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Let Bn = �1/N�T1/2
n XnX

∗
nT

1/2
n where Xn is n×N with i.i.d. complex

standardized entries having finite fourth moment, and T
1/2
n is a Hermitian

square root of the nonnegative definite Hermitian matrix Tn. It was shown
in an earlier paper by the authors that, under certain conditions on the
eigenvalues of Tn, with probability 1 no eigenvalues lie in any interval
which is outside the support of the limiting empirical distribution (known
to exist) for all large n. For these n the interval corresponds to one that
separates the eigenvalues of Tn. The aim of the present paper is to prove
exact separation of eigenvalues; that is, with probability 1, the number of
eigenvalues of Bn and Tn lying on one side of their respective intervals
are identical for all large n.

1. Introduction. The main result in this paper completes the analysis
begun in Bai and Silverstein (1998) (hereafter referred to as BS (1998)) on the
location of eigenvalues of the n×n matrix Bn = �1/N�T1/2

n XnX
∗
nT

1/2
n when n

is large. Here Xn = �Xij� is n×N consisting of i.i.d. standardized complex en-
tries (EX11 = 0, E�X11�2 = 1), Tn is an n× n nonnegative definite matrix and
T

1/2
n is any Hermitian square root of Tn. It is assumed that N = N�n� with

n/N → c > 0 as n → ∞ and, with FA denoting the empirical distribution
function (e.d.f.) of the eigenvalues of any matrix A having real eigenvalues,
it is also assumed that FTn →� H, a cumulative distribution function (c.d.f.).
It follows [Silverstein (1995)] that with probability 1, FBn →� F, a nonran-
dom c.d.f. With the additional assumption that all Xn come from the upper
left portion of a doubly infinite array of independent random variables hav-
ing finite fourth moment, along with some additional conditions on FTn , it is
shown in BS (1998) the almost sure absence of eigenvalues of Bn in any closed
interval which lies outside the support of F in R

+ for all n sufficiently large.
The result is stated in Theorem 1.1 below. The aim of this paper is to prove
that the proper number of eigenvalues lie on either side of these intervals.

The precise meaning of the last statement as well as the significance of
the two results become apparent when Bn is viewed as the sample covariance
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matrix of N samples of the random vector T
1/2
n X• 1 (X•j denoting the jth

column of Xn). From the law of large numbers, for N large relative to n, Bn

will with high probability be close to Tn, the population covariance matrix.
Thus for small c (the limiting ratio of vector dimension to sample size), on an
interval J ⊂ R

+ for which no eigenvalues of Tn appear for all n large, it seems
reasonable to expect the same to occur for Bn on some interval �a� b� close to
J, with the number of eigenvalues of Bn on one side of �a� b�matching up with
those of Tn on the same side of J. As will be presently seen, these statements
can be proved quite easily for c sufficiently small, provided the eigenvalues of
Tn are bounded in n. However, c need not be small for the support of F to
split.

To prove the above for c small, we use results on the eigenvalues of Bn

when T = I, the identity matrix, and the following lemma.

Lemma 1.1 [Fan (1951)]. For rectangular matrix A and positive integer i ≤
rankA, let λA

i denote the ith largest singular value of A. Define λA
i to be zero

for all i > rankA. Let m, n be arbitrary nonnegative integers.
Then, for A, B rectangular for which AB is defined,

λAB
m+n+1 ≤ λA

m+1λ
B
n+1�

Extending the notation introduced in Lemma 1.1 to eigenvalues, and for
notational convenience, defining λA

0 = ∞, suppose λ
Tn

in
and λ

Tn

in+1 lie, respec-
tively, to the right and left of J. From Lemma 1.1 we have (using the fact that
the spectra of Bn and �1/N�XnX

∗
nTn are identical)

�1�1� λ
Bn

in+1 ≤ λ
�1/N�XnX

∗
n

1 λ
Tn

in+1 and λ
Bn

in
≥ λ

�1/N�XnX
∗
n

n λ
Tn

in
�

It is well known [dating back to Marčenko and Pastur (1967)] that the
limiting spectral distribution of �1/N�XnX

∗
n has support ��1−√c�2� �1+√c�2�,

with the addition of 0 when c > 1. Moreover, when the entries of Xn have finite
fourth moment and arise (as stated above) from one doubly infinite array we
have the following lemma.

Lemma 1.2 [Yin, Bai and Krishnaiah (1988), Bai and Yin (1993)]. With
probability 1� the largest eigenvalue of �1/N�XnX

∗
n converges to �1 + √c�2�

while the min�n�N�th largest eigenvalue �the smallest when c < 1� converges
to �1−√c�2.

Thus from (1.1) and Lemma 1.2, interval �a� b� exists which splits the eigen-
values in exactly the same manner as J, and its endpoints can be made arbi-
trarily close to those of J by choosing c sufficiently small.

The goal of this paper is to extend the above result of exact separation
whenever the support of F splits, regardless of the size of c. As an example
of its relevancy, consider the detection problem in array signal processing. An
unknown number q of sources emit signals onto an array of n sensors in a
noise-filled environment (q < n). From the population covariance matrix R
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arising from the vector of random values recorded from the sensors, the value
q can be determined because the multiplicity of the smallest eigenvalue of R,
attributed to the noise, is n − q. The matrix R is approximated by a sample
covariance matrix R̂ which, with a sufficiently large sample, will have, with
high probability, n − q noise eigenvalues clustering near each other and to
the left of the other eigenvalues. The problem is, for n sizable the number
of samples needed for R̂ to adequately approximate R would be prohibitively
large. However, if for n large the number of samples were to be merely on
the same order of magnitude as n, then, under certain conditions, it is shown
in Silverstein and Combettes (1992) that FR̂ would, with high probability,
be close to the nonrandom limiting c.d.f. F. Moreover, it can be shown that
for c sufficiently small, the support of F will split into two parts, with mass
�n − q�/n on the left, q/n on the right. In Silverstein and Combettes (1992)
extensive computer simulations were performed to demonstrate that, at the
least, the proportion of sources to sensors can be reliably estimated. It came
as a surprise to find that, not only were there no eigenvalues outside the
support of F, except those near the boundary of the support [verified in BS
(1998)], but the exact number of eigenvalues appeared on intervals slightly
larger than those within the support of F (the aim of this paper). Thus, the
simulations demonstrate that, in order to detect the number of sources in the
large dimensional case, it is not necessary for R̂ to be close to R; the number
of samples only needs to be large enough so that the support of F splits.

