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WAVEFRONT PROPAGATION FOR REACTION-DIFFUSION
SYSTEMS AND BACKWARD SDES

By FREDERIC PRADEILLES

E.N.S.AEE.

We first show a large deviation principle for degenerate
diffusion—transmutation processes and study the Riemannian metric asso-
ciated with the action functional under a Hormander-type assumption.
Then we study the behavior of the solution u® of a system of strongly
coupled scaled KPP equations. Using backward stochastic differential
equations and the theory of Hamilton-Jacobi equations, we show that,
when the parabolic operator satisfies a Hormander-type hypothesis or
when the nonlinearity depends on the gradient, the wavefront location is
given by the same formula as that in Freidlin and Lee or Barles, Evans
and Souganidis. We obtain the exact logarithmic rates of convergence to
the unstable equilibrium state in the general case and to the stable
equilibrium state when the equations are uniformly positively coupled.

1. Introduction. Many probabilistic methods have been developed to
study parabolic partial differential equations (PDEs) since we know that such
equations are connected to Markov processes. Reaction—diffusion equations
and, in particular, KPP equations [18] have been extensively studied in that
way during the last few years: [8], [9], [12], [13], [21], [22] and [25] for
example. The original KPP equation is

ou t L Au(t

—(t, x) = = Au(t, x

Sr (%) = 2 Au(t, x)

+c(x)u(t, x)(1 — u(t, x)), t>0, xeR,
u(0,x) =1, ,, X € R.

It is well known that u looks like a running wave when t and x are far from
the origin. This type of result was extended by Freidlin [13], using large
deviations, and by Evans and Souganidis [10], developing an analytical
method, to the nonhomogeneous case of scaled KPP equations

£

P
W(t’ X)

eLu’(t, x)

+%c(x)u€(t,x)(1—ue(t,x)), t>0, xeRY,

u®(0, x) = g(x), x € RY,
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1576 F. PRADEILLES

where L is a second-order uniform elliptic operator, 0 < ¢ < ¢(x) < T < % and
g is a bounded positive function.

Barles, Evans and Souganidis [5] on one side and Freidlin and Lee [14, 16]
on the other one gave generalizations of their results for systems of strongly
coupled KPP equations, typically:

(9ui9 & 1 & &
T ebyup + - c,(x)ui(e —uy)
(1) + Y ci(x)(uf —uf)|, t>0, xeR",
il
uf(0,x) =g,(x), 1l<lx<k, xeR",
where L, is an elliptic operator, 0 < ¢ < ¢,;(x) <T < ®, g, is a bounded
positive function and e, > 0. One can also cite the work of Zhao [29].

There is wavefront propagation with the same speed on each component of
u® and the exponential rate of convergence to the unstable equilibrium state
is computed. In fact, for all components of u®, & In u; converges uniformly on
compact sets to V*. Moreover, if E={V* <0} and M={V* =0}, u® con-
verges uniformly to 0 on compact subsets of E, and liminf uy > 0 uniformly
on compact subsets of M for all 1 < | < k which means that the wavefront is
located on JM = JE.

In [23] Pardoux and Peng show that backward stochastic differential
equations (BSDEs) driven by a Brownian motion provide a representation of
the viscosity solution of semilinear parabolic PDEs. We show in [25] that it
allows us to consider the hypoelliptic and gradient dependent [i.e., c(x, Vu®)]
cases. More recently, with Pardoux and Rao [24], we give a link between
BSDEs driven by a Brownian motion and Poisson processes and the viscosity
solution of a system of semilinear parabolic PDEs. Let W be a Brownian
motion and let N(I), 1 < | < k — 1, be independent Poisson processes and
independent of W. Let (»", X* " Ytxn Htxn ztxn)phe the solution of

N
-
|

"=n+ killN(I)t mod[ k],
=1

Xgen =x+fsb(xx’” u") dr+fsa(xx’” y") dwr
s r v Pr r v Pr ’
(1) 0 t 0
Yst,x,n — g(xtx,n’ th) + f f(Vrn, er,n’Yrt,x,n, Hrt,x,n’Z:,x,n) dr
S
t tk—l
= [z dwr = [T Y HEXR(1) dN(D),
S S =1

Then, on assumptions recalled later, u(t, x) = (Y& !, 1 < I < k) is the unique
viscosity solution of

T Liuy + f(L x,up,up, — Uy, us; —u, Vuo(x, 1)),

t>0, x € RY,
u(0,x) =g(x, 1), 1<I<k, xeR",
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where L, is the operator associated with (b(-, 1), o (-, 1)). As in [25], we use
this representation to solve the classical problem under the hypoelliptic
hypothesis or when (¢, ;); depends on Vuyf. The case where (c, ;); depends on
Vug, with m # | is not studied since there exists no definition for viscosity
solutions of such systems for the moment. Our approach is the following. We
show that (& In uf), converges uniformly on compact sets of ]0,«[ xR? by
technics developed in [5]. Then, using the BSDE representation and the
probabilistic method [16], we identify the limit and show the wavefront
propagation. Moreover, we give an example where the convergence to the
stable equilibrium state can be proved and we compute the exponential rate
of convergence to this state. However, we need a large deviation principle for
diffusion—transmutation processes with degenerated diffusion. We prove it in
Section 2. Then, Section 3 is dedicated to the study of the hypoelliptic case
and the “stabilization” for some particular systems and Section 4 is dedicated
to systems which are nonlinear in Vu®.

2. A theorem of large deviations. The aim of this chapter is to show a
large deviation principle for a diffusion-transmutation process (X¢, v)y st
of RY x [1, k] without nondegeneracy assumption on the diffusion. The gener-
ator of this process is given by: for all v € (C*2([0, T] x R9)k,

av, & 9 d%v,
— = all(x, 1) ——
it 2 12:1 (D IXIX!

1 k
+(b (%, 1),Vv)) + = X c(x, L, i)(v; — V)
€i-1
for all 1e[1,k]l={l,1<l<k}, (t,x) eR*XR?* with v,=v, if n=
I mod[ k]. In fact, following the idea of Freidlin and Lee [15], we replace v¢ by
its occupation-time vector U which is defined by

@ U = (U)o [ [0 as]

since, when c is independent of x, v¢ is a speeded-up Markov process and so,
in general, v has no limit when & tends to 0. Such a process can be built as
follows: let (), F, P) be a probability space and (W' 1 <1 <k, N(i), 1 <i <
k — 1) be 2k — 1 independent processes defined on ({2, F, P) where W' is a
d-dimensional Brownian motion and N(i) is a standard Poisson process. Let
(X*#, v) be the unique solution of

1<l<k

v =n+ ki‘,llN(I)t mod[ k],
1=1

k
(3) Xgrm=xk X [T (Xe %, 10zl dr
1=170

+\/Z[S i o (XX H)U(1) dw,.

01=1
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where U(I) = L;,»_y,- Now, we define the probability P* by

dP*

- T E(XSS’VS)
ap (X ,v)=exp{/0

c( Xs, I, m
g S (X1, m)
&

ds+ ) Y In——},

I, m TET m €

where 7, ., is the set of times lower than T when v jumps from | to
I + m mod[ k]. On our assumptions, P¢ and P are equivalent and, under P~,
(X*#, v) is the required process and we will work with the triplet (P¢, X#, U).
Using this notation, X# * " is the solution of

k S -
XEHn=x+ ¥ ([ b,( X%, 1)U (1) dr
1=1\"0

S -
Ve [Co (XX U (1) dwy |,
0

In fact, the large deviation theorem we prove deals with (P#, X*, U)_ as was
done by Freidlin and Lee [15] on a uniform elliptic assumption.

2.1. Statement of the main theorem. Our assumptions are of two types:
each transition of v* is always possible but with finite intensity and, for all I,
the diffusion family associated with (b.(-, 1), Ve o (-, 1)) satisfies a uniform
large deviation principle. In other words:

AssumpTioN 2.1. For all (1, m) € [1, k] X [1, k], (b,(-, D)), ., € C(RY, RY),
o, D e Cc@R? R, c(-,1,m) € CRY R) and

(a) there exists K €]0, [ such that for all x, x’ € RY x RY, forall I, m
[1, k], for all £ > O:

b (x, 1) = b,(x, ") < K[x - x], Ib.(x, )l <K,
lo(x,1) —o(x', DIl < K[x = x|, llo(x, DIl <K,
le(x, I, m) —c(x', 1, m)| < K|x — xl, %sc(x,l,m);

(b) (b,), ., converges uniformly to b when & tends to 0; b is uniformly
Lipschitz continuous and bounded by K.

Let us now introduce some notation in order to define the action of (X?¢, U):

(@ for all I,ie[1,k], I'#i, set ¢;(x)=¢C;(x)=c(x,l,m) if m=1+
imod[ k] and C,,(x) = —C(x, D) = =X, ¢,;(x);
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() x, p € RY, a € R,
N 1
TI(x, p, @) = C(x) + Diag E|a*(x,|)p|2+ (b(x,1),p) + &,1 <1<kl

(c) A(X, p, @) is the Hamiltonian of TI(x, p, «), which means that A(x, p, a)
is an eigenvalue and, for any eigenvalue A, Re(A) < A(X, p, a);

(d) n(x, g, B) is the Legendre transform of A(X, p, ) with respect to
(p, o);

(e) D={BeRK p()=0 LB =1}

() wecC, if we C(0,T][0,T]%) and is absolutely continuous, for all
I €1, k], w(D)is nondecreasing with w(l), = 0 and, for all t [0, T], X (D
= t or, in other words, u, € D;

@ 1 ={y, [JI¢)1Pds < }and I, = {¢, []Iy? ds < a):

K 1 .
an(ws,O,[Ls)dS+ y EfTw,S'F ds, ifpeC, and gelk,
0 1=1 0

+ o0, otherwise.

