
The Annals of Probability
1999, Vol. 27, No. 1, 416�431

THE SIZE OF SINGULAR COMPONENT
AND SHIFT INEQUALITIES1

BY S. G. BOBKOV

Syktyvkar University

We study the question on how large the size of singular component of
translates of product probability measures can be in terms of Fisher
information. We then prove some shift inequalities.

� �1. Introduction. The well-known Kakutani theorem 4 asserts that any
two product measures on R� with equivalent marginal distributions are
either equivalent or singular. In particular, this holds for a product measure
�� and its translate �� , defined byh

�� A � �� A � h , A is Borel in R� , h � R� .Ž . Ž .h

� � � �In this important special situation, Feldman 3 and Shepp 8 found, respec-
tively, simple sufficient and necessary conditions for equivalence of �� and
�� , provided h � l 2 is arbitrary. Namely, the marginal distribution � shouldh
have an absolutely continuous, a.e. positive density � with finite Fisher
information

2��� � xŽ .
J � � d� x ,Ž . Ž .H 2

�� � xŽ .
� Ž .where � is a Radon�Nikodim derivative of �. The condition J � � �� does

not imply itself that � is a.e. positive, and, moreover, � may have a compact
support. Therefore, in this case �� and �� cannot be equivalent, at least forh

� � Ž � 2 .1�2large values of h � Ý h , and it is reasonable to ask about the size2 i�1 i
of a singular component of �� with respect to ��, which we denote byh

Ž � �.Sing � , � :h

Sing �� , �� � sup �� A : �� A � 0 .� 4Ž . Ž .Ž .h h

An answer may easily be given if one uses elementary estimates
� � � � �� � �� � �1.1 Sing � , � � � � � � d � � J � h ,Ž . Ž .Ž . TV TV 2h h h

� � �where � denotes the total variation norm, and d � denotes the deriva-TV h
� Ž � �.tive of � along the direction h in the sense of Fomin�Skorokhod; cf. 1 .

� � � �Consequently, for sufficiently small h , the measures � and � are still2 h
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SINGULAR COMPONENT AND SHIFT INEQUALITIES 417

not purely singular, and this observation may be applied, for example, to give
Ža simple proof of Feldman’s theorem provided we may use Kakutani’s

. �theorem . Indeed, assume the density � of � is a.e. positive and thus � and
� � � Ž . Ž � �.� have equivalent marginals. If h � 1�J � , then Sing � , � � 1, so2h h

�� and �� must be equivalent, by Kakutani’s theorem. In the same way,h
Ž . Ž . � � � �since J � � J � , � and � are equivalent, so are � and � . Re-h 2 h h 2 hi

� � Ž .peating this process, the requirement h � 1�J � can be weakened to2
� �h � ��.2

Ž .While the two last inequalities in 1.1 cannot be essentially improved, the
first one is rather rough, as the following statement shows.

THEOREM 1.1. Assume � has an absolutely continuous density with � 2 �
Ž . Ž . 2 � �J � � �� � 	 0 . Then, for all h � l such that � h � � ,2

� �� h 2
� � 21.2 Sing � , � � sin .Ž . Ž .h ž /2

Ž . �Inequality 1.2 remains to hold for product measures � on R with
different marginals whose Fisher information is at most � 2. As we will see, it
is actually valid for many nonproduct measures on Rn, satisfying certain

Ž .correlation conditions on density. Note also that the condition J � � ��
Ž . Ž .cannot be dropped in 1.2 . If, for example, � is uniform distribution on 0, 1

Ž .�and h � 0, 1 , then

�
� �Sing � , � � 1 � 1 � h .Ž .Ž . Łh i

i�1

Ž � �. � �Hence, it is possible to get Sing � , � � 1 for every fixed value of h .2h
Thus, the size of singular component in this case cannot be controlled in

� �terms of h .2

When the product measures �� and �� are equivalent, one could wonderh
how to measure or how to quantify their equivalence. One of the reasonable
ways in this direction is to establish shift inequalities of the form

1.3 S �� A � �� A � R �� A ,Ž . Ž . Ž . Ž .Ž . Ž .h h h

for suitable functions R and S . For example, the optimal functions R andh h h
Ž . Ž � �.S in 1.3 for the canonical Gaussian measure � � � are given cf. 6 byh 1