To establish exact separation whenever there is an interval �a� b� outside
the support of the limiting F, an interval J must be identified which is natu-
rally associated with it. It is at this point necessary to review properties of F.
The best way of understanding F is through the limiting e.d.f. of the eigen-
values of Bn ≡ �1/N�X∗nTnXn and properties of its Stieltjes transform mBn

,
which for any c.d.f. G is defined by

mG�z� ≡
∫ 1
λ− z

dG�λ�� z ∈ C
+ ≡ �z ∈ C� Im z > 0��

Since the spectra of Bn and Bn differ by �n−N� zeros, it is easy to verify

FBn =
(

1− n

N

)
I�0�∞� +

n

N
FBn

(IA denoting the indicator function of the set A), from which we get

mFBn �z� = −�1− n/N�
z

+ n

N
mFBn �z�� z ∈ C

+�

Let Fc�H denote the a.s. limit of FBn . Thus

Fc�H = �1− c�I�0�∞� + cF

and

mFc�H�z� = −�1− c�
z

+ cmF�z�� z ∈ C
+�
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The main result in BS (1998) can now be stated.

Theorem 1.1 [Theorem 1.1 of BS (1998)]. Assume:

(a) Xij, i� j = 1�2� � � � are i.i.d. random variables in C with EX11 = 0,

E�X11�2 = 1 and E�X11�4 <∞.
(b) N =N�n� with cn = n/N→ c > 0 as n→∞.
(c) For each n Tn is an n × n Hermitian nonnegative definite satisfying

Hn ≡ FTn →� H, a c.d.f.
(d) �Tn�, the spectral norm of Tn, is bounded in n.

(e) Bn = �1/N�T1/2
n XnX

∗
nT

1/2
n , T

1/2
n any Hermitian square root of Tn, Bn =

�1/N�X∗nTnXn, where Xn = �Xij�, i = 1�2� � � � � n, j = 1�2� � � � �N.
(f ) The interval �a� b� with a > 0 lies in an open interval outside the support

of Fcn�Hn for all large n.

Then P�no eigenvalue of Bn appears in �a� b� for all large n� = 1�

Note: The phrase “in an open interval” was inadvertently left out of the
original paper. Also, we should point out that the original paper included
the condition that �a� b� also lie outside the support of Fc�H. Assumption (f )
presented here implies this condition.

Our main result will make the same assumptions as those in Theorem 1.1.
Attention is drawn to Fc�H partly because mFc�H�z� is invertible, with in-

verse

�1�2� zc�H�m� ≡ −
1
m
+ c

∫ t

1+ tm
dH�t�

[see BS (1998)].
From (1.2) much of the analytic behavior of F can be derived [see Silverstein

and Choi (1995)]. This includes the continuous dependence of F on c and H,
the fact that F has a continuous density on R

+ and, most importantly for this
paper, a way of understanding the support of F. On any closed interval outside
the support of Fc�H, mFc�H exists and is increasing. Therefore, on the range of
this interval its inverse exists and is also increasing. In Silverstein and Choi
(1995) the converse is shown to be true, along with some other results. We
summarize the relevant facts in the following

Lemma 1.3 [Silverstein and Choi (1995)]. Let for any c.d.f. G SG denote its
support and S′G the complement of its support. If x ∈ S′Fc�H then m =mFc�H�x�
satisfies (1) m ∈ R\�0�, (2) −m−1 ∈ S′H and (3) z′c�H�m� > 0. Conversely, if m
satisfies (1)–(3), then x = zc�H�m� ∈ S′Fc�H�

Thus by plotting zc�H�m� for m ∈ R, the range of values where it is in-
creasing yields S′Fc�H [see Figure 1 of BS (1998) for an example]. Of course,
the supports of F and Fc�H are identical on R

+. As for whether F places any
mass at 0, it is shown in Silverstein and Choi (1995) that

Fc�H�0� = max�0�1− c�1−H�0����
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which implies

�1�3� F�0� =
{
H�0�� c�1−H�0�� ≤ 1�
1− c−1� c�1−H�0�� > 1�

Assume mFc�H�b� < 0. Because of assumption (f ) in Theorem 1.1 and Lem-
ma 1.3 the interval

�−1/mFc�H�a��−1/mFc�H�b��
is contained in S′Hn

for all large n. We take J to be this interval.
Let for large n integer in ≥ 0 be such that

�1�4� λ
Tn

in
> −1/mFc�H�b� and λ

Tn

in+1 < −1/mFc�H�a��
It will be seen that only when mFc�H�b� < 0 will exact separation occur.

To understand why interval J should be linked to �a� b�, we need to analyze
the dependence of intervals in S′Fc�H on c. We state this dependence in the
following lemma, the proof given in Sections 2 and 5.

Lemma 1.4. (a) If �t1� t2� is contained in S′H with t1� t2 ∈ ∂SH and t1 > 0,
then there is a c0 > 0 for which c < c0 implies that there are two values m1

c < m2
c

in �−t−1
1 �−t−1

2 � for which �zc�H�m1
c�� zc�H�m2

c�� ⊂ S′Fc�H , with endpoints lying

in ∂SFc�H , and zc�H�m1
c� > 0. Moreover,

�1�5� zc�H�mi
c� → ti as c→ 0

for i = 1�2. The endpoints vary continuously with c shrinking down to a point
as c ↑ c0 while zc�H�m2

c� − zc�H�m1
c� is monotone in c.

(b) If �t3�∞� ⊂ S′H with 0 < t3 ∈ ∂SH, then there exists m3
c ∈ �−1/t3�0�

such that zc�H�m3
c� is the largest number in SFc�H . As c decreases from∞ to 0,

(1.5) holds for i = 3 with convergence monotone from ∞ to t3.
(c) If c�1−H�0�� < 1 and �0� t4� ⊂ S′H with t4 ∈ ∂SH, then there exists m4

c ∈
�−∞�−1/t4� such that zc�H�m4

c� is the smallest positive number in SFc�H , and
(1.5) holds with i = 4, the convergence being monotone from 0 as c decreases
from �1−H�0��−1.