SWU(lﬁ /J') —

Finally, if z € RY, F,: 1% X C,— I is defined by F,(, u) = ¢ where ¢ is
the unique solution of

t & -
(4) Y [b(e D) + (. 1) )] ies(1) ds.

Oj=1
Now we state the theorem.

THEOREM 2.1. The triplet (P?, X?, U) satisfies a uniform large deviation
principle on RY X [1, k]. The action functional is & 'S,; with V (¢, u) €
C(0, T],RY x C,:

Sor(@, 1) = igf{st\JNTU("[” m): B p) = ¢}

T . - .
_ fon(gos,gos,,us)ds, ifpeC,andpel,
+ o, otherwise,

where X5 = x.

2.2. The proof. Our strategy is strongly based on a contraction principle
which is the method used by Azencott [2] and Priouret [27]. We first show
that (P°,/eW*' 1 < | <k, U) satisfies a uniform large deviation principle,
the action of which is given by SgtY and then we deduce Theorem 2.1. To
achieve this, we show that X~ is close to F, (i, u) with P*-probability greater
than 1 — exp(—R /&), R being arbitrarily large, when (J/eW', 1 <1 < k,U)
is close to (', 1 < | <k, w). In fact, although we may consider a different
drift, we only fix the case ¢y = 0 thanks to a change of probability. This is the
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purpose of:

PrROPOSITION 2.2. Leta > 0. We assume that, for a family (W*' 1 <1 < k)
of Brownian motions under a probability Q® and ("), _,_,, ») € (1)¥ X C,,
¢ = F,(¢, w) and X~ is the solution of

t & - -
© XE =X+ fo I;us(l)([bg(x;,l) + o (X)) ds
+Vea (X, 1) dwy).

Then, for all R > 0, n > 0, there exist &, > 0, « > 0, 8> 0, r > 0 such that,
if e < gy, and [x — z| < r, we have
R
< exp(__)

Q*’[leg—qollzn, sup IWVeW*'ll < a, U — ull < 8 -

e[, k]

and ¢,, «, B, r are independent of (¢, u) and depend only on a.

Proor. We will write W for W¢ =YK , W&'. As Priouret did, we dis-
cretize X® Let n > 0. Then

Eﬂ)

Xf'n=xt€i ift€|:ti,ti+l)= n n

for i €[0,n[ and x$" = X§. We need the following lemmas, the proofs of
which are slight generalizations of Priouret’s results.

Lemma 2.3. For all R > 0, vy > 0, there exist ¢, > 0 and n > 0 such that,
for ¢ < &,

R
Qe(lIXe=x="I>vy) < exp(—;).

Denote V¢ = Ve [§ o (X¢, v) dW,. We have:

Lemma 2.4. For all R > 0, y > 0, there exist g5 > 0, a« > 0 such that, if
£ < gy, then

| R
QS[IIVSII >y, sup IVeW®'l|<al < eXp(——)-
le[1, k] €
If we denote
t K - -
ot =2+ [[[b(erv) + T oo )il |01 ds
I=1

we show Proposition 2.2 for X® and ¢°.
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Lemma 2.5. For all R > 0, > 0, there exist &5 > 0, a« > 0, r > 0 such
that, if ¢ < g, and |x — z| < r, we have
R
< exp|— —)
&

and &y, «, B and r are independent of ('), _,_, and only depend on a.

Q°lIX* — @®ll=m, sup INeW*'| <«
le[1, k]

It remains now to compare ¢ and ¢ with respect to ||[U — pull.

LeEmmA 2.6. For all n > 0, there exists 8 > 0 such that, forall u € C_, if
U — ull < B, then [lo® — ol < 7.
ProoF. We also introduce a discretized version ¢¢ " of ¢°:
iT (i+1)T
n’ n

ths,n:QDti iftE[ ti-ti+1)=

for i € [0, n[ and ¥ " = ¢f. As in Lemma 2.3, we have: for all y > 0, there
exists n(y, a) such that, if n > n(y, a), then |l¢* — ¢*"|| < y. Let y > 0 and
n be such that [[¢° — ¢* "|| < y. A short computation leads to
K
t
lof — ¢l < Kfo‘l’slsof — ¢l ds + 2KyT + 2Kn } [[U(1) — w(D
=1

+2kKy/aT + 2Kn f valu(l) — w(hll,
1=1

where W, =1+ T¥_, |y | ie(D). If K(a) is such that K[y ¥, ds < K(a),
Gronwall’'s lemma leads to

le® — ol < 2kK(nllU — ull + yT + waT + ny/alu — ull)e .

Then we choose
ne~ K (a)

< 1
T 4KK(T + VTa)
and n > n(y, a). Hence, there exists B(n, a) such that
U —ul<B(n, a)=lle”— el <n. O

Y

Now, we can prove Proposition 2.2. We only have to choose « according to
Lemma 2.5 such that

n R
QE[IIXS etz 2, sup IWeW < a < eXp(——)
2 e &
and B according to Lemma 2.6 such that ||¢® — ¢l < n/2. Then, we have

-]
<exp|——|. O

&

QE[IIXE ez m sup WeWe !l < a, U — ull < B
le[1, k]
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Now, we come back to the initial problem. Let ("), -, -, w) € (1D* X C,.
We define the probability Q¢ ¢ by
dQ# ¢ K 1 7.
=J]e dw,' — "2 ds}.
- ~ [1ew ff ! 72 ) 1!

Under Q# ¢, W' =W'— ¢'/ Ve and W* = L, W/}, are Brownian motions
and X? is a solution of

—x+f§:b(x 1) + o (XE1) -] Us(1) ds

01=1
e [(o (X2, ) Wy,
0

THEOREM 2.7. If ¢ is defined by (4), for all R > 0, p > 0, there exist
£,>0,a>0, >0 andr > 0 such that, if e < g, and |x — z| <1,

& & | | R
P [nx —oll=p, sup INEW —lIIIISa,IIU—MIISB}SEXD -7,
le[1, k] €

and, for a given a, &, «, B, r are independent of (i, w).

ProoF. Denote

_ {nxa —oll=p, sup INeW' =yl < a, U - ull < B}
le[1, k]

and
K 1 .
= expy — — e \VARS
e 11 % = #
The exponential inequality leads to

k k .
E> exp(%” <y Pg[/T(ps' dw,
Z 0

P&‘

A ok A2
> — -——.
\/; = &P ag

Moreover,
A+a/2

kAT
Pg[A,fs exp(—) sexp( )Q‘” [ A].

&
But, under Q¢ ¢, A is the event we considered in Proposition 2.2. Once we
have chosen A large enough in order that A/2a > R, we only have to apply
Proposition 2.2. O

Let us now assume that we are under a probability Q¢ such that the jJump
intensities are only time dependent which means that c(x, I, m), C(x) and
TI(x, p, @) become c(t, I, m), C(t) and TI(t, p, a). For example,

dQ- =exp{/:[k— L (s, S) c(r, 1, m)

s+ Y ¥ 2

I,mrer , 3

dP
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where 7, ., is the set of times T when v jumps from I to | + m mod[ k]. Then,
(W=, _, - is still a family of independent Brownian motions and indepen-
dent of U. Set A(t, @) = A(t,0, «) and n(t, B) its Legendre transform with
respect to a.

T Kl 7.
s, iu.) ds + — [ |4)?ds, ifuesC,. and < 1k,
Sor (¥, w) = fon( is) Elzfo s B=T 4

+ oo, otherwise.

ProposiTIoN 2.8. The family (Q°,(VeW"), _,_,,U) satisfies a uniform
large deviation principle in the uniform topology. The action functional is
e 1Sk,

Proor. It is a direct consequence of the Schilder theorem and Proposition
220f [17]. O

We know that we can associate ('), _, ., with ¢ defined by (4). Let P#*
be defined by

dzsg=exp{fT[k_1_6(<os,vs) Gt Y T Inc(cof,l,m)}’
0 & &

or, equivalently,

dp#? 1 7 c( X7, 1, m)

= exp§ — c( X¢, — (o, ds — In ——— ).
dp*¢ p{ 8'/(; [ ( s Vs) (s Vs)] I,Zm re?,ym (e, 1, m)
Under P# ¢, X* satisfies the same SDE but the matrix C is time dependent
and no more space dependent. Then, we are in the previous case.

PropPosITION 2.9. The family (P2, (VeW"),_,_,,U) satisfies a uniform
large deviation principle in the uniform topology. The action functional is
-lqWU H
& ~Spr- with
"n(e.,0, ju) d f1T|"|2d if ueC, and e X
0, S+ = s, Ifue an elk,
S(\)A'/I'U(lvb1 /-L) — j;) 7’(@5 /*Ls) = 2/0 l!fs I + l,l/
+o0, otherwise.