�1 � � �1 � �R p � 	 	 p � h , S p � 	 	 p � h ,Ž . Ž . Ž . Ž .Ž . Ž .2 2h h

where 	 is the distribution function of � and 	�1 is the inverse of 	. In this1
Ž .case, 1.3 becomes an equality for half-spaces which are orthogonal to vector

h. In general, it is, however, rather difficult to compute the optimal function
R . Nevertheless, such a shift inequality of Gaussian type holds true for ah
large family of probability measures �.
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THEOREM 1.2. Let � be a probability measure on R. There exists c � 0
� �Ž . 2such that, for all Borel sets A 
 R of measure � A � p and every h � l ,

an inequality
�1 � � � �1 � �1.4 	 	 p � c h � � A � 	 	 p � c hŽ . Ž . Ž . Ž .Ž . Ž .2 2h

holds true, if and only if � has an absolutely continuous density � with
2��� � xŽ .

1.5 exp 
 d� x � 2 for some 
 � 0.Ž . Ž .H 2½ 5�� � xŽ .

Ž . Ž .We will also observe that the optimal constants c and 
 in 1.4 and 1.5
are connected with the relation

1 4
1.6 � c � .Ž . ' '6
 


The conditions of Theorem 1.2 are satisfied, for example, by the two-sided
1 �� x �Ž .exponential measure � with density � x � e , x � R. In this case, the2

Ž . Ž �Ž . Ž .. Ž . �functions � x � � x �� x � �sign x , x � R , form an i.i.d. Bernoullii i i i
Ž � �.sequence on probability space R , � , and the problem of finding the optimal

Ž . Ž .function R in 1.3 reduces in essence to the still open ‘‘average’’ isodiame-h
Ž� 4n .tral problem on the discrete cube �1, 1 , P . The latter consists of findingn

� � 2 Ž . Ž . � 4nthe minimum of H H x � y dP x dP y among all subsets A of �1, 12A A n n
Ž .of a fixed measure P A .n

Anyway, up to the constant c, for the exponential measure as well as for
Ž .those satisfying the conditions 1.5 and having a finite second moment, the
Ž . � �left- and the right-hand sides of 1.4 cannot be improved in terms of h .2

'Ž . � 4Indeed, if we apply 1.3 to half-spaces A � x: x � ��� �x � an � xb n1 n
with a the mean and b the variance of �, and to the ‘‘n-dimensional’’ vectors

'Ž .Ž . � �h � 1� n t, . . . , t; 0, . . . with t � h � 0, we will obtain, by the central2
Ž � � . Ž Ž .. Ž .limit theorem, that 	 x � h �b � R 	 x . Thus, sup R p 	2 h �� h � �t4 h2

Ž �1Ž . .	 	 p � t�b . A similar argument applies to S .h
The organization of the paper is the following. Theorem 1.1 is proved in

Ž .Section 3, on the basis of a certain functional form for shift inequalities 1.3 ,
which is discussed separately in Section 2. Theorem 1.2 is proved in Section 4.

� � ��Here we consider also a question on how to bound � � � in terms ofTVh
� �h . In Section 5, we prove an analogue of Theorem 1.2 on the appropriate2

Ž .form for 1.3 under a weaker assumption on the density �.

2. A functional form of shift inequalities. Assume we are given a
Ž . � �family of concave continuous functions R from 0, 1 onto itself with thet t 	 0

� �following semigroup property: for all t, s 	 0 and p � 0, 1 ,
2.1 R p � R R p .Ž . Ž . Ž .Ž .t�s t s

Assume also that R is the identity function, and the ‘‘generator’’ of the0
family

R p � pŽ .t
2.2 lim � I p , 0 � p � 1,Ž . Ž .

� tt�0



SINGULAR COMPONENT AND SHIFT INEQUALITIES 419

Ž .is well defined and represents a positive function on 0, 1 . Clearly, the
Ž .function I must be concave and thus continuous on 0, 1 as the limit of

concave functions.