(d) If c�1−H�0�� > 1, then, regardless of the existence of �0� t4� ⊂ S′H, there
exists mc > 0 such that zc�H�mc� > 0 and is the smallest number in SFc�H . It

decreases from ∞ to 0 as c decreases from ∞ to �1−H�0��−1.
(e) If H = I�0�∞�, that is, H places all mass at 0, then F = Fc�I�0�∞� = I�0�∞�.

All intervals in S′Fc�H ∩ �0�∞� arise from one of the above. Moreover, disjoint
intervals in S′H yield disjoint intervals in S′Fc�H .

Thus it is clear how important a role the Stieltjes transform (and its inverse)
plays in associating intervals in S′Fc�H with the eigenvalues of Tn.

The main result can now be stated.
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Theorem 1.2. Assume (a)–(f ) of Theorem 1.1.

(i) If c�1 −H�0�� > 1, then x0, the smallest value in the support of Fc�H,

is positive, and with probability 1 λ
Bn

N → x0 as n→∞. The number x0 is the
maximum value of the function zc�H�m� for m ∈ R

+.
(ii) If c�1 −H�0�� ≤ 1, or c�1 −H�0�� > 1 but �a� b� is not contained in

�0� x0�, then mFc�H�b� < 0 and with in defined as in (1.4) we have

P
(
λ
Bn

in
> b and λ

Bn

in+1 < a for all large n
)
= 1�

Conclusion (i) should not be surprising since in this case N < n for large n

and so λ
Bn

N+1 = 0. Therefore exact separation should not be expected to occur
for �a� b� ⊂ �0� x0�. Notice that this result is consistent with (1.3). Essentially,
the n−N smallest eigenvalues of Tn are tranferred (via Bn) to zero. What is
worth noting is that when c�1−H�0�� > 1 and F and (consequently) H each
has at least two nonconnected members in their support in R

+, the numbers of
eigenvalues of Bn and Tn will match up in each respective member, except the
left-most member. Thus the transference to zero is affecting only this member.

The proof of Theorem 1.2 will be given in the following sections. The proof
of both parts rely heavily on Theorem 1.1 and Lemma 1.2. The proof of (ii)
involves systematically increasing the number of columns of Xn, keeping track
on the movements of the eigenvalues of the new matrices, until the limiting
c is sufficiently small that the result obtained at the beginning of this section
can be used.

2. Proof of Theorem 1.2(i). We see that x0 must coincide with the
boundary point in (d) of Lemma 1.4. Most of (d) will be proved in the following

Lemma 2.1. If c�1 −H�0�� > 1, then the smallest value in the support of
Fcn�Hn is positive for all n large, and it converges to the smallest value, also
positive, in the support of Fc�H as n→∞.

Proof. Assume c�1−H�0�� > 1. Write

zc�H�m� =
1
m

(
−1+ c

∫ tm

1+ tm
dH�t�

)
�

z′c�H�m� =
1
m2

(
1− c

∫ ( tm

1+ tm

)2

dH�t�
)
�

As m increases in R
+, the two integrals increase from 0 to 1−H�0�, which

implies zc�H�m� increases from−∞ to a maximum value and decreases to zero.
Let m̂ denote the number where the maximum occurs. Then by Lemma 1.3,
x0 ≡ zc�H�m̂� is the smallest value in the support of Fc�H. We see that m̂ is
mc in (d) of Lemma 1.4.
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We have

c
∫ ( tm̂

1+ tm̂

)2

dH�t� = 1�

From this it is easy to verify

zc�H�m̂� = c
∫ t

�1+ tm̂�2 dH�t��

Therefore zc�H�m̂� > 0.
Since lim supnHn�0� ≤H�0�, we have cn�1−Hn�0�� > 1 for all large n. We

consider now only these n and we let m̂n denote the value where the maximum
of zcn�Hn

�m� occurs in R
+. We see that zcn�Hn

�m̂n� is the smallest positive value
in the support of Fcn�Hn . It is clear that for all positive m zcn�Hn

�m� → zc�H�m�
and z′cn�Hn

�m� → z′c�H�m� as n → ∞, uniformly on any closed subset of R
+.

Thus, for any positive m1�m2 such that m1 < m̂ < m2, we have for all n large

z′cn�Hn
�m1� > 0 > z′cn�Hn

�m2�
which implies m1 < m̂n < m2. Therefore, m̂n→ m̂ and, in turn, zcn�Hn

�m̂n� →
x0 as n→∞. ✷

We now prove when c�1−H�0�� > 1,

�2�1� λ
Bn

N → x0 a.s. as n→∞�

Assume first that Tn is nonsingular with λ
Tn
n uniformly bounded away from

0. Using Lemma 1.1, we find

λ
�1/N�XnX

∗
n

N ≤ λ
Bn

N λ
T−1

n

1 = λ
Bn

N

(
λTn
n

)−1
�

Since by Lemma 1.2 λ
�1/N�XnX

∗
n

N → �1 −√c�2 a.s. as n→∞ we conclude that
lim infn λ

Bn

N > 0 a.s. Since, by Lemma 2.1, the interval �a� b� in Theorem 1.1
can be made arbitrarily close to �0� x0�, we get

lim inf
n

λ
Bn

N ≥ x0 a.s.

However, since FBn →� F a.s., we must have

lim sup
n

λ
Bn

N ≤ x0 a.s.

Thus we get (2.1).
For general Tn, let for ε > 0 suitably small Tε

n denote the matrix resulting
from replacing all eigenvalues of Tn less than ε with ε. Let Hε

n = FTε
n =

I�ε�∞�Hn. Then Hε
n →� Hε ≡ I�ε�∞�H. Let Bε

n denote the sample covariance
matrix corresponding to Tε

n.
Let m̂ε denote the value where the maximum of zc�Hε�m� occurs on R

+.
Then

�2�2� λ
Bε

n

N → zc�Hε�m̂ε� a.s. as n→∞�
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Using Corollary 7.3.8 of Horn and Johnson (1985), we have

�2�3�

∣∣∣λBε
n

N − λ
Bn

N

∣∣∣ = ∣∣∣λ�1/N�X∗nTε
nXn

N − λ
�1/N�X∗nTnXn

N

∣∣∣
≤

∥∥∥∥ 1
N

X∗n�Tε
n −Tn�Xn

∥∥∥∥
≤

∥∥∥∥ 1
N

XnX
∗
n

∥∥∥∥ε�
Since c�1−Hε�0�� = c > 1, we get from Lemma 2.1,

�2�4� xε
(
m̂ε

)→ zc�H�m̂� as ε→ 0�

Therefore, from (2.2)–(2.4) and the a.s. convergence of λ�1/N�XnX
∗
n

1 (Lemma 1.2),
we get lim infn λ

Bn

N > 0 a.s. which, as above, implies (2.1). ✷

The proof of Theorem 1.2(ii) will be given in the following sections.