PrRooF. Our approach is deeply inspired by the work of Freidlin and Lee
[15]. We just have to show that, if Sg7 (¢, u) < o, then

lim lim e In PE[ sup IVeWe ! — ¢!l <6, U - ull<8|=—SWY(y, u)

6—0 -0 le[1, k]

and (P*,(YeW"),_,_,,U) is exponentially tight; that is, there exists a
sequence (K ),y Of compact subsets 1% x C, endowed with the uniform
topology such that

lim limeIn Po(((VeW®'),_,_ U) € K,) = —

n-o g0
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We just have to notice that C, is compact and that, for (JsW*"),_,_,, we
can choose

KW ={w: o =% Iy — ¢l <nlt—s|”* 1€[1,k],0<s<t<T}

according to a result of Ben Arous and Ledoux [7]. Let C be uniformly
Lipschitz continuous. Therefore, there exists y(n) such that y(»n) tends to 0
when 7 tends to 0 and, if || X? — ol < 7, |[§[Ceg, v,) — TXE, v)] ds| < y(n)
since €(x, 1) = &% ¢(x, 1, m) and

supllinc( e, I, m) —Inc(XZ, 1, m)|l < y(9).
I, m
Set

A= { sup IVeW' — ¢l <8, lU— ull < 6},
le[1, k]

B— {ng Cell<m sup INaW' = gl <8, U — ull < a}.
le[1, k]

Finally, denote by ||7|| the number of jumps of v before time T. We have

&

(X%, v); Bl +P°[ A\B]

P [A] =P**
[A] [dpq,,g

< oxp 7 |p“fexp(y(m)lel)i 8] + P A\ B

The Holder inequality leads to
Pe[exp{y(n)lirll}; B] < P [ A]"" "% P [exp{ay(n)Irl}]"

for all g > 1. Notice that max, . lic(¢, I, m)|| < K, which implies

T(k-1)K

Peexp{ay(n)lrl}] < exp{ (e — 1)}_

But, under P # ?, Proposition 2.8 applies. Hence,

limsupe In P ¢[exp{y(n)lrl}; B]

-0
1
< —(1 - a)sgVTU(w,M) +T(k— 1)K(e®™ — 1)

for all g > 1 and all n > 0. Moreover, for a given 7, for all R > 0, there exists
5 > 0 such that P°[ A\ B] < exp(—R/¢&) according to Theorem 2.7. Then

limsup limsupe In P?[ A]
6—0 e—0

< —(1 - %)S(\)A‘/I'U(‘/’vﬁ‘“) + T(k = 1)K(e" —1) + y(n)



REACTION-DIFFUSION SYSTEMS AND BSDES 1585

for arbitrary n and g. In fact,
limsup limsupeIn P°[ A] < —Sgt (¢, n).
6—0 e—0
Using the arguments developed previously and the following inequality

P[] = exp| - (P[] - Pee[ AN B

x (P [exp{y(m)lirl}; B]) ",

we get the lower bound. O

We are now ready to prove Theorem 2.1. We go back to the method used by
Priouret. We notice that in the definition of S, the infimum is realized for a
vector (¢, 1 < | < k): for a given u, we have the same kind of problem as in
the case of the action functional of a small perturbation of a dynamical
system and Azencott ([2], Proposition 3.2.10) showed that the infimum is
actually achieved. Indeed,

k

T B .
Sor (@, 1) =/0 n(¢s. 0, 1) ds + 'gf{ )y
k

T

||—\ |\>||—\

[0 s, (0, ) =<,o}
2|

0

—f (s, 0, i) ds+|nf{

But if we denote 3(x, B) = (a(x, Dy/B(1),..., o(x, k)y/B(k)) € R4k and
b(x, B) = Sb(x, D), then

& =B, its) + (s it) (B0 Virs(D) -0 oV s (K) ),

which is, for a given w, the problem studied by Azencott even though the
diffusion coefficient depends on time. Hence,

Sor( @, 1)

=f0T

A short computation leads to

[t (1) s, By, ) = so}-

7]((;0310; /-Ls) + Sup( p((;os_B( Ps s /-Ls)) - %”E*( X, l:"s) pHZ)} ds
p

T . .
Sor(@, ) = fo (@5, s, fug) ds.

Denote ®,(s,) = {(¢, ), Sor(e, w) <sq, @, = X}. Note that ®,(s,) is compact
according to Lemma 3.1.3 in [2]. We first show that

LeEmmA 2.10. For all 6> 0, y> 0, s, > 0, there exists ¢, > 0 such that

PIIIXe—oll <8, lU—pull<d] = exp{—%(sm(so, w) + v)}

for all £ < g5, x € R, n €[1, k], ¢ € D,(sy).
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This is a simple consequence of Proposition 2.8 and Theorem 2.7. Let us
prove the upper bound. Denote

(e, ), @(s)ll=inf  max(ll¢ — ol lv — ull).
(¢, v)ED(s)

Lemma 2.11. For all 6> 0, y> 0, s, > 0, there exists ¢, > 0 such that

PLI(X*,U), d(s)l > 8] < eXp(_ ° ’)

&
forall £ < g5, x € RY ne[1,k] s <s,.

Proor. Forall s € [0,%, {Sf¥Y < s} is compact. Therefore, b and o being
bounded, ®,(s,) is compact. Denote F(s, §) = {(¢, w): (@, ), ®(s)ll > 8}.

Lety> 0,(¢, w) € {SgF” <s — vy} If o = F(¢, w), then Sy; (o, u) <s — y.
Hence, (¢, u) & F(s, §) and there exists p,, > 0 such that

B((¢, 1), py.) NF(s,8) =9,
where B((¢, u), p) is the open ball the radius of which is p for uniform
topology. Moreover, according to Theorem 2.7, there exist «,, > 0and ¢, > 0
such that, if e < ¢,

R

P[I1X* = ¢ll= py,0, Ve (W) 1cin i — 0l <y, IU - ull <] sexp(—; .

But {Sg¥Y < s — y} is compact. Therefore, there exist N € N and

(l»[/i’ /J“i)lgigN = ({SE)A'IFU =s- y})N
such that

{S(\)NTU =S- 7} c _LNJlB((l!’i' mi), @) =0,
-
where «; = «, . In the same way, denote p; instead of p, , . Notice that
{(VeW=") 121145, U) € 0} 0 {(X?,U) € F(s,8)} © 'Glci,
ie
where C; = C(¢;, »;). Then
P[(VeW® )11k, U) €0, (X, U) € F(s,8)] < Nexp(—g).

We are now close to the conclusion:

P[(X®,U) € F(s,8)] < P[(VeW*')1cr1,11,U) € 0, (X*,U) € F(s, 8)]
+ P[(VeW* ) 1cr1,10. U) & O]
Nexp(—g) +exp(—#)

-]
exp| — . O

&

IA

IA
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Notice that the uniformity of the large deviation principle comes from the
uniformity of the estimates in Theorem 2.7 and Proposition 2.8.

2.2.1. Afew remarks. When, for all | € [1, k], o,- oy* is definite positive,
as soon as ¢ is absolutely continuous, for all © € C, the set of ¢ such that
F. (¢, u) = ¢ is nonempty. It is not always true when o, - o may degenerate
because F, (¢, u) = ¢ may have no solution. As for a single equation, the
question is: for given x,y € R and t> 0, is there (¢, u) such that
Soile, w) < © and ¢, = X, ¢, =y? It is true as soon as 3 =
(0(-,1),...,0(, k) € R9*K? satisfies the strong Hormander condition (cf.
Definition 2.12). Then we can choose p (1) = 1/k for all (s, 1) € [0, t] X [1, k]
and the question becomes the classical one in linear control theory. Let us
recall the definition of the strong Hormander assumption.

DEFINITION 2.12.  We denote by 3(Xx, i) the columns of matrices %(x) and
we assume that 3 € C*(RY, R4**%), Denote by A(n, x) the set of Lie brackets
of (), - ;- g Of order lower than n at the point x € R

We say that 3 satisfies the strong Hérmander condition if, for all x € RY,
there exists n, € N such that A(n,, x) generates R

We introduce the pseudo Riemannian metric associated with S;.

DerINITION 2.13.  For all (t, x, y) €]0,%[ XxR? x RY,
Pz(taXyY) = lnI{SOt(€01M)1€DO=X7QDt=y}'
As noted in the Appendix, p(t, -, ) is not continuous in general, even if 3

satisfies the strong Hormander condition. We need some stronger assump-
tions to get the continuity of p:

(H1) b(x, 1) =b(x,1) =b(x)forall (x,1) € RY X [1, k] and 3 satisfies the
strong Hormander condition;
(H2) S(x)3*(x) = 1/K- 14 for all x € RY,

ProPoSITION 2.14.  On (H1) or (H2), for all t €]0, [, p2(t, -, - ) is continu-
ous on RY x R

Proor. For the proof and some remarks on p, we refer the reader to the
Appendix.

3. About degenerate systems of KPP equations. As we said in the
Introduction, we want to study systems of scaled KPP equations:

auy 1.
W(t’ X) = Ljuf(t, x) + ;f(x, I,u®(t, x)),

(6) t>0, xeRY 1e[1,k],
u(0, x) = g,(x), x € RY,
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where

d? d

d
Z al(x, ===+ ¥ Fu(X)

=1 axox) 5

e
2.

—

a, = o, o and f(x, I, u) behaves like c(x, Du,(1 — u,) plus a coupling term.

Wavefront propagation for such systems is studied in [16] on one hand and
[5] on the other hand on uniform ellipticity assumptions. Moreover, according
to Pardoux, Pradeilles and Rao [24], BSDEs and parabolic systems are
connected. We will show that the ideas developed in [25] to study hypoelliptic
KPP equations still apply despite some new technical difficulties, mainly
when we want to study the convergence to the stable equilibrium state. We
give an example where it occurs and we compute the convergence rate.

Before recalling the basic results on BSDEs and giving the proof of the
main theorem, we set the assumptions of this section. But the degeneracy of
parabolic operators is given in [16].

3.1. Assumptions and main theorem. Our assumptions are of two types:
(b,), and o satisfy Assumptions 2.1 and are such that p(t, -, - ) is continuous;
that is, (H1) or (H2) is true. As we said previously, we make on g and f
Freidlin—Lee assumptions [16]. We recall them below and introduce some
notation.

AssumpTions 3.1. (a) For all | € [1, k], g, € C,(R% R) and

sup sup g(x,l) =7 <,

xeRd 1€[1, k]
Gy = {x € R 3l [1,k], g(x,1)>0}.