LEMMA 2.1. Let � be an absolutely continuous probability measure on Rn.
The following properties are equivalent:

Ž . n na For all h � R and every Borel set A in R ,

2.3 � A � R � A .Ž . Ž . Ž .Ž .h � h � 2

Ž . n n � �b For all h � R and every Borel measurable function f : R � 0, 1 ,

2.4 f x � h d� x � R E f .Ž . Ž . Ž . Ž .H � h � �2

Ž . n � �c For every smooth function f : R � 0, 1 with compact support and such
that 0 � E f � 1,�

� �2.5 E 
f � I E f .Ž . Ž .2� �

Ž .Here and elsewhere, E denotes the expectation the integral over �, � is� h
Ž . Ž . nthe translate of � on vector h, that is, � A � � A � h , for A 
 R andh

Ž . Ž Ž . .
f x � � f x �� x is the gradient of f.i 1� i� n

Ž . Ž .PROOF. On indicator functions f � 1 , 2.4 turns into 2.3 . Conversely,A
Ž .starting from 2.3 , we get

1 1
E f x � h � � x : f x � h � t dt � � x : f x � t dt� 4 � 4Ž . Ž . Ž .H H� h

0 0

1
� R � x : f x � t dt� 4Ž .Ž .H � h � 2

0

1
� R � x : f x � t dt � R E f ,� 4Ž . Ž .H� h � � h � �2 2ž /0

Ž . Ž .where we have also used Jensen’s inequality. Thus, 2.3 and 2.4 are
Ž . Ž .equivalent, and we need to show the equivalence of 2.4 and 2.5 .

Ž . Ž . Ž .To derive 2.5 from 2.4 , let h � 0 in 2.4 . According to the Taylor
Ž .expansion and in view of 2.2 , we get

² : � � � �2.6 � E 
f , h � I E f h � o h ,Ž . Ž .Ž . 2 2� �

² : nwhere � , � is the scalar product in R . Applying this inequality to h � 
 E 
f�

Ž .and letting 
 � 0, we arrive at 2.5 .
Ž . Ž .To derive 2.4 from 2.5 , we may restrict ourselves to smooth functions f

Žwith a compact support and such that 0 � E f � 1 since � is absolutely�

. Ž .continuous . First note that if inequality 2.3 holds for vectors h � t e and1 1
Ž .h � t e with t , t 	 0, then it holds for h � t � t e. Indeed, applying2 2 1 2 1 2

Ž . Ž .2.1 and 2.3 , we get

2.7 E f x � h � R E f x � h � R R E f � R E f .Ž . Ž . Ž . Ž . Ž .Ž . Ž .� h � 2 h h � h �1 1 2



S. G. BOBKOV420

Ž .This argument shows that 2.4 holds for all h, if it holds for sufficiently small
h. Below we precise this argument. Fix a vector e � Rn of Euclidean length
� � Ž .e � 1, take a number c � 0, 1 , and consider the set

� � t 	 0: E f x � cte � R E f .Ž .� 4Ž .� t �

� . Ž . �We will show that � � 0, �� for any c � 0, 1 . Then, letting c � 1 , we
Ž .will get 2.4 for all h of the form h � te, and since e is arbitrary, we will be

done. Clearly, it suffices to check that the following two properties are
fulfilled:

Ž .a t � �, for all t � 0 small enough.
Ž .b if t , t � �, then t � t � �.1 2 1 2

Ž . Ž . Ž .The property b has already been shown in 2.7 . To prove a , again by
Ž . Ž .Taylor’s expansion, by 2.6 , and since I E f � 0, we get, for t � 0 small�

enough,

² :E f x � cte � E f � c E 
f , e t � o tŽ . Ž .� � �

� �� E f � c E 
f t � o tŽ .2� �

� E f � cI E f t � o t � R E f ,Ž .Ž . Ž .� � t �

Ž . Ž . Ž .since R E f � E f � I E f t � o t , as t � 0. Lemma 3.1 is proved. �t � � �

REMARK 2.2. The same functional form can be established for converse
Ž .shift inequalities. More precisely, let S form a family of convex continu-t t 	 0

� � Ž .ous functions from 0, 1 onto itself with the semigroup property 1.1 and the
Ž . Ž Ž ..�generating function I p � lim p � S p �t. Then, the inequalityt � 0 t

� A 	 S � AŽ . Ž .Ž .h � h � 2

is equivalent to the functional inequality

f x � h d� x 	 S E f , 0 � f � 1,Ž . Ž . Ž .H � h � �2

Ž .which in turn is equivalent to the property c in Lemma 2.1.