3. Convergence of a random quadratic form. We begin this section
by simplifying the conditions on the entries of Xn. For C > 0 let Yij =
XijI��Xij�≤C� − EXijI��Xij�≤C�, Yn = �Yij� and B̃n = �1/N�T1/2YnY

∗
nT

1/2. It
is shown in BS (1998) that with probability 1,

lim sup
n→∞

max
k≤n

∣∣∣(λBn

k

)1/2
−

(
λ
B̃n

k

)1/2∣∣∣ ≤ �1+√c�E1/2�X11�2I��X11�>C��

It is clear that we can make the above bound arbitrarily small by choosing C
sufficiently large. Thus, in proving Theorem 1.2(ii) it is enough to consider the
case where the underlying variables are bounded. Moreover, it is evident from
the proofs in Bai and Yin (1993) and BS (1998) that Lemma 1.2 is still true, as
well as the conclusion to Theorem 1.1 with only X1 1 bounded, standardized,
and no assumptions on the relationship between Xn for varying n (i.e., the
entries of Xn need not come from the same doubly infinite array).

Another simplifying assumption is on the size of �Tn�. Since it is assumed
to be bounded, we may assume �Tn� ≤ 1.

For this section we need the following two results previously proved.

Lemma 3.1 [(3.3) of BS (1998)]. Let X• 1 denote the first column of Xn.
Then for any p ≥ 2 and n × n matrix C (complex), there exists Kp > 0
depending only on p and the distribution of X1 1 such that

E�X∗• 1CX• 1 − trC�p ≤Kp�trCC∗�p/2

Lemma 3.2 [Lemma 2.6 of Silverstein and Bai (1995)]. Let z ∈ C
+ with

v = Im z, A and B n× n with B Hermitian, and q ∈ C
n. Then∣∣tr(�B− zI�−1 − �B+ τqq∗ − zI�−1)A∣∣ ≤ �A�

v
�
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The goal of this section is to prove a limiting result on a random quadratic
form involving the resolvent of Bn.

Lemma 3.3. Let x be any point in �a� b� and m = mFc�H�x�. Let X̃ ∈
C

n be distributed the same as X• 1 and independent of Xn. Set r = rn =
�1/√N�T1/2

n X̃. Then

�3�1� r∗�xI−Bn�−1r→ 1+ 1
xm

a.s. as n→∞�

Proof. Let BN+1
n denote �1/N�T1/2

n XN+1
n XN+1

n
∗
T

1/2
n , where XN+1

n is n ×
�N + 1� and contains i.i.d. entries (same distribution as X1 1), and BN+1

n =
�1/N�XN+1

n
∗
TnX

N+1
n . Let z = x+ iv, v > 0. For Hermitian A, let mA denote

the Stieltjes transform of the spectral distribution of A. We have

mA�z� =
1
n

tr�zI−A�−1�

Therefore, using Lemma 3.2, we have∣∣mBn
�z� −mBN+1

n
�z�∣∣ ≤ 1

nv
�

From

mBn
�z� = −1− n/N

z
+ n

N
mBn
�z�

and

mBN+1
n
�z� = −1− n/�N+ 1�

z
+ n

N+ 1
mBN+1

n
�z��

we conclude

�3�2� ∣∣mBn
�z� −mBN+1

n
�z�∣∣ ≤ �2cn + 1�

v�N+ 1� �

For j = 1�2� � � � �N + 1, let rj = �1/
√
N�T1/2

n X•j (X•j denoting the jth
column of XN+1

n ) and B�j� = BN+1
n − rjr

∗
j. Notice B�N+1� = Bn.

Generalizing formula (2.2) in Silverstein (1995), we find for any n ×M
matrix C with jth column denoted by cj and C�j� denoting C without the jth
column,

mC∗C�z� = −
1
M

M∑
j=1

1
z�1+ c∗j�C�j�C∗�j� − zI�−1cj�

�

It is easy to verify

Im c∗j��1/z�C�j�C∗�j� − I�−1cj ≥ 0�
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which implies

�3�3� 1
�z�1+ c∗j�C�j�C∗�j� − zI�−1cj��

≤ 1
v
�

Thus we have

�3�4� mBN+1
n
�z� = − 1

N+ 1

N+1∑
j=1

1
z�1+ r∗j�B�j� − zI�−1rj�

�

Let µn�z� = −1/z�1+ r∗�Bn − zI�−1r�, where r = rN+1.

Our present goal is to show that for any i ≤N + 1, ε > 0, z = zn = x+ vn
with vn =N−δ, δ ∈ �0�1/3� and p > 2, we have for all n sufficiently large,

�3�5� P
(�mBn�z� − µn�z�� > ε

) ≤Kp

( �z�
εv3

n

)p np/2

Np−1
�

We have from (3.4)

mBN+1
n
�z� − µn�z�

= − 1
�N+ 1�z

N∑
j=1

(
1

�1+ r∗j�B�j� − zI�−1rj�
− 1
�1+ r∗�Bn − zI�−1r�

)

= − 1
�N+ 1�z

N∑
j=1

r∗�Bn − zI�−1r− r∗j�B�j� − zI�−1rj

�1+ r∗�Bn − zI�−1r��1+ r∗j�B�j� − zI�−1rj�
�

Using (3.3) we find

�3�6� ∣∣mBN+1
n
�z� − µn�z�

∣∣ ≤ �z�
v2
n

max
j≤N

∣∣r∗�Bn − zI�−1r− r∗j�B�j� − zI�−1rj
∣∣�

Write

r∗�Bn − zI�−1r− r∗j�B�j� − zI�−1rj

= r∗�Bn − zI�−1r− 1
N

trT1/2
n �Bn − zI�−1T1/2

n

−
(
r∗j�B�j� − zI�−1rj −

1
N

trT1/2
n �B�j� − zI�−1T1/2

n

)
+ 1

N
tr��Bn − zI�−1 − �B�j� − zI�−1�Tn�

Using Lemma 3.2 we find

�3�7� 1
N

∣∣tr��Bn − zI�−1 − �B�j� − zI�−1�Tn

∣∣ ≤ 2
Nvn

�
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Using Lemma 3.1 we have for any j ≤N+ 1 and p ≥ 2,