Owing to comparison theorems, this assumption can be weakened: g:

RY x N — [0, «[ is bounded and G, = Gg;
(b) f: R X N X R¥ - R;
(©) if n=1modKk], 1€[1,k], g(:,n) =g, € CRYR), f(,n,-)="¢€
C(RY x R¥, R);
(d) moreover f satisfies the following conditions:
(i) forall y e R, | € [1, k]: f,(-, y) is bounded:;
(ii) forall x e RY, vy, y’ € RY, I & [1, k],

1fi(x,y) = fi(x, y) < Kly =yl

Let us now introduce generalized KPP assumptions: for all x € RY, | €
[1, kI

(@ f,(x,0) =0, f(x,u)> 0 if, for all i e[1,k], u;>0, uy=0and £*,
u; > 0;

(b) there exists A > 0 such that, for all x € RY, if u> A then, for all
I €[1, k] fi(x, (W <0;
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(c) for all x € RY, 1,i €[1, k] we define

af, af,
(x,0), Ci(x) = W(XO) C(x) = (ci(X))1<i, j<«

c(x, 1,i)=
I+
and we assume that the matrix C satisfies Assumptions 2.1 and is uniformly
bounded;
(d) for all x € RY, I €[1, k], f,(x,u) < Xk, c;(Xu;;
(e) for all y > 0, there exists B(y) > 0 such that

V(x 1,u) € RYX[1,k]x [0, B(¥)]", Xk: (ci(x) = y)u; < fi(x, u).
i=1

DeriniTION 3.1.  For all (t, x) €]0, o[ X RY,

V*(t, x) = inf sup{R,.(¢, 1), ¢o = X, ¢; € Gy}

€0 o, p

inf sup{Ro.(¢), ¢o =X, ¢ € Gy},

TE Oy @

where

s k
Ros( @, 1) =foI:ZIC(%,')M(')dr—305(%#)

ROS(‘P) = /()S§(¢r, QDr) dr

and 0, is the set of stopping times 7 no greater than t defined by: there
exists O an open subset of [0, t] X RY such that

(¢) = min{s € [0, t]: (t — s, ¢;) € O}.

V* is nonpositive and we denote M ={V* =0} and E ={V* <0} the
subsets of R*x RY. Here is our main result:

THEOREM 3.2. ¢ In u; converges uniformly on compact subsets to V* for
all I € [1, k]. Moreover:

1. sup, _, . uf(t, x) converges uniformly to 0 on compact subsets of E;
2. there exists h > 0 such that

liminf inf uf(t,x) >h
el0 1<l<k

uniformly on compact subsets of M.

Before giving the proof, we notice that our assumptions include the usual
systems of KPP equations. Indeed, if f is defined by
k-1
fi(x,u) = c(x, D(u A (VD)L - (uyVv0))+ X e(x Li)(u.—u),

i=1
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it is easy to check that the unique solution of the system is the solution of the
classical system and one can show that the solutions of the BSDE associated
with KPP systems must be bounded and nonnegative.

3.2. The proof. We first recall some notation and definitions and the link
between BSDEs and our problem. The probability space (2, F,(F,),. ,, P) has
been defined in the previous section.

DerINITION 3.3. Let u be a viscosity solution of (1) if u is continuous and
if it is both a sub- and a supersolution of (1).

Let u be a subsolution (resp. supersolution) if, for all (I, t,, x,) € [1, k] X
10, +[ XxRY, for all real-valued ¢ € C*2(J0, +[ XRY) such that ¢ — u, >
(¢ — u(ty, xo) (resp. <),

ﬁ_g:(to’ Xo) — Lie(ty, Xo)
= fi(Xo, U(tg, Xo), Ve(to, Xo) o (X, 1)) <O(resp.>)

As far as we know, there is no definition of the viscosity solution for a
system such that f, depends on Vu,, with m # I.

DerFINITION 3.4. We set

k-1 T
= IT T e(Ta(1): ) Lir,)27) exp{f (1—c(s, 1)) ds},

where T, (1) is a jump time of N(I) lower than T and we assume that
E[L;] = 1. We say that P defined by dP /dP = L, is the probability under
WhICh N(D) has intensity c(-, I) for all 1 € [1, k].

If u=(u),.,-« €R5 we denote h'(i) =u,,; —u, for all i<l k—1]
with u;,, = u; and

h =(h|(i))lsigkfl’
f(t,1,y,h,z) =f(t,1,y,h,z) + _ilx\t(i)h(i),

f(t,1,u,z) = f(t,1,u, h', 2),
where A(i)/e is the intensity of N(i) under P*? (X=*! ') is the

diffusion—transmutation process defined in (3) and (Y&t x! Hetx1 zetx1)
is the unique solution of the BSDE associated with (6):

1
Yotxl = g(Xte,x,I, th) n —ftf(xf'x", pl Y X, Hrg,t,x,l) dr

(7) ] o
—[zeretdw, — [ X HE () dN(T).
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The existence and uniqueness do not depend on P equivalent to P as well as
the following theorem according to [24].

THEOREM 3.5. If U® is the unique viscosity solution of (6), then
V(t,x, 1) € [0,0[xRYx[1,k], uf(t,x)="Yg"*"
We can use this formula and the comparison theorem for BSDEs to show a
first property.
LeEmmA 3.6. Forall e>0,t>0, x € RY and | € [1, k],
o<Y{t <A Va.
Proor. 0 < Y{U*! < AV g is quite simple. In order to show that the

lower bound is strict, we introduce y > 0 and f” defined on RY x [1, k] X
[0, y1¥ by
_ k u 1
fy(x,u) = —u,(l - —') + Y —(u; —u)),
2K v i1 2K

and 0 < g” < vy. Set (Y?, Z”, H") the unique solution of the BSDE associated
with (6), where f and g are replaced by f” and g”. According to the
comparison theorem, Y” < Y®*'and 0 < Y” < vy if y is small enough. Then
we just have to notice that, under the probability under which all N(l) have
the intensity ¢c/2¢, Y” is a supermartingale. Hence,

Y = Eg”(X,, ) >0
since 2 satisfies the strong Hormander condition. O
Actually, the last inequality is a consequence of the well-known
Feynman-Kac formula using that Yot %! = ufi(t —s, X2t *"): we refer to
[24] for viscosity solutions.
THEOREM 3.7. Letc: Q X [0, T] — R, F-predictable, be such that
S
(8) Echz(s) 1 +exp[f 2¢(r) dr]
0 0

and let 7 be a Markov time lower than T. Then

Y, = EY, exp{fOTc(s) ds}

ds < oo,

(%)
+ EfOTexp{fosc(r) dr}[ f(s,Ys, Hy, Zg) — c(s)Y,] ds.

Proor. We refer to the equivalent result in [25]. O

Denote
vP(t, x) = e Inuf(t, x),
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where v? is a viscosity solution of
A 1 )
W(t' X) = Ljve(t, x) + E”U'*(X) vve(t, x)ll

fi(x, us(t, x))
uf(t, x)

limvy(t, x) = —» if g,(x) =0,
tl0

, 0<t, xe R,

v?(0,x) = ¢lIn g,(x) if g,(x) > 0.
Let us now introduce some notation:

(@) p2(t, x,Gy) = inf, {Soe, w) ¢o = X, ¢ € Gg;
(b) L(x, p) is the Hamiltonian of

A(X, p) = C(x) + Diag(3lo7(x)pl* + (by(x), p).-... 3loy (x) pl?

+(bk(x), p));
(c) for all (t, x) €10, %[ X RY,

u*(t, x) = 7I7|_r)r2) sup{v{(s,y); e<m, (s,y) €B((t,x),n), | €[1,k]},
V*(t, x) = Iin’(n) inf{vi(s,y); e<m, (s,y) €B((t, x),n), | €[1,k]},

p?(t,x,Gg) = inf{So(@, 1), @5 =X, ¢ € Gg}.
@, 1

REMARK 3.8. Using the fact that 0 < f,(x, u) < KX¥_, ¢,;(x)u;, large devi-
ations and the continuity of p, we easily show

—p?(t, x,Gy) < v*(t, x) < u*(t, x) < min(kKt — p?(t, x,G,),0).
LeEmmMA 3.9. u* and v* are sub and super viscosity solutions of

oW
max| w, F(t' x) —L(x,Vw)| =0, 0<t, xeRY,

(10) limw(t, x) = —», x & G,
tl0

w(0, x) =0, x € G,.

Proor. The proof we give is in [5] with constant coefficients.

We first consider u*. Let (t,, x,) €10, XRY. Let ¢ > u* be a smooth
function such that ¢(t,, x,) = u*(t,, X,) and (t,, X,) is a strict local mini-
mum of ¢ — u*. Let (4y,..., ) € (10, <)) be an eigenvector of
A(X, Vo(t,, X,)) for the eigenvalue L(x, Vg(t,, X,)). Then

u*(ty, Xo) = TI]T-(]) | S[Lipk]{vf(s, y) —elnyy; e<m, (s,y) €B((ty, Xo), ”7)}
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There exist m € [1, k] and a sequence (¢, t,, X,) which tends to (0, ty, X,)
such that

Vo' (th, Xn) — &n IN g, = @f‘)ﬁw(v'&"(t”’ Xn) = &, I ) = U*(to, Xo)

and (t,,, x,) locally minimizes ¢ — v + &, In .. Hence (we omit n),

(X, U°(1, X))
us(t, x)

I 1 ,
H(t’ X) < Lyno(t, x) + Ello,;‘(x) Vo(t, x)II° +

Actually,

fa(x, us(t, x))
uz(t, x)

K uy K I
< L Cu(X) (6, x) < X Cy(X)——,
I-1 Um -1 Y

since uf(t, X)/¢, < ui(t, x)/i,,. Passing to the limit leads to

o 1 ,
E(tov Xo) ¥m < E”Un}f(xo)v‘f’(tw X)II” + (b(X0), Vé(to, Xo)) | thm

K
+ Z le(xn)wl'
I=1

Since ¢ is an eigenvector of A(x, Vg(t,, X,)) for L(x, Vé(t,, X,)) and ¢, > O,
the proof is complete.