3. The size of singular component. Let � be an absolutely continuous
n 1Ž n.probability measure on R with a density � from the Sobolev space W R .1

This may equivalently be expressed as the property that the function �
Ž .possibly modified on a set of zero Lebesgue measure is absolutely contin-
uous on almost all straight lines that are parallel to coordinate axes, and

Ž . Ž Ž . .their Radon�Nikodym partial derivatives � � x � �� x �� x are inte-x iin Ž � � .grable on R cf. 7 , Section 1.1 . Assume moreover that the functions
Ž . Ž Ž .. Ž . Ž .� x � � � x �� x which are well defined �-a.e. satisfy the followingi x i

two conditions:
2 2 Ž .1. E � � � , for all i � 1, . . . , n � 	 0 ;� i

2. E � � � 0, for all 1 � i � j � n.� i j
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� �For any t � R, introduce the function R on 0, 1 as follows. Givent
� � � Ž . �p � 0, 1 , if arcsin 2 p � 1 � t � ��2, set

1 � sin arcsin 2 p � 1 � tŽ .Ž .
R p �Ž .t 2

t
2 '� sin � p cos t � p 1 � p sin t .Ž .ž /2

Ž . Ž .Otherwise, we set R p � 1 when arcsin 2 p � 1 � t 	 ��2, and sett
Ž . Ž .R p � 0 when arcsin 2 p � 1 � t � ���2.t

THEOREM 3.1. For all h � Rn and for every Borel set A in Rn,

3.1 R � A � � A � R � A .Ž . Ž . Ž . Ž .Ž . Ž .�� � h � h � � h �2 2

In particular,
� �� h 22Sing � , � � sin .Ž .h ž /2

PROOF. The functions R can also be defined as follows. Let F be thet
1distribution function of the probability measure on R with density cos x,2

� � Ž . Ž . �1x � ��2, so that F x � 1 � sin x �2 in the support interval. Let F :
� � � � � �0, 1 � ���2, ��2 denote its inverse. Then, for all t � R and p � 0, 1 ,

R p � F F�1 p � t .Ž . Ž .Ž .t

Ž . 2Ž .In particular, R 0 � sin t�2 , for 0 � t � � . One can also observe that, fort
0 � p � 1,

tR p � � B p ,Ž . Ž .Ž .t

where � is the normalized Lebesgue measure on the 2-sphere S2 
 R3 of unit
Ž . Ž . Ž .tradius, B p is a ball a cap on the sphere of measure p and where B p for

Ž .t 	 0 denotes the t-neighborhood of B p with respect to the geodesic metric
2 Ž � � .on S respectively, t -interior for t � 0 . Correspondingly, for p � 0 and

� � Ž . 2 Žt � 0, � , R 0 expresses the area of balls on S of radius t in the senset
.of � .

Ž . Ž Ž . Ž . .These definitions ensure that R respectively, S � R formst t 	 0 t �t t 	 0
Ž . � �a family of concave respectively, convex functions from 0, 1 onto itself with

Ž . Ž .the semigroup property 2.1 . According to 2.2 , the ‘‘generator’’ of this family
Ž . 'is given by I p � p 1 � p . Therefore, by Lemma 2.1 and Remark 2.2,Ž .

Ž .both inequalities in 3.1 are equivalent to

� �3.2 E 
f � � I E f � � E f 1 � E f ,Ž . Ž . Ž .'2� � � �

n � �where f : R � 0, 1 is an arbitrary smooth function with a compact support.
Now, let us note that E � � 0, for all i � 1, . . . , n. Indeed, let for definite-� i

� Ž . n�1 Ž . 4ness i � n. The set C � y � x , . . . , x � R : H� y, x dx � �� has1 n�1 n n
� Ž . � � �a full Lebesgue measure. The integral H � � x dx � E � is finite; hence,x � nn
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Ž .for almost all points y � C, the function x � � y, x has bounded totaln n
Ž .variation on R. In particular, there exist finite nonnegative limits of � y, x ,n

as x � �� and x � ��. These limits must be zero, since otherwisen n
Ž .H� y, x dx � �� that contradicts the property y � C. Therefore, for al-n n

most all y � C,
��

� � y , x dx � lim lim � y , b � � y , a � 0.Ž . Ž . Ž .H x n nn a��� b�����

The next integration over y � C yields E � � 0.� n
It remains to do the last step to prove Theorem 3.1. Integrating by parts,

we observe that

3.3 E � f � � f x � � x dx � �E f � .Ž . Ž . Ž .H� x x � ii inR

Ž . Ž .note that all the integrals are well defined . By assumption 1 , the functions
2Ž . � � 2� belong to the space L � , and their norms satisfy � � � � � . ByL Ž � .i i i

