and the main lemma.
Acknowledgments. The first named author would like to thank L. Dubins, for asking him whether boundedness of $d m / d \lambda$ implies standardness of ($\mathscr{X}, \mathbf{F}, m$), and M. Smorodinsky for a helpful conversation in Warwick.

Department of Mathematics School of Mathematics
University of California
Berkeley, California 94720
E-MAIL: feldman@math.berkeley.edu
Tel Aviv University
Tel Aviv 69978
IsRAEL

[^0]: Received November 1994; revised June 1995.
 ${ }^{1}$ Supported in part by NSF Grant DMS-91-13642.
 AMS 1991 subject classifications. Primary 60J65; secondary 28C20, 60G07, 60H10.
 Key words and phrases. Brownian filtration, equivalent measure, bounded density, decreasing sequence of measurable partitions.