�3�8�

E
∣∣∣∣r∗j�B�j� − zI�−1rj −

1
N

trT1/2
n �B�j� − zI�−1T1/2

n

∣∣∣∣p
≤Kp

1
Np

E�trT1/2
n �B�j� − zI�−1Tn�B�j� − zI�−1T1/2

n �p/2

≤Kp

1
Np

E�tr�B�j� − zI�−1Tn�B�j� − zI�−1�p/2

≤Kp

1
Np

E�tr�B�j� − zI�−1�B�j� − zI�−1�p/2

≤Kp

1
Np

(
n

v2
n

)p/2

�

Therefore, from (3.2), (3.6)–(3.8), we get (3.5).
Setting vn =N−1/17, from (3.24) of BS (1998) we have

mBn
�x+ ivn� −mFcn�Hn �x+ ivn� → 0 a.s. as n→∞�

Since mFcn�Hn �x+ ivn� →m as n→∞, we have

mBn
�x+ ivn� →m a.s. as n→∞�

When p > 68/11, the bound in (3.5) is summable and we conclude

�µn�zn� −m� → 0 a.s. as n→∞�

Therefore

�3�9�
∣∣∣∣r�znI−Bn�−1r−

(
1+ 1

xm

)∣∣∣∣→ 0 a.s. as n→∞�

Let dn denote the distance between x and the nearest eigenvalue of Bn.
Then, because of Theorem 1.1 there exists a nonrandom d > 0 such that,
almost surely, lim infn dn ≥ d.

Write X̃ =X•N+1. Then when dn > 0,

�3�10� ∣∣r∗�zI−Bn�−1r− r∗�xI−Bn�−1r
∣∣ ≤ vn

d2
n

X̃∗X̃
N

�

Using Lemma 3.1 we have for any ε > 0 and p = 3,

P
(∣∣∣∣ 1

n
X̃∗X̃− 1

∣∣∣∣ > ε

)
≤K3

1
ε3

n−3/2�

which gives us

�3�11�
∣∣∣∣ 1
n
X̃∗X̃− 1

∣∣∣∣→ 0 a.s. as n→∞�

Therefore from (3.9)–(3.11), we get (3.1). ✷
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4. Spread of eigenvalues. In this section we assume the sequence �Sn�
of Hermitian matrices to be arbitrary except their eigenvalues lie in the fixed
interval �d� e�. To simplify notation we arrange the eigenvalues of Sn in non-
decreasing order, denoting them as s1 ≤ · · · ≤ sn. Our goal is to prove the
following lemma.

Lemma 4.1. For any ε > 0 we have for all M sufficiently large,

�4�1� lim sup
n→∞

λ
�1/N�Y∗nSnYn

1 − λ
�1/N�Y∗nSnYn

�N/M� < ε a.s.�

where Yn is n×�N/M� containing i.i.d. elements distributed the same as X1 1
�� · � denotes the greatest integer function�.

Proof. We verify first a basic inequality.

Lemma 4.2. Suppose A and B are n× n Hermitian. Then

λA+B
1 − λA+B

n ≤ λA
1 − λA

n + λB
1 − λB

n �

Proof. Let unit vectors x�y ∈ C
n be such that x∗�A + B�x = λA+B

1 and
y∗�A+B�y = λA+B

n . Then

λA+B
1 − λA+B

n = x∗Ax+ x∗Bx− �y∗Ay+ y∗By� ≤ λA
1 + λB

1 − λA
n − λB

n � ✷

We continue now with the proof of Lemma 4.1. Since each Sn can be written
as the difference between two nonnegative Hermitian matrices, because of
Lemma 4.2 we may as well assume d ≥ 0. Choose any positive α so that

�4�2� e�e− d�
α

<
ε

24c
�

Choose any positive integer L1 satisfying

�4�3� α

L1
�1+√c�2 <

ε

3
�

Choose any M > 1 so that

�4�4� Mc

L1
> 1 and 4

√
cL1

M
e <

ε

3
�

Let

�4�5� L2 =
[
Mc

L1

]
+ 1�

Assume n ≥ L1L2. For k = 1�2� � � � �L1 let lk = �s��k−1�n/L1�+1� � � � � s�kn/L1��
and �1 = �lk� s�kn/L1� − s��k−1�n/L1�+1 ≤ α/L1�. For any lk /∈ �1, define for
j = 1�2� � � � �L2 lkj = �s��k−1�n/L1+�j−1�n/�L1L2��+1� � � � � s��k−1�n/L1+jn/�L1L2���, and
let �2 be the collection of all the latter sets. Notice the number of elements in
�2 is bounded by L1L2�e− d�/α.
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For l ∈ �1 ∪�2 write

Sn� l =
∑
si∈l

sieie
∗
i (ei unit eigenvector of Sn corresponding to si)�

An� l =
∑

si∈l eie
∗
i �

sl = maxi�si ∈ l� and sl = mini�si ∈ l��
We have

�4�6� slY
∗An� lY ≤ Y∗Sn� lY ≤ slY

∗An� lY�

where “≤” denotes partial ordering on Hermitian matrices (i.e., A ≤ B⇔B−A
is nonnegative definite).

Using Lemma 4.2 and (4.6) we have

λ
�1/N�Y∗nSnYn

1 − λ
�1/N�Y∗nSnYn

�N/M� ≤∑
l

[
λ
�1/N�Y∗nSn�lYn

1 − λ
�1/N�Y∗nSn� lYn

�N/M�
]

≤∑
l

[
slλ
�1/N�Y∗nAn� lYn

1 − slλ
�1/N�Y∗nAn� lYn

�N/M�
]

=∑
l

sl

(
λ
�1/N�Y∗nAn� lYn

1 − λ
�1/N�Y∗nAn� lYn

�N/M�
)

+∑
l

(
sl − sl

)
λ
�1/N�Y∗nAn� lYn

�N/M� �

From (4.5) we have

�4�7� lim
n→∞

�n/L1L2�
�N/M� =

Mc

L1L2
< 1�

Therefore for l ∈ �2 we have for all n sufficiently large,

rankAn� l ≤
[

n

L1L2

]
+ 1 <

[
N

M

]
�

where we have used the fact that for a� r > 0 �a+r�− �a� = �r� or �r�+1� This

implies λ
�1/N�Y∗nAn� lYn

�N/M� = 0 for all n large. Thus for these n,

λ
�1/N�Y∗nSnYn

1 − λ
�1/N�Y∗nSnYn

�N/M�

≤ eL1 max
l∈�1

(
λ
�1/N�Y∗nAn� lYn

1 − λ
�1/N�Y∗nAn� lYn

�N/M�
)