Ž . ² : 2assumption 2 , these functions are orthogonal: � , � � 0, for i � j,L Ž � .i j
2Ž .where the scalar product is now taken in L � . As noted above, E � � 0.� i

Ž .Set � � � �� . Then, from 3.3 and by Parseval’s inequality,i i i
n

2 22
2� � ² :E 
f � � f � E f , �Ý2 L Ž � .� i � i

i�1
n

2 22 2
2 2² : � �� � f � E f , � � � f � E f ,Ý L Ž � . L Ž � .� i �

i�1

that is,
22 2 2 2� �3.4 E 
f � � Var f � � E f � E f .Ž . Ž . Ž .2� � � �

Ž .Inequalities like 3.4 were earlier studied by many authors in the context of
Ž .getting lower estimates for variance. For example, the fact that 3.4 with

Ž� � .� � 1 holds for � � � was proved by Cacoullos 2 , Proposition 3.7 . Now, ifn
2 Ž . Ž .0 � f � 1, we have E f � E f , so 3.4 implies 3.2 . Theorem 3.1 is thus� �

proved. �

Now assume that � is a product measure on Rn, � � � � ��� � � , with1 n
Ž . Ž . Ž .density � x � � x ���� x , where � are absolutely continuous on R.1 1 n n i

Then, the functions
� � x �� xŽ . Ž .x i ii� x � �Ž .i � x � xŽ . Ž .i i

Ž n .represent independent random variables on probability space R , � . Condi-
Ž .tion 1 becomes

J � � E � 2 � � 2 ,Ž .i � i

Ž .which implies in particular that E � � 0. By independency, condition 2 of� i
Ž . 2Theorem 3.1 is therefore fulfilled, so the inequality 3.1 holds with � �

Ž .max J � .i i
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In particular, this applies to product probability measures �n on Rn with
Ž . 2 Ž .equal marginals: inequality 3.1 holds with � � J � . Since this inequality

Ž � �.is dimension free, it extends to R , � . Note that the transition to the
infinite-dimensional inequality can more easily be performed on the basis of

Ž .the functional inequality 2.4 . Thus, we arrive at the statement of Theo-
rem 1.1.

Another broad class of measures when the conditions of Theorem 3.1 are
satisfied is the class of measures with densities �-symmetric in the following

Ž . n � 4sense: for all x , . . . , x � R and for any sequence 
 , . . . , 
 � �1, 1 ,1 n 1 n
Ž . Ž .� 
 x , . . . , 
 x � � x , . . . , x . For example, one can consider densities of1 1 n n 1 n

Ž . Ž � �.the form � x � � x , that is, the measures which are invariant under
rotations. Of course, this class contains all product measures � with symmet-

Ž .ric around 0 marginal distributions � . It should be pointed out that, fori
�Ž . � 2 Ž .nonproduct measures � with marginals � , in general E � � �� � J �i � x ii

Ž .this is easily seen for Gaussian nonproduct measures .

4. Shift inequalities of Gaussian type. In this section, we prove Theo-
� �rem 1.2. Let us introduce the standard notations: for x � ��, �� , set

x1
2� x � exp �x �2 , 	 x � � t dt .Ž . Ž . Ž .Ž . H'2� �

�1 � � � �Let 	 : 0, 1 � ��, �� denote the inverse of 	.
Ž .Given a probability measure � on R, the inequality 1.4 requires that all

translates of � on R are equivalent to �. This already implies that � is
equivalent to Lebesgue measure, that is, it has an a.e. positive density �
Ž � � .cf. 8 , Lemma 5 . Moreover, according to Shepp’s necessary condition
Ž� � .8 , Theorem 1 , � can be chosen to be absolutely continuous with finite

Ž .Fisher information J � . This will be further assumed. Note that this
Ž .property is weaker than 1.5 .