Let us now consider v*. Let (t,, X,) €10, XxR? such that v*(t,, x,) < 0.
Let ¢ < v* be a smooth function such that ¢(t,, x,) = v*(t,, X,) and (ty, Xo)
is a strict local maximum of ¢ — v*. Let (,..., #,) € (]0,<D* be an eigen-
vector of A(x, Vé(ty, Xo)) for L(x,, Vé(t,, Xo)). Then
VE(to, %o) = lim - inf {vi(s,y) = eI e <7, (5 y) € B((to, Xo), m)).

n— €1,
There exist m € [1, k] and a sequence (¢,, t,, X,) which tends to (0, ty, X,)
such that

Vrfr:\n(tm Xn) — &n In l'[,m - Gn[]inkj(vlgn(tnv Xn) — &n In ‘/jl) - V*(t' X)

and ¢ —v: + g, Iny, has a local maximum in (t,, x,). Therefore (we
omit n),

(X, U°(1, X))
us(t, x)

a(b & 1 * 2
—2(6.%) = Lid(t %) = Sllog () V(t, )l

Hence, for all | € [1, k], u;(t, >g) tends to 0. Otherwise we would have a
contradiction with the fact that f,(x, u®(t, x))/u;(t, x) is bounded. Then, for
n large enough,

fa(x,u®(t, x)) 1
un(t, x) = R|
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This leads to

fa(X,U%(t, %) & ut
g L om0 () + o),

since [Ju®(t, x)Il < 2KMug(t, x) for n large enough. We conclude as for u*. O
Now, we establish a uniqueness theorem for this equation.

THEOREM 3.10. Let u and v be sub and super viscosity solutions of (10). If,

for all (t, x) € (0, ) x R¢,
(11) - p2(t,X,Gy) < v(-t, x) <0,
u(t, x) < min(kKt — p?(t, x, G,), 0),

then v > u.

Proor. Let T > 1, u<(0,1) and R, > 0 be such that
KKT — (1 — n)(R,)* = 0.
Then

sup  (u(t, x) — pv(t, x)) < max(sup(u(t, X) — pv(t, x)),O),
10, TIxRd B

where B = {(t, y), t € (0, T), p(t, y,G,) < R} is an open subset: p is contin-
uous according to Proposition 2.14. Let 8§ € (0,1) and y > 0 be given. We set

u’'(t,x) =u(t,x)e’" and v’'(t, x) =pu(v(t, x) + yt)e "

Here u’ is a solution of
oW
max| w, W(t, x) +w(t, x) = L(t,x,Vw)| <0
and v’ is a solution
AV
max(w, E(t’ x) +w(t, x) — L#(t, x,VW)) > pyde T,

where L(t, x, p) and L*(t, X, p) are the eigenvalues of

C(x)e '+ Diag(3lof (x) pl’e' + (by(X), p),..., 3 lo¥ (x) pl*e'+ (by(x), p))

and

uC(x)e '+ Diag(% |l (x) plet + (by(x), p),...,

1
Elcri"(x)plzew(bk(X), p)|.
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We assume that, for all © €]0, 1[, there exists (ty, xo) € Q' =B N {t €15, T[}
such that u’(ty, Xo) — V'(ty, Xo) > 0 and denote by M > 0 the supremum of
u’ — v’ on Q. Then, since v’ is bounded on Q' and u’ <0, for £ > 0 and
a > 0 small enough,

t—sP+Ix-yl> «a ) )
- —(IxI* +
52 5 (IxI? +1yI?)

has a maximum M, ,>0 in QxQ at ((t, ,, %, ) (s, ,,Y, ). Then
Vv'(s, y) < 0 (we omit &, a), since M, , > 0. If we set p = (x — y)/&?, then

u'(t, x) —v'(s,y) -

T

u'(t,x) —v'(s,y) = L(t,x,p+ ax) + L*(s,y,p— ay) < —uyde™".
Hence (cf. the proof of Theorem 4.3 [25])

1
o e (y)(p - ay)l®e® + (by(x), p — ay)
Diag 1 >0, (1)1.
=S 1o (0(p + ax)Pe = (bi(x), p + ax)
Denote by &(t, x) the positive eigenvector of C(t, x) for L(t, x,0) such that
|£(t, x)| = 1. At least for a subsequence (&, @,,) which tends to (0,0) and
such that «a,, = o(g,,), (C(t, x), £(t, x), L(t, X, 0)) converges to (C, &, L), where

C > 0, L is its Hamiltonian and C¢ = L¢. According to the Perron—Frobenius
theorem, ¢ > 0. Moreover, using that ([11], e.g.),

. (C(s,y)¢); _(C(s,y)¢);
L(s,y,0) = min max ————— = max min ————,
£0 1<i<k & £>0 1<i<k &

one can prove:

LEMMA 3.11. There exists K’ € (0, ») such that, for all (&, «,,),

[L(s,y,0) — L(t, x,0)| < K'(Ix —y|+ [t —s]).

Moreover, L*(s, y,0) = ue°L(0, y,0) and L(0, y,0) € [0, kK]. Then
L*(s,y,0) — L(t,x,0) >k(p—1)kkK = K'(|x =yl + [t — s])

L
> —pyoe ' + ?e + 0, .(1).

If we choose
k?Ke™® + yde™ T /2
o ToKe o + yoe T
then
yé
M, ,+0, (1) <——eT,
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according to Lemma 4.3 of [3], which is a contradiction with M > 0 according
to the same result. Then

sup  (u’(t,x) —Vv'(t, x)) < kK max(8e °,Te ").
[6, TIxRH

But v is locally bounded and w tends to 1 when y tends to 0. Then, for all
R > 0,

lim sup (u’(t,x) —v'(t,x)) = sup (u(t,x)—v(t, x))e ™"
7_)0[8,T]><BR [6, TIXBg
Hence,

sup  (u(t,x) —v(t,x))e " <kKmax(de ®,Te ").
[6, TIxRM

But,forall 0 < 6' <6< T <T' < oo,

sup  (u(t,x) —v(t,x))e "< sup (u(t,x) —v(t, x))e",
[5, TIxR [6", T'IxR¢

which completes the proof. O

CoroLLARY 3.12. ¢ Inuy converges uniformly to v* on compact subsets
10, [ xRY for all | € [1, k].

CoroLLARY 3.13. If u and v are two viscosity solutions of (10) and satisfy
(11), thenu = v.

Now, we can prove the asymptotic results on u® and ¢ In u®.

THEOREM 3.14. sup,_, ., uy converges uniformly to O on compact subsets
of E.

Proor. This is a consequence of Corollary 3.12: by continuity, v* is
uniformly negative on compact subsets of E. O

THeoreM 3.15. For all | € [1, k], £ Inuj converges uniformly to V* on
compact subsets of (0, %) X RY.

Proor. According to Corollary 3.13, we just have to show the result
for strongly coupled KPP equations, that is, when, for all (x,1,u) € R x
[1, k] x ([0, ),

k-1

fi(x,u) =c(x, Du(1—u) + Xe(x, Li)(u,; —u).
i=1
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Let K be a compact subset of [t,, T] X R® where 0 < t, < T < . Let(t, x) €
K, 7 € ©,. We omit indices. We work under the probability under which the
intensity of N(i) is c(X, v, i)/¢e:

1 .-
Y, < EY, exp{ f c( X, v) dr}
0

&

&

1 .-
s(A\/g)E]lT<texp{ foc(X,,Vr)dr}

1
+(AVO)EL ¢ ]thexp{—ftc( X, 1) dr}.
t 0 & 0
Denote B = {r < t} U {r =t, X, € G,}. According to Proposition A.6,

1 .-
limsupeIn Elg exp{—j c( X, v) dr}
el0 €70

< sup{Ro, (¢, i), @ =X, ¢ € Gp}.
o

Hence, v*(t, x) < V*(t, x), which completes the proof on M. Let us show the
lower bound on E. Let (t, x) € E, a > 0. We set

r*=inf{s <t, v¥*(t — s, @) > —a}.
Let ¢ be such that R, (¢) > V*(t, X) — a, ¢, = x and ¢, € G,. Notice that

7(¢p) < t. Let us choose B €]0,t — 7(o)[, where 7 is upper semicontinuous.
Hence, there exists § > 0 such that

sup | — @l < 8= 1(¢) <7(¢) + B.
se[o0, t]

Then, according to the definition of Markov times,

ly — ollg = sup g — ol < 8= 17(¢) <7(¢) +B.
s€[0,7(p)+B]

Moreover, we choose 6 such that
(64
Iy — @llg < 8=V se[0,7(¢) +B], IV¥(t —s, ) — v¥(t —s, ;)| < 5

For a given y > 0, if ¢ is small enough, Corollary 3.12 and Theorem 3.14 lead
to

1 e
Yo = EY7(¢)+B]1HX*¢HB<6 exp{;j;) C( erYr) dr}

1( rortp
ZE]IIX<P|;;<59Xp{;('/;J o c(X) dl’—2a—y)}_

According to Varadhan's theorem,

vX(t, x) > sup{fo““’”ﬁcwr) dr — S,y p(¥)s o =X, ¥ = ¢llg < 8}
14

—2a— .
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If vy and B tend to O, then, for all a >0, v*(t, x) > Ry, ,(¢) —2a >
V*(t, x) — 3a. O

THEOREM 3.16. There exists h > 0 such that

liminf inf Y{t*!>h
el0 1<lI<k

uniformly on compact subsets of M.