+ e�e− d�L1L2

α
max
l∈�2

λ
�1/N�Y∗nAn� lYn

1 + α

L1
λ
�1/N�Y∗nYn

�N/M� �

where for the last term we use the fact that for Hermitian Ci,
∑

λ
Ci

min ≤ λ
∑

Ci

min .
We have with probability 1,

λ
�1/�N/M��Y∗nYn

�N/M� −→ �1−
√
Mc�2�
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Therefore, from (4.3) we have almost surely

lim
n→∞

α

L1
λ
�1/N�Y∗nYn

�N/M� <
ε

3
�

We have

Fn�Al =
(

1− �l�
n

)
I�0�∞� +

�l�
n
I�1�∞��

where �l� is the size of l, and from the expression for the inverse of the Stieltjes
transform of the limiting distribution it is a simple matter to show

Fn/�N/M��FAn� l = F�l�/�N/M�� I�1�∞� �

For l ∈ �1 we have

Fn�Al →�

(
1− 1

L1

)
I�0�∞� +

1
L1

I�1�∞� ≡ G�

From the corollary to Theorem 1.1 of BS (1998), the first inequality in
(4.4), and conclusion (i) of Theorem 1.2 we have the extreme eigenvalues of
�1/�N/M��Y∗nAn� lYn converging a.s. to the extreme values in the support of
FMc�G. Therefore, from Lemma 1.2 we have with probability 1,

λ
�1/�N/M��Y∗nAn� lYn

1 − λ
�1/�N/M��Y∗nAn� lYn

�N/M� −→ 4

√
Mc

L1
�

and from the second inequality in (4.4) we have almost surely

lim
n→∞ eL1 max

l∈�1

(
λ
�1/N�Y∗nAn� lYn

1 − λ
�1/N�Y∗nAn� lYn

�N/M�
)
<

ε

3
�

Finally, from (4.7) we see that for l ∈ �2 limn→∞ �l�/�N/M� < 1, so that
from (4.2), the first inequality in (4.4), and the corollary to Theorem 1.1 of BS
(1998) we have with probability 1,

lim
n→∞

e�e− d�L1L2

α
max
l∈�2

λ
�1/N�Y∗nAn� lYn

1 <
e�e− d�

α
L1L2

4
M

<
ε

3
�

This completes the proof of Lemma 4.1. ✷

5. Dependence on c. We now complete the proof of Lemma 1.4. The
following relies on Lemma 1.3 and (1.2), the explicit form of zc�H.

For (a) we have �t1� t2� ⊂ S′H with t1� t2 ∈ ∂SH and t1 > 0. On �−t−1
1 �−t−1

2 �,
zc�H�m� is well defined, and its derivative is positive if and only if

g�m� ≡
∫ ( tm

1+ tm

)2

dH�t� < 1
c
�

It is easy to verify that g′′�m� > 0 for all m ∈ �−t−1
1 �−t−1

2 �. Let m̂ be the
value in �−t−1

1 �−t−1
2 � where the minimum of g�m� occurs, the two endpoints

being included in case g�m� has a finite limit at either value. By considering
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where the level line x = 1/c crosses the graph of x = g�m�, we see that for
c < c0 ≡ 1/g�m̂� there are two values, m1

c < m2
c , in �−t−1

1 �−t−1
2 � for which

z′c�H�m� > 0 for m ∈ �−t−1
1 �−t−1

2 � ⇐⇒ m ∈ �m1
c �m

2
c�. Then by Lemma 1.3,

�zc�H�m1
c�� zc�H�m2

c�� ⊂ S′Fc�H , with endpoints lying in the boundary of SFc�H .
From the identity

�5�1� zc�H�m� =
1
m
�cg�m� − 1� + c

∫ t

�1+ tm�2 dH�t��

we see that zc�H�m1
c� > 0.

As c decreases to zero, we have m1
c ↓ −t−1

1 , m2
c ↑ −t−1

2 , which also includes
the possibility that either endpoint will reach its limit for positive c [when
g�m� has a limit at an endpoint]. We show now (1.5) for i = 1�2. If eventually
mi

c = −t−1
i then clearly (1.5) holds. Otherwise we must have cg�mi

c� = 1, and
so by Cauchy–Schwarz,

c

∣∣∣∣∫ ( tmi
c

1+ tmi
c

)∣∣∣∣dH�t� ≤ c1/2�

and so again (1.5) holds.
It is straightforward to show

�5�2� dzc�H�mi
c�

dc
=

∫ t

1+ tmi
c

dH�t��

Since �1+ tm��1+ tm′� > 0 for t ∈ SH and m�m′ ∈ �−t−1
1 �−t−1

2 � we get from
(5.2)

d�zc�H�m2
c� − zc�H�m1

c��
dc

= �m1
c −m2

c�
∫ t2

�1+ tm2
c��1+ tm1

c�
dH�t� < 0�

Therefore

zc�H�m2
c� − zc�H�m1

c� ↑ t2 − t1 as c ↓ 0�

Upon sliding the line x = 1/c down to the place where g�m� has
its minimum, we see that m1

c and m2
c approach m̂ and so the interval

�zc�H�m1
c�� zc�H�m2

c�� shrinks to a point as c ↑ c0. This establishes (a).
We have a similar argument for (b) where now m3

c ∈ �−1/t3�0� such that
z′c�H�m� > 0 for m ∈ �−1/t3�0� ⇐⇒ m ∈ �m3

c �0�. Since zc�H�m� → ∞ as
m ↑ 0 we have �zc�H�m3

c��∞� ⊂ S′Fc�H with zc�H�m3
c� ∈ ∂SFc�H . Equation (5.2)

holds also in this case, and from it and the fact that �1+ tm� > 0 for t ∈ SH,
m ∈ �−1/t3�0�, we see that boundary point zc�H�m3

c� ↓ t3 as c → 0. On the
other hand, m3

c ↑ 0 and, consequently, zc�H�m3
c� ↑ ∞ as c ↑ ∞. Thus we get (b).