Ž .Since inequality 1.4 is dimension free, it can equivalently be written in
terms of product measures �n on Rn as

�1 � � n �1 � �4.1 	 	 p � c h � � A � 	 	 p � c h ,Ž . Ž . Ž . Ž .Ž . Ž .2 2h

n nŽ . nwhere c � 0, A 
 R is a Borel set of measure � A � p and where h � R .
Ž . Ž �1Ž . .The family of functions R p � 	 	 p � t , t � R, forms a group witht

generator

I p � � 	�1 p , 0 � p � 1,Ž . Ž .Ž .
� � Ž . Ž .which is a concave function on 0, 1 with I 0 � I 1 � 0. Therefore, accord-

Ž .ing to Lemma 2.1, shift inequalities in 4.1 have a functional form

� �4.2 E
f � cI E f ,Ž . Ž .2

n � �where f : R � 0, 1 is an arbitrary smooth function with a compact support,
and the expectations are with respect to measure P � �n. Integration by
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Ž . Ž . �Ž . Ž .parts as in 3.3 shows that, in terms of functions � x � � x �� x ,i i i
n Ž .x � R , 4.2 is exactly the property

1�2
2� �4.3 E f� � cI E f , 0 � f � 1.Ž . Ž .Ý iž /

i�1

Here, the smoothness condition can easily be weakened to just measurability.
Ž .To further simplify 4.3 , let us note that its left-hand side is a convex

functional in f while the right-hand side is concave, by concavity of I.
Ž .Therefore, 4.3 holds for all f with 0 � f � 1 if and only if it holds for

indicator functions f � 1 of Borel sets A 
 Rn:A

1�22n

4.4 � dP � cI P A .Ž . Ž .Ž .Ý H iž /Ai�1

One may also rewrite this inequality as

4.5 sup sup � � dP � cI p , 0 � p � 1,Ž . Ž .ÝH i i
A� Ž .P A �p i�1

Ž .where the first supremum is taken over all collections � � � , . . . , � of real1 n
numbers such that Ý � 2 � 1, and the second one is over all Borel sets A ini�1 i

n Ž .R with P A � p.
Recall that � , 1 � i � n, are independent random variables with E� � 0i i

2 Ž .and E� � J � � ��. If these r.v.’s have continuous distribution, then thei
Ž . Ž . � nsecond infimum in 4.5 is clearly attained at the set A p � x � R :

n 4 Ž .� � Ý � � � c where the constant c � m � is quantile of � of randomi�1 i i p
variable � . For example, in the case of the canonical Gaussian measure

Ž .P � � , we see that � x � �x have distribution � , so does � , andn i i 1

��

� dP � x d� x � I p .Ž . Ž .H H 1�1Ž . Ž .A p 	 p

Ž .Thus, inequality 4.5 holds with c � 1, and we recover the Gaussian shift
inequality

�1 � � �1 � �	 	 p � h � � A � h � 	 	 p � h , � A � p.Ž . Ž . Ž . Ž .Ž . Ž .2 2n n

In the general, non-Gaussian case, it is probably rather difficult to find an
Ž .exact value of the left-hand sides in 4.5 . However, one can easily prove that

Ž .the condition 1.5 ,

4.6 E exp 
� 2 � 2, 
 � 0,Ž . Ž .1

Ž .makes that supremum behave like I p . To complete the proof of Theorem
1.2, we need an elementary lemma.
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LEMMA 4.1. Let � , . . . , � be i.i.d. random variables on a probability1 n
Ž .space �, FF, P with E� � 0 and such that, for some c � 0,1

4.7 � dP � cI P A , A � FF.Ž . Ž .Ž .H 1
A

Ž . Ž 2 . Ž . Ž .Then 4.6 holds with 
 � 1� 4c . Conversely, 4.6 implies 4.7 and more-
'Ž .over 4.4 with c � 2� 
 .

First we prove a calculus lemma.

LEMMA 4.2.

1 1 1
4.8 p log � I p � p 2 log ,Ž . Ž .( (2 p p

1� �where the left inequality holds for all p � 0, , and the right inequality holds2
� �for all p � 0, 1 .