ProoF. According to the assumptions, we can write f as follows:

k
fi(x,u) = Y c(x, I,i,u)u,;
i=1
k-1
=c(x, Luwu + Y c(x, Li,u)(u,;—u),
i=1
where all c(+, 1,1i,-) are bounded continuous functions. There exists h > 0

such that, for all x € RY, u € ([0, hDk, I,i € [1, k],

c(x,l,i,u) = —.
( ) 5K

Let n > 0 and f' < f be a function which satisfies Assumption 3.1 and such
that, for all x € RY, u € ([0, hDX, I € [1, k],

_ u k=1
fr(x,1,u) = (c(x,1) — kn)u,(l - FI) + ) (ci(x) = n)(u; — uy).
i=1

R” is defined like R but C(x) is replaced by C(x) — n1 and we denote
M7 = {V*" = 0}. If (t, X) € M, there exists > 0 such that (t, x) € M" (proof
of in [25])._ This inclusion shows that we can choose n > 0 for a compact
subset of M. Denote by g’ =g A hand (Y’, H’, Z’) the solution of the BSDE
associated with the system where f and g are replaced by f’ and g'.
Applying comparison theorems leads to 0 < Y’ < h. Moreover, under the
probability under which the intensity of N(i) is (c(X,v,i) — n)/e, Y' is a
supermartingale and for all Markov time 7,

, ) 1 .- Y,
Y$ = EY, exp ;fo(c( Xoov) — kn)(l - F) dr}.

Using the arguments of the proof of Theorem 3.17 or Theorem 4.7 in [25], we
show that Y’ converges uniformly to h on compact subsets of M". The
inequality Y’ <Y completes the proof. O

3.3. One example of stabilization. We now give an example where u®
converges to the stable equilibrium on M without Lyapounov assumption.
For the sake of simplicity, § < 1 and we assume that the stable equilibrium
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point is 1. The L{ operators are given in the previous section but the
nonlinearities have the following form:

k-1
fi(x,u) =c(x, I, Lwu, + Y c(x1,i,u)u,;
i=1
k-1
=c(x, Luwu + Y c(x, Li,u)(u,; —u),
i-1
where, for all (1, i) € [1, k] X [1, k — 1] and all (x, u) € RY x ([0, ©))*:

(@ 1/K <c(x, 1, i,u) <K;

(b) if u, = 1, then c(x, I, u) =0, and if u, € [0, 1], then c(x, I, u) > 0;

(c) there exists @ € C(R, R) uniformly Lipschitz continuous such that, for
all (x,1,u) € R? x [1, k] x R¥, u, €[0, 1],

e(x, Lu, h')y=c(x,1,u) > a(u;) > 0.

Hence, 0 < Y? < 1 and, under the probability under which the intensity of
N(i) is c(X,»,i,Y% H?) /e, Y? is a supermartingale. Moreover, as we al-
ready mentioned in the previous section,

1 .+
YO=EYTexp{ fC(X,,Vr,Yr,Hr) dr}.
0

&
THEOREM 3.17. lim, , Y& " *' = 1 uniformly on compact subsets of M.

Proor. The proof is similar to the proof of Theorem 4.7 in [25]. Let K be a
compact subset of M and K’ a compact neighborhood of K in M. Further-
more, 7(-, - ) is defined by

T(t,¢) =inf{s <t: (t—s, ¢) & K'}

and n > 0. Using that v* converges uniformly to 0 on K’ and that «a(Y,) >
0 dP X dr a.s., we prove that E[;*"*) a(Y,) dr converges uniformly to 0 on K.

Since every coefficient is bounded by K and K’ is a compact neighborhood
of K, there exists & > 0 such that, for all (t, x) € K, the distance between
(t, x) and the complementary of K’ is greater than 2KJ§. Therefore,
P((t—s, X&) s<5 € K’) converges uniformly to 1 on K.

Let us assume that Y{'"*! does not converge uniformly to 1 on K. Let
h > 0 be such that

Ve,>0,3ee(0,8), (t5,x51°)eKx[1,k], YU * <1-n,

Denote 7¢ = 7(t%, X* X"). The two previous remarks imply

limP(r°>8)=1 and limE[" a(Y,)dr = 0.
el0 el0 0
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Set B¢ =inf{s,Y>'"*" >1—h/2}and y*= B° A 7°.
E m Y,)dr > Ey* min > 0.
'/;) a( r) ==Y Osygll—h/Za(y) h

This leads to

limEy®-  min «a(y) =0.
|0 0<y<1l-h/2

Hence, lim, , Ey®=0. But lim_  , P(r°> &) =1, which implies that
P(y®= B¢, B° <t) converges to 1. Therefore, P(Y%"" *"!" =1 — h/2) also

&

tends to 1, and lim, , EY,/i'tE’x =1 - h/2, according to the Lebesgue theo-
rem. We have a contradiction with the fact that Y is a supermartingale. O

Now, we briefly study the speed of convergence to 1 if c(x, I, uWu, =
d(x, 1,1 — u)u, — 1) with d(-, I, -) continuous and bounded. Set d(x, I,0) =
d(x,) <0and

m(t o) =inf{s <t: (t—s,¢) ¢ IV‘ID},
s k

Qos(¢, 1) =f0 Y d(g, Die (1) dr = Sy (@, 1),
1=1

J(t,x) = sup{Qq, (@, 1): @5 = X, ¢ € Hy},
e, u

where Hy,={xe R% 3 1€[1,k], 1 -g(x,) >0}, and, for all | i,
d,;(x) = ¢;;(x,1) replaces c,;(x,0) in the definition of S’. Let D(x) =
(d;(x); -, i< and let M(x, p) be the Hamiltonian of

D(x) + Diag(3lla* (x) Vw(t, x)I* + (b,(x), Vw(t, x))).

As for a single equation, the following result is true:

THEOREM 3.18, & In(1 — Y5 " *') converges uniformly to J(t, x) on com-
pact subsets of M and J is a viscosity solution of

AW )
W(t,x) - M(x,Vw(t, x)) =0, (t,x)E M,

(12) w(t,x) =0, (t,x)€E, t>0,

limw(t, x) = —o, x&Hy,
tl0

w(0, x) =0, xe H,,
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Proor. We refer to the proof of Theorem 4.10 in [25]. Here a® = 1 — u® is
a solution of

day .
W(tv x) = Liaj(t, x)

1 k-1
+—[d(x,1,a%)a; + Y c(x, 1, i,u*)(af,; —af)|.
2 i=1
t> 0, x € RY,
af(0,x) =1-g,(x), xeR.
The technique used to study the speed of convergence to O still applies since
one can prove a uniqueness theorem for (12) in a good class of solutions.
Hence, & In(1 — Y&t *") converges uniformly to J(t, x) and J is a solution of
(12) under our strong assumptions.
According to the uniqueness theorem, we can choose c(x,|l,i,u) =
c(x, 1,i,1) to compute J. If under the probability P the intensity of N(i) is
c(X,v,i,1) /e, then

1 .»

1-Y,=E(1- Y,)exp{—f d(X,,75,1-Y,, H,) dr}.
eo

Since d(x, I, a) < 0if a € [0, 1]%, the computation given in Section 4.4 of [25]

is still valid. O

4. The gradient-dependent case. Now, we want to study the case
where f depends on Vu®. More precisely, we consider the following systems:

&

au; 1.
W(t' X) = Ljui(t, x) + ;f(x, I, u®(t, x), m(e) Vufo(t, x)),

(13) t>0, xeRY, I e[1,kK],

u,(0, x) = g,(x), xeRY 1€[1,K],

where limsup £ In m(e) < 0 when ¢ tends to 0. The basic ideas are like those
used in [25] to study a single KPP equation which is nonlinear in Vu®.
However, the following study is more difficult since Y may not be a super-
martingale, even if we assume g very small. We first set our new assump-
tions and then we show that Z, is controlled by Y, if f satisfies strong
assumptions. Moreover, we need that every operator is uniformly elliptic.
Then, by comparison, we prove the result in the general case. Denote K
(1, %) such that:

(@) for all 1 € [1,k], (b, )y, € CHRYRY), 0, € CHRY, R**?) satisfy As-
sumptions 2.1 and

1
E|X'| <loy(x)-x'| < KIx'[;
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~ (o) for all I €[1,k], fj € CHR® x R* x RY,R) and g, € C*(R?,[0,~[) and
f and g satisfy Assumptions 3.1 uniformly with respect to the last variable if
we denote, for all x,z € RY, 1,i € [1, k],

af,

c(x,l,i,z)= (x,0,2), c,i(x)=;—3(x,0,0);

I+i

(c) for all y > 0, there exists B(y) > 0 such that, for all (x, I, u, z) € R? X
[1, k] x [0, B(y)]* x [0, B(y)]¢,

K
; (ci(x) = ¥)u; < fi(x,u, 2);

(d) forall x e RY 1 €[1,k], u,u’ € R, z, 2z’ € RY,

Al K(1+|x|"
—(X,Uu,z < + | X s
z?X( ) ( )

af,
E(x,u, Z)
(e) forall I,i €[1,k], x, x’,z,z' € R¢,
le(x,1,i,z) —c(x',L,i,z") < K(Ix =x'| +]z = 2']).
The process (X %! »') is the solution of (3) and (Y®tx! H&tx! zetxl)jg
the unique solution of

af, "
+|—(X,U,z)| <Kj;
77 ¢ )

1
yotxl = g(xtg,x,l’ ytl) n ;/tf(xf,x,lyVrI’Yrg,t,x,I, H::,t,x,llzf,t,x,l)dr
S

(14) .