When c�1−H�0�� < 1, we can find m4
c ∈ �−∞�−1/t4� such that z′c�H�m� >

0 on this interval ⇐⇒ m < m4
c . Since zc�H�m� → 0 as m ↓ −∞ we have

�0� zc�H�m4
c�� ∈ S′Fc�H with zc�H�m4

c� ∈ ∂SFc�H . From (5.2) we have zc�H�m4
c� ↑

t4 as c ↓ 0. Since g�m� is increasing on �−∞�−1/t4� we have m4
c ↓ −∞, and

consequently, zc�H�m4
c� ↓ 0 as c ↑ �1−H�0��−1. Therefore we get (c).
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In light of Section 2, all that is missing for (d) is monotonicity and verifying
the limits. Formula (5.2) gives us the former. Since g�mc� = 1/c, we see that
mc ranges from 0 to ∞ as c decreases from ∞ to �1−H�0��−1. Subsequently
from (5.1), zc�H�mc� ranges from ∞ to 0, which completes (d).

(e) is obvious since zc� I�0�∞� = −1/m for all m #= 0 and so mF
c�I�0�∞� �z� = −1/z,

the Stieltjes transform of I�0�∞�.
From Lemma 1.3 we can only get intervals in S′Fc�H from intervals arising

from (a)–(e). The last statement in Lemma 1.4 follows from Theorem 4.4 of
Silverstein and Choi (1995). This completes the proof of Lemma 1.4. ✷

We finish this section with a lemma important to the final steps in the proof
of Theorem 1.2.

Lemma 5.1. For any ĉ < c and sequence �ĉn� converging to ĉ, the interval
�zĉ�H�mFc�H�a��� zĉ�H�mFc�H�b��� satisfies assumption (f ) of Theorem 1.1 (with
c� cn replaced by ĉ� ĉn). Moreover, its length increases from b−a as ĉ decreases
from c.

Proof. According to (f ), there exists an ε > 0 such that �a − ε� b + ε� ⊂
S′

Fcn�Hn
for all large n. From Lemma 1.3 we have for these n,

�mFc�H�a− ε��mFc�H�b+ ε�� ⊂ Acn�Hn

≡ {
m ∈ R� m #= 0�−m−1 ∈ S′Hn

� z′cn�Hn
�m� > 0

}
�

Since z′c�H�m� increases as c decreases, �mFc�H�a − ε��mFc�H�b + ε�� is also
contained in Aĉn�Hn

. Therefore by Lemma 1.3,

�zĉ�H�mFc�H�a− ε��� zĉ�H�mFc�H�b+ ε��� ⊂ S′
Fĉn�Hn

�

Since zĉ�H and mFc�H are monotonic on, respectively, �mFc�H�a−ε��mFc�H�b+ε��
and �a− ε� b+ ε� we have

�zĉ�H�mFc�H�a��� zĉ�H�mFc�H�b��� ⊂ �zĉ�H�mFc�H�a− ε��� zĉ�H�mFc�H�b+ ε����
so assumption (f ) is satisfied.

Since z′ĉ′�H�m� > z′ĉ�H�m� > z′c�H�m� for ĉ′ < ĉ, we have

zĉ′�H�mFc�H�b�� − zĉ′�H�mFc�H�a��
> zĉ�H�mFc�H�b�� − zĉ�H�mFc�H�a��
> zc�H�mFc�H�b�� − zc�H�mFc�H�a�� = b− a� ✷

6. Proof of Theorem 1.2(ii). We begin with some basic lemmas. For the
following, A is assumed to be n× n Hermitian, λ ∈ R is not an eigenvalue of
A and Y is any matrix with n rows.

Lemma 6.1. λ is an eigenvalue of A+YY∗ ⇐⇒ Y∗�λI−A�−1Y has eigen-
value 1.
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Proof. Suppose x ∈ C
n\�0� is s.t. �A+YY∗�x = λx. It follows that Y∗x #=

0 and

Y∗�λI−A�−1YY∗x = Y∗x

so that Y∗�λI−A�−1Y has eigenvalue 1 (with eigenvector Y∗x).
Suppose Y∗�λI −A�−1Y has eigenvalue 1 with eigenvector z. Then �λI −

A�−1Yz #= 0 and

�A+YY∗��λI−A�−1Yz = −Yz+ λ�λI−A�−1Yz+Yz = λ�λI−A�−1Yz�

Thus A+YY∗ has eigenvalue λ [with eigenvector �λI−A�−1Yz]. ✷

Lemma 6.2. Suppose λA
j < λ. If λ

Y∗�λI−A�−1Y
1 < 1, then λA+YY∗

j < λ.

Proof. Suppose λA+YY∗
j ≥ λ. Then since λA+αYY∗

j is continuously increas-
ing in α ∈ R

+ [Corollary 4.3.3 of Horn and Johnson (1985)] there is an α ∈ �0�1�
such that λA+αYY∗

j = λ. Therefore from Lemma 6.1 αY∗�λI−A�−1Y has eigen-
value 1, which means Y∗�λI−A�−1Y has an eigenvalue ≥ 1. ✷

Lemma 6.3. For any i ∈ �1�2� � � � � n�, λA
1 ≤ λA

1 − λA
n +Aii�

For the proof, simply use the fact that Aii ≥ λA
n .

We now complete the proof of Theorem 1.2(ii). Because of the conditions
of (ii) and Lemma 1.4, we may assume mFc�H�b� < 0. For M > 0 (its size to
be determined later) let for j = 0�1�2� � � � cj = c/�1 + j/M�, and define the
intervals

�aj� bj� = �zcj�H�mFc�H�a��� zcj�H�mFc�H�b����
By Lemma 5.1 these intervals increase in length as j increases, and for

each j the interval, together with cj, satisfy assumption (f ) of Theorem 1.1
for any sequence c

j
n converging to cj. Here we take

cjn =
n

N+ j�N/M� �

Let ma =mFc�H�a�. We have

aj − a = zcj�H�ma� − zc�H�ma� = �cj − c�
∫ t

1+ tma

dH�t��

Therefore, for each j,

aj ≤ â ≡ a+ c

∣∣∣∣∫ t

1+ tma

dH�t�
∣∣∣∣�

We also have

aj+1 − aj = zcj+1�H�ma� − zcj�H�ma� = �cj+1 − cj�
∫ t

1+ tma

dH�t��
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Thus we can find an M1 > 0 so that for any M ≥M1 and any j,