� Ž .PROOF. The right inequality is simple note that I p behaves like
� Ž .'p 2 log 1�p , as p � 0 . To prove the left one, consider a function u p �Ž .

Ž . Ž .'I p � dp log 1�p with some d � 0. We have u 0 � 0, and, by definitionŽ .
1 2 'Ž . Ž .of I, u 	 0 if and only if d � 2� � log 2 . In particular, d � 1� 22

satisfies this condition. Next, using the property I� � �1�I and applying the
Ž .right inequality of the lemma, we have for p � 0, 1 ,

1 1 1
�u p � d � �Ž .

I pŽ .' '2 p log 1�p 4 p log 1�p log 1�pŽ . Ž . Ž .

1 1 1
� d � �' ' '2 p log 1�p 4 p log 1�p log 1�p p 2 log 1�pŽ . Ž . Ž . Ž .

1 1 1 1
� d � � � 0,ž / '2 4 log 1�pŽ . 2'p log 1�pŽ .

1'for d � 1� 2 and 0 � p � in the last inequality. Thus, u is concave on2
1� �0, ; hence, it is nonnegative on that interval for this value of d.2

Ž . � 4PROOF OF LEMMA 4.1. If we apply 4.7 to the sets A � � � x with1
Ž .x 	 0 and make use of the right estimate in 4.8 , we get

� 4 � 4 � 4xP � � x � cI P A � cP � � x 2 log 1�P � � x ,'Ž .Ž . Ž .1 1 1

� 4 � 2 24 � 4so that P � � x � exp �x �2c . With a similar bound for P � � �x , we1 1
obtain that

x 2

� �P � � x � 2 exp � , x 	 0.� 41 2½ 52c
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Therefore, for 
 � 1�2c2,
��

2 2� 4E exp 
� � 2
 P � � x x exp 
 x dx � 1Ž .Ž . H1 1
0

��
2 2x 1 � 2
 c

2� 1 � 4
 x exp 
 x � dx � .H 22ž / 1 � 2
 c2cŽ .0

Ž 2 . 2Hence, E exp 
� � 2 as soon as 
 � 1�6c .1
Ž .Conversely, assume 4.6 holds true. Using also the fact that E� � 0, it1

can easily be shown that, for all t � R,

2 t 2

4.9 E exp t� � exp .Ž . Ž .1 ½ 5


Ž . Ž . Ž . �Ž .Indeed, the function v t � log E exp t� is convex with v 0 � v 0 � 0 and1
�Ž . 2 Ž . Ž . 2 Ž . 2v t � E� exp t� . Now, t� � 1�2
 t � 
�2 � , so that1 1 1 1

t 2
2 2 2E� exp t� � exp E� exp 
� �2Ž . Ž .1 1 1 1ž /2


2 t 2 4 t 2
2� exp E exp 
� � 1 � exp ,Ž .1ž / ž /
 2
 e
 2


where we have applied the inequality xe x � e2 x�1 with x � 
� 2�2. For1
� 2'� � Ž . Ž . Ž .t � 2
 , we thus get v t � 4�
 , so that v t � 2 t �
 according to

Ž . Ž .Taylor’s expansion. This implies 4.9 for such small values of t. Once more,
Ž . 2 2 2 Ž . Ž 2 Ž ..since t� � 1�4
 t � 
� , we get E� exp t� � 2 exp t � 4
 . This gives1 1 1 1'Ž . � �4.9 for t 	 2
 .

Now, let � � Ýn � � with Ýn � 2 � 1. Since � are independent andi�1 i i i�1 i i
Ž .identically distributed, we obtain from 4.9 that, for all t � R,

2 t 2

4.10 E exp t� � exp .Ž . Ž . ½ 5


Ž . �Introducing the functional Ent g � E g log g � E g log E g � sup E g�:
� 4 Ž . Ž .Ee � 1 g 	 0 , we see that 4.10 is equivalent to saying that, for all g 	 0,

2 t 2

E t� � g � Ent g .Ž .ž /


Optimizing this inequality over all t � R, we come to the equivalent inequal-
ity

8
� �E� g � E g Ent g .Ž .(




Ž .Applying this to indicator function g � 1 of a set of measure P A � p �A
1� �0, and further using the left inequality of Lemma 4.1, we get2

8 1 4
� dP � p log � I p .Ž .H ( '
 p 
A
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1'Ž . Ž .As a result, we arrive at 4.5 and therefore at 4.4 with c � 4� 
 . If p 	 ,2
Ž .then we can apply 4.5 to � � A. Since E� � 0, this inequality remains toi

hold for all p. This proves Lemma 4.1 and Theorem 1.2, together with
Ž .inequalities in 1.6 .