~p(e)
where p(e) = m(e)/ Ve. Then, according to [24], u{(t, x) = Y& U,

k-1
[zeretaw, - [T 8 He () (),
B S i=1

4.1. Control of |[Vuf| by uf. According to Theorem 3.1 in [24],
Z;—:,t,x,l — m(g)aYss,t,X,l(axss,X,I)flo_(xss,x,l' ysl),

where 9X® %! is the unique solution of the linear equation obtained by
formal derivation with respect to x of the SDE of (3); Y * " *! is defined in
the same way by derivation of (14). However, in order to be able to choose a
probability under which Y is a supermartingale, we assume that, for all
u e [0, al*:
f.(x,1,u,z) =c(x,1, z)u,(l - —) + Y c(x i, z2)(uj, —uy),
« i-1

c(,1,-)>1/K and c(,, 1,i,-) > 1/K are smooth, bounded with bounded
derivatives and § < «. Denote by P* the probability under which the inten-
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sity of N(i)is c(X,, v,,1i,Z,)/e and E* the associate expectation. We write f

instead of f, in this section. A direct consequence of the It0 formula is:

Lemma 4.1. Forall ,t, x, 1, Y&t x 1 js a positive supermartingale and is
bounded by « under P*. Moreover,

~ 1 1 k-1
Es_ft|zg:,t,x,llz ds + Es_ft E |H:’t'x'|(i)|2C(X:’X'I, Vs|1 i, Zg't’x’l) ds
€70 €70 j—1
< 2aYete,

Denote M(eg) = m?(g) vV m(e) v £%/2.

PropPosITION 4.2. Let K be a compact subset of [0, xRY. There exists
M > 0 such that, for all (t, x) € K, ¢ € (0, 1),

M-m(e)
232

(P(X¢'m € G))/* + ) '2(8) (Ye')

1/4

(15) laYg "X <
Proor. Let us recall the BSDE of which (Y, dH, 9Z) is a solution as well
as some notation:

3 af
fi(r)= E(er”r'Yr’ H,,Z),

_ af 2Y,
fy(r) = O—’_y(xrivr'Yri Hrizr) = C(Xrlyr’zr)(l - o )i

i af
flg(r* I) = E(Xriyr!Yrv Hr'Zr) = C(Xr! Yy, i!Zr)v
f! ot X Y, H,,Z
Z(r)_E( ro Ves Ypy Py r)!
_ 1 .-
N(i) = N(i) — —[ o(X,, v, i,2,)dr.
e’o
In the same way, we define c,(r), c,(r), c,(r, i), c,(r, i)
1 t tk—l ) )
IY = Vg( X, v) 9%, — ﬁfs 9Z, dWr — fs El JH, (i) dN,(i)

14, i i
+ = [y ax, + fi(r) oY, + fi(r) 92,
&g

k

lﬂ;(r,i)aHr(i) dr.

+
T
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For s =t, dY, = Vg(X,, »,) dX,, and for s = 0,
- 1. _ ]
Yo = EaY,+ ZE[[fi(r) X, + fy(r) aY, + fi(r) o2,] dr,
&€ 0

which leads to

laY,l < ElaY,l

(16) 1 . ) ]
+ ;Efot[lf;(r)|~laxr| () 1aY, ]+ F(r)] 1oz, dr.

We are going to bound each term. Let M be a real positive number that may
change from one line to another but that remains independent of &.

LEmMMA 4.3. There exists M > 0 such that, for n €{1,2}, V(t, x) € K,
0<e<1,

Elg'( X, v) - X" < My/P(X, € Gy)

~1 ¢ M
EZ [Ifu(n)l- 10X, ldr < — ¥, ¥(t,x) €K, 0<e<1,
0 &

~1 . . M
E;[O|fy(r)|-|avr|drsﬁ,/_vo V(t,x) €K, 0<e<1,

~1 ¢ . M- p(e) p(e) V1
E= [(1fy(r)l-19Z,ldr < —(P(XteGo)”“+—(Yo)”“ :
e’o & &

Proor. We will only give the proof of the last upper bound which includes
the different technics used to show the others. Notice that |f,(r)| < M. Then

1
E;folfz’(r)I-IaZrldr

M - _ 1 1/2
. Mple) (E ; [loz,? dr) .
p(e)” 7o

&

The 110 formula leads to

~ 1
E

t ~
|0Z.|% dr < E|dY,|?
p(é‘)zfo r t

2 _ _
+—E[(fi(r) aX, + f,(r) oY, + Fy(r) 9Z,, aY, ) dr.
& 0

Set g(e) = p(e) Vv 1. Using that 2(a, b) < |al* + |b|* and that f, and f, are
bounded, we get

~

~ M o _
E——— [19z” dr < ElaY,” + —E[Ifi(r) aX, I dr
2p(e)° o e Jo

+M-q(8)

&

~ rt 2
EfOIaY,I dr.
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After a short computation (cf. Lemma 5.6 in [25]), we also get

!

- M
E[19Y,17 dr < —
0

1 22w

~ t

E|—— [ 1Z/*dr < —/Y,.
(p(s)zfo ) ) e °

&£
Hence,
~ 1 t M 1/2 M'q(‘g)z
E 9Z,)? dr < —(P(X, € Gy))"* + ———— /Y,
p(g)zj;l (A7 dr < 8( ( Xy 0)) o2 0
Therefore,
~1 ¢ . M:-p(e) a(e)
E= [1fi(n)l-19Z,] dr <« ———=|P(X, € G))"* + ——=(¥o)"*]. O
e’ & &

Proposition 4.2 follows from the four results given previously. O

COROLLARY 4.4, Let K be a compact subset of R* X RY. There exists M > 0
such that, for all (t, x) € K and all £ €]0, 1],

M-m(e)m(e)
232

(P(Xi 7 e Go))1/4 N M - m(i)s-m(s) (Yogvtyx)l/4.

[Z& b X <

4.2. Asymptotic behavior of u® and ¢ InY?. We follow the same approach
used in the previous section. We show that & In u® converges uniformly to V*
on compact subsets of (0,) X RY x [1, k]. Then we study the asymptotic
behavior of u® on E={vV* <0} and M ={V* = 0}. Let us recall the defini-
tion of V* given in Definition 3.1:

V*(t, x) = inf sup{Ry.(¢, 1), @5 = X, ¢ € G},
€0 o

where

a k
Roa( 1) = [ X cgsr 1) ies(1) ds = Soa( @, 1),

and S is the action of (X ¢, U¢). We only write the points where the proofs are
different from the previous section.

LEmMMA 4.5. u? is a viscosity solution of
auy L

—(t, x) = Ljuy(t, X

(6 %) = Liuf(t, %)

1.
+—f(x, 1, u(t, x),Zg’t'X"), t>0, xeRY 1e[1,Kk],
&

u,(0, x) = g,(x), x € RY,
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Proor. This is a simple generalization of the proof of Theorem 4.1 in [24].
We also refer to Theorem 5.8 in [25]. O

REMARK 4.6. According to comparison theorems,

—p?(t, x,Gy) < v*(t, x) < u*(t, x) < min(kKt — p?(t, x,G,),0).

THEOREM 4.7. For all | € [1, k], & In uf(t, x) converges uniformly on com-
pact subsets to V *.

Proor. According to the proof of Theorem 3.15, u* is a subsolution of (10).
If there exists a > 0 such that f = f_, then, using that uj(t, x) < exp{—k/s}
implies the convergence of Z&'*! to 0, we show that v* is a supersolution of
(10). Therefore, u* = v* = V*,

In the general case, if v*(t, x) < 0, for a subsequence (&', t’, x’) which
tends to (0, t, x) and such that ve'(t’, x') tends to v*(t, x), if &’ is small
enough, there exist a > 0 and n > 0 such that, for all (1, u) € [1, k] X [0, a]¥,

f(x', 1,u,zgt )

K
> Y (ci(x') = m)u;
i=1
u
> (c(x', 1) - k”fl)ul(l - ;) + 2 (ci(x) = m)(u; — uy).

il
Then, v* > V*". But, if L"(x, p) is the Hamiltonian associated with c(x, I, i)
— 7, L" converges to L when 7 tends to 0. Moreover, if

Vit x) = lim inf(V=2(s,y); y < m. (s,y) € B((t, x). m)},

then V,, is a supersolution of (10) according to [3]. Therefore,
u* <V, <v*
Hence, we have the uniform convergence on compact subsets and the limit is
a viscosity solution of (10). By Corollary 3.13 the proof is complete. O
THEOREM 4.8. By our assumptions:

1. lim, osupy . ., Y& *' = 0 uniformly on compact subsets of E;
2. there exists h > 0 such that

liminf inf Y&t*!>nh
el0 1<l<k

uniformly on compact subsets of M.

Proor. The first statement is straightforward since

limelnY{$ X = V*(t, x)
el0
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uniformly on compact subsets. The proof of the second statement is the same
as that of the proof of Theorem 3.16. O

APPENDIX

The two following propositions refer to the so-called “small loop principle”
[19, 20] of which Theorem 4.1 is a straightforward consequence, according to
[25]. Let us first recall the definition of (H1) and (H2):

(H1) b(x, 1) =b(x,1) =b(x)forall (x,1) € RY X [1, k] and 3 satisfies the
strong Hormander condition;
(H2) 3(x)3*(x) = 1/K -1, for all x € RY,

THeEOREM A.l. If X satisfies the strong Hormander condition and if ¢ is
such that Sy (¢, u') < © where ' = 1/k, ¢, =X, ¢, =y and ¢ = F,(h, ub),
then, for all £ > 0, there exists y > 0 such that

l. -

Ih, — h*ds < &,
|y—z|<y=EIh’eH2(0,1)/'/;J *e
Fx(h', Ml)l = Z.