�6�1� �aj+1 − aj� < b− a

4
�

Let M2 ≥M1 be such that for all M ≥M2,

1
1+ 1/M

>
3
4
+ 1

4
â

b− a+ â
�

This will ensure that for all N, j ≥ 0, and M ≥M2,

�6�2� N+ j�N/M�
N+ �j+ 1��N/M�b

j > bj − �b
j − aj�

4
�

We see from the proof of Lemma 4.1 that the size of M guaranteeing (4.1)
depends only on ε and the endpoints d� e of the interval the spectra of Sn are
assumed to lie in. Thus we can find an M3 ≥ M2 such that for all M ≥ M3,
(4.1) is true for any sequence of Sn with

d = − 4
3�b− a� � e = 4

b− a
and ε = 1

â�ma�
�

We now fix M ≥M3.
Let for each j,

Bj
n =

1
N+ j�N/M�T

1/2
n XN+j�N/M�

n XN+j�N/M�
n

∗
T1/2

n �

where X
N+j�N/M�
n = �Xik�, i = 1�2� � � � � n, k = 1�2� � � � �N+ j�N/M��

Since aj and bj can be made arbitrarily close to−1/mFc�H�a� and−1/mFc�H�b�
respectively, by making j sufficiently large, we can find a K1 such that for all
K ≥K1,

λ
Tn

in+1 < aK and bK < λ
Tn

in
for all large n�

Therefore, using (1.1) and Lemma 1.2, we can find a K ≥ K1 such that with
probability 1,

�6�3� lim sup
n→∞

λ
BK

n

in+1 < aK and bK < lim inf
n→∞ λ

BK
n

in
�

We fix this K.
Let

Ej =
{
no eigenvalue of Bj

n appears in �aj� bj� for all large n
}
�

Let

ljn =
{
k� if λB

j
n

k > bj� λB
j
n

k+1 < aj�

−1� if there is an eigenvalue of Bj
n in �aj� bj��

For notational convenience, let λA
−1 = ∞ for Hermitian A.
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Define

âj = aj + 1
4�bj − aj��

b̂j = bj − 1
4�bj − aj��

Fix j ∈ �0�1� � � � �K−1�. On the same probability space we define for each n
large Yn = �Yik�, i = 1�2� � � � � n, k = 1� � � � � �N/M�, entries i.i.d., distributed
the same as X1 1, with �Bj

n�n and �Yn�n independent (no restriction on Yn

for different n). Let Rn = T
1/2
n Yn.

Whenever âj is not an eigenvalue of Bj
n, we have by Lemma 6.3,

�6�4�

λ
�1/�N+j�N/M���R∗n�âjI−Bj

n�−1Rn

1

≤ λ
�1/�N+j�N/M���R∗n�âjI−Bj

n�−1Rn

1

− λ
�1/�N+j�N/M���R∗n�âjI−Bj

n�−1Rn

�N/M�

+
(

1
N+ j�N/M�R

∗
n�âjI−Bj

n�−1Rn

)
1 1
�

From Lemma 3.3 we have

�6�5�

(
1

N+ j�N/M�R
∗
n�âjI−Bj

n�−1Rn

)
1 1

→ 1+ 1
âjmFcj�H�âj� < 1+ 1

âma

a.s. as n→∞�

From Lemma 4.1

�6�6�
lim sup
n→∞

λ
�1/�N+j�N/M���R∗n�âjI−Bj

n�−1Rn

1

− λ
�1/�N+j�N/M���R∗n�âjI−Bj

n�−1Rn

�N/M� <
1

â�ma�
a.s.

holds for a fixed realization in Ej with respect to the probability measure
on �Yn�n. By Fubini’s theorem we subsequently have (6.6) on the probability
space generating �Bj

n�n and �Yn�n. Therefore, from (6.4)–(6.6) we find

P
(
λ
�1/�N+j�N/M���R∗n�âjI−Bj

n�−1Rn

1 < 1 for all large n
)
= 1�

and since B
j
n + �1/�N + j�N/M���RnR

∗
n ∼ ��N + �j + 1��N/M��/�N +

j�N/M���Bj+1
n we get from Lemma 6.2 and the fact that P�Ej� = 1 (from

Theorem 1.1), with probability 1,

λB
j+1
n

l
j
n+1

< âj for all large n�

Since λB
j
n

l
j
n
≤ λ

B
j
n+�1/�N+j�N/M���RnR

∗
n

l
j
n

, we use (6.2) to get

P
(
λB

j+1
n

l
j
n

> b̂j and λB
j+1
n

l
j
n+1

< âj for all large n
)
= 1�
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From (6.1) we see that �âj� b̂j� ⊂ �aj+1� bj+1�. Therefore, combining the
above event with Ej+1, we conclude

P
(
λB

j+1
n

l
j
n

> bj+1 and λB
j+1
n

l
j
n+1

< aj+1 for all large n
)
= 1�

Therefore, with probability 1, for all n large �a� b� and �aK� bK�, split the
eigenvalues of, respectively, Bn and BK

n having equal amounts to the left sides
of the intervals. Finally, from (6.3) we get (ii). ✷
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Marčenko, V. A. and Pastur, L. A. (1967). Distribution of eigenvalues for some sets of random

matrices. Math. USSR-Sb. 1 457–483.
Silverstein, J. W. (1995). Strong convergence of the eimpirical distribution of eigenvalues of

large dimensional random matrices. J. Multivariate Anal. 5 331–339.
Silverstein, J. W. and Choi, S. I. (1995). Analysis of the limiting spectral distribution of large

dimensional random matrices. J. Multivariate Anal. 54 295–309.
Silverstein, J. W. and Combettes, P. L. (1992). Signal detection via spectral theory of large

dimensional random matrices. IEEE Trans. Signal Processing 40 2100–2105.
Yin, Y. Q., Bai, Z. D. and Krishnaiah, P. R. (1988). On limit of the largest eigenvalue of the large

dimensional sample covariance matrix. Probab. Theory Related Fields 78 509–521.

Department of Mathematics
National University of Singapore
10 Kent Ridge Crescent
Singapore 119260
E-mail: matbaizd@leonis.nus.sg

Department of Mathematics
Box 8205
North Carolina State University
Raleigh, North Carolina 27695-8205
E-mail: jack@jack.math.ncsu.edu