More precisely, we will use:

PropPosITION A.2. We assume that (H1) or (H2) is true and we choose
(@, w) such that Sy,(¢, u) <, ¢4 =X, ¢, =y and ¢ = F,(h, u). Then, for all
&> 0, there exists y > 0 such that if |y — z| < y there exists h’ € (1)¥ such
that

IA

ir, - - . .
S 11 = l? om0, i) = m(Fo(h', ), 0, )] ds

Fx(h’, /-L’)l = Z.

&,

ProoF. We assume that (H1) is true. For a given 6 > 0 we define (h?, u%)
as follows:

20D = (D if se[0,1— o,
wi()=1/k if se[1-6,1],
h?(1) = h(1) if se[0, u! ,,
hos(D = kh, (D (D) if s €[1 - 6,1],
hé(H) =0 if s eluf(l),1].

It is easy to see that F (h? u’) = ¢. Moreover,

lim

. I I - -
tim [ (1A~ A2 + I, 0, itg) — m( .0, )] ds = 0.
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Hence, for a given ¢ > 0, there exists 6 > 0 such that
&

/01[||:1z — N2 + (. 0, jag) — m( s, 0, ixd)l| ds < ot

Then, we apply Theorem A.1 to ¢ between 1 — 6 and 1 with &' = ¢/4.

Now, we assume that (H2) is true. Set &’ = £/2kK(2 + 8K + K?)(1 + kK).
Let §€]0, &'[ be such that S}Y%,(h, u) < &', and denote z;= ¢,_ ;. Then
lo, — z51°/8 < 4Ke'. Moreover, if z,, z, € RY, set

- “1f 22 721 - .
b = K3(2)(3(2)37(2)) (Z =Bz i),

where z, = ((6 — s)z, + 52,)/8, z, = F,(¢, u"); and

2
Z,|

1 d - 2 |Zl_ 2
E/;)|¢S| dSSkK(T+K8

Hence, if |z — y|* < &', there exists € H*(0, §) such that z = F, (¥, ub),
and

1 .5 - &
> [Tl ds < KK(2 + 8K + K?)s' < =,
0
where ()% = (¢, ..., ) € 1 Therefore, we just have to set

(b i) - (Ro i), ifse[0,1- 5],
s1 Ms (l,[/s/‘l’]s-) ifs=s"+t—-8e[1-6,1]

to satisfy the second condition. Moreover,
l I ’ - ! ! =
_/;) [lhrs - hs|2 + |”7(€Dsa01 /“Ls) - n(Fx(h y M )S'O’ ,bLS)|] ds

<&'(l+kK)+ = <e¢,

N o

which completes the proof. O
These results allow us to prove Proposition 2.14 which we rewrite.

ProposITION A.3.  On (H1) or (H2), for all t €]0,«[, p?(t,-,-) is continu-
ous on R? x R¢,

ProoF. Proposition A.2 applied to (b, X) and to (—b, —3) imply that, for
all £ > 0, there exists y > 0 such that
X = x|+ 1y =y <vy=p3(t,x",y) <p?(t,x,y) + ¢
or, in other words, if lim(x,, y,) = (x, y),

limsup p?(t, X,, ¥n) < p*(t, X, y).

n— o
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On the other hand,

liminfp?(t, x,, y,) = p2(t, X, y).

n— o

Indeed, let (¢,, n,) be such that x,=¢;, y,=¢ and Sy (¢, u,) <
p%(t, X, ¥,) + 1/n; liminf Sy (., 1) < p?(t, X, y) < ». Then, there exists a
subsequence (¢, 1, such that

lim Sq(@ns pn) = liminf Sy, (@, py) < .

Therefore, sup,, So(¢,, 1y) < ©. Hence, (¢, u,) is relatively compact be-
cause (x,) is bounded, too. One can extract (¢,., u,) Which converges to
(@, w) such that ¢, = x, ¢, =y and Sy,(¢, u) < liminf S,,(¢,, 1,,). Hence,

pZ(t, X, ¥) < Soi( @, ) < liminf p?(t, X, Yp)-

The proof is complete. O

If we only have the strong Hormander condition on %, we may lose
the continuity of p. Indeed, let us consider the following case: for all x =
(X1, X,) € R?,

o(x,1) = (é ff)’ b(x,1) = (‘i’)

and o(x,2) =0, b(x,2)=0. Moreover, we assume c¢(x,1,2) =c(x,2,1) =

¢ > 0. In this case, if g €D, n(x,0,8) =c(/8, —/B,)?* <c.

THEOREM A.4. There exists ¢, > 0 such that the mapping x — p(1, (0, 0), x)
from R? to R is not continuous in (0, 0).

PROOF. It is evident that if u2(2) =s and ¢? = 0, Fq (¢ 1), = (0,0).
Assume that w,(1) > 0. Set ¢ = Fg ,,(h) the unique solution of

‘2’3 = b(lﬁl’s'l) + O-(d’s’l) ’ hs*
o = (010)-
If ¢ = Fgo(h, u), ¢ = o u(l). Hence,
igf{sm(‘Pa B), @0 =1 = (0,0)} = plz(/*"“l(l)- (0,0),(0,0)),

where p, is the sub-Riemannian metric associated with (b(-, 1), o (-, 1)). Ac-
cording to Ben Arous and Léandre [6],

lim 2(t,(0,0),(0,0)) = .
t_)(M>OP1( ( ) ( ))
Hence,

;nf {Sos(®. 1), @0 = ¢1 = (0,0), uy(1) >0} =&, > 0.
"
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Then, if ¢ <a;, p(,(0,0),(0,0) =c and there exists &> 0 such that if
(h,p) € 1*x C, and ¢, =(0,0) where ¢ =Fg,(h, u) and the associate
Malliavin matrix is definite positive, then Sy,(¢, u) > ¢ + & = Sy,(¢°, u°) + .
The “small loop principle” is no longer true.

Moreover, if y >0, p?(1,(0,0),(0, —y)) = inf{pZ(t,(0,0),(0, —y)), 0 <
t < 1}. But, if Fg o(h), = (0, —y), then Fg ,(h),,, = (0,0) with, for all s €]t,
t + yl, hy = 0. Therefore,

p1(t,(0,0),(0, —y)) = pi(t+y,(0,0),(0,0)).

But, according to the preceding results, a = inf{ p2(t,(0,0),(0,0)), 0 < t < 2}
> 0. Hence, if c<ax<a, for all ye]0,1], p31,(0,0),(0, -y) >a>
p?(1,(0,0),(0,0). O

We recall that C(x) = (c(x, 1, j));_; j<« IS Lipschitz continuous and its
coefficients belong to [1/K, K] and that

Kk
c(x, 1) =Y c(x,1,i).
i=1
LEmMMA A.5. The mapping from C([0, t],R?) X C, to R defined by
t K -
(1) = [ L el Dins(1) ds
-1
is continuous for the uniform topology.
Proor. Let ¢, ¢’ € C([0,t],RD and u, u' € C,. If n €N,

) it (i+ 1)t
€05n=<Pti Ifse[tithl): T |

n n

Let « > 0 and n be such that [l¢ — ¢"|| < a. A short computation leads to

k
t - ! =
[ E [eCen Dins(1) = o(et D js(D)] ds
I=1
< Ktllg — @'l + 2aKt + 2nK || u — u'll,
which completes the proof. O

Set 7(p) =inf{s<t:(t—s,¢)e0and B={r<tfU{r=t, X, € Gy}

PropPosITION A.6. On (H1) or (H2),
. 1 .+
limsupeIn E1g exp —f c(X,,v)dr
el0 €70

< sup{Ro.(¢. 1), ¢o = X, ¢ € Gy},
@, u
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Proor. Denote
§={go: =X, (t—7,¢,) EG}U{@Z @, =X, T=1, gotEG_O},
C1= {QD ¢O=X1 (t_Tv (PT) 66}1
C, = {go: 0o =X, 7=1, ¢, € Gy, (0, ¢,) $O_}
According to Varadhan's theorem,
. 1 .r
limsupeIn Elg exp —f c( X, v) dr}
10 €70

< sup{Ro(¢, 1), ¢ €BJ.
@, 1

But Proposition A.2 implies the two following lemmas:

LEmMmA A.7. Let (¢, w) € C; X C, be such that 7(¢) = t and Sy,(¢) < .
On (H1) or (H2), for all £ > 0, there exists (¢’, u') such that ¢ = X, 7(¢') <t
and

ROT(qD,’ /*L,) = ROT((ID! I*L) - €.

LEMmMA A8. Let (¢, n) € C, X C, be such that S, (¢) <. On (H1)
or (H2), for all &> 0, there exists (¢’, u') € C, X C, such that ¢, € G,
(@) =1t

Rot(¢'s ') = Ro(@', 1) — &.
Hence,

sup{Roi( @, 1), ¢ € Ci} = sup{Ro. (¢, 1), ¢ =X, ¢ € Gy, 7 <1}
@, u o, 1

and
sup{Roi(¢. 1), ¢ € Co} = sup{Ro, (¢, 1), 9o =X, ¢ € Gg, 7= 1}.
@, 1 -
It follows that
sup{Roi( ¢, 1), ¢ € B} = sup{Ry. (¢, 1), ¢o = X, @ € Gy}.
Al e p

For more details on the proofs of the two last lemmas, we refer to [25]. O
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