We can now derive from Theorem 1.2 the following corollary.

COROLLARY 4.3. Let � be a probability measure on R with an absolutely
continuous density � such that

2��� � xŽ .
exp 
 d� x � 2,Ž .H 2½ 5�� � xŽ .

where 
 � 0. Then, for all h � l 2,

� �2 h 2
� �� �4.11 � � � � 2 2	 � 1 .Ž . TVh ž /ž /'


PROOF. First let us note that, for every t 	 0 and every unimodal, sym-
Ž .metric around 0, probability distribution F on R, the function u p �t

Ž �1Ž . . Ž .F F p � t � p, 0 � p � 1, is maximized at the point p � F �t�2 . Hence,

sup u p � F t�2 � F �t�2 � 2 F t�2 � 1.Ž . Ž . Ž . Ž .t
p

Ž . Ž . Ž .In particular, if F � 	, sup u p � 2	 t�2 � 1. From 1.4 , for every setp t
� �Ž .A 
 R of measure � A � p,

� � � �� A � � A � R p � p � u p � 2	 c h �2 � 1.Ž . Ž . Ž . Ž . Ž .2h c � h � c � h �2 2

Ž . � � �� � �Ž . �Ž . �This proves 4.11 , since � � � � 2 sup � A � � A , and sinceTVh A h' Ž .c � 4� 
 according to 1.6 .
As we mentioned before, if � has a finite variance b, then, by the central

limit theorem,

sup sup �� A 	 	 	�1 p � t�b .Ž . Ž .Ž .h
�� � Ž .h �t � A �p2

Ž .Substracting p from both sides and maximizing over all p � 0, 1 as above,
� �Ž . �Ž .� Ž .we get sup sup � A � � A 	 2	 t�2b � 1; that is,� h � �t A h2

� � ��4.12 sup � � � 	 2 2	 t�2b � 1 .Ž . Ž .Ž .TVh
� �h �t2

Ž . � �This shows that 4.11 is sharp up to a constant in front of h , provided we2

want to control the total variation norm in terms of the Euclidean length of h.
Actually, for all log-concave probability distributions �, an estimate like
Ž .4.11 can be reversed in the sense that, after a modification of the right-hand

Ž . Ž .side of 4.12 , the supremum in 4.12 can be replaced with the infimum

� � ��4.13 inf � � � 	 2 1 � exp �ct .Ž . Ž .Ž .TVh
� �h �t2
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� �This is a consequence of a recent result due to Krugova 5 , who showed that,
given a Radon log-concave probability measure � on a locally convex space E,
for every vector h � E, along which � is differentiable,

� � � �4.14 � � � 	 2 1 � exp � d � �2 .Ž . Ž .Ž .TV TVh h

ŽRecall that � is differentiable in direction h � E in the sense of Fomin;
� �.cf. 1 if, for every Borel set A in E, the limit

� A � 
 h � � AŽ . Ž .
lim � d � AŽ .h

�0

exists and defines a finite signed Radon measure on E. In the case of the
� � Ž .product measure � on E � R with finite Fisher information J � , the

derivative d � is well defined for all h � l 2 and absolutely continuous withh
� Ž . �Ž . Ž .respect to � with density Ý h � , where � x � � x �� x . Byi i i i i i

Marcinkiewicz�Zygmund’s inequality, for some universal constant K � 0, we
have

� �
� 2 2 �� �d � � h � d� 	 K h � d�Ý ÝTV H Hh i i i i(� �R Ri�1 i�1

�
22 � � � � � �	 K h E � � K E � h ,Ž .Ý 2i i 1(

i�1

Ž .where the expectations are with respect to �. It then follows from 4.14 that
Ž . � �4.13 holds for every log-concave measure � with c � K E � �2. For exam-1
ple, for the two-sided exponential distribution � � � , we have

� � � � �� � �2 1 � exp �c h � � � � � 2 2	 c h � 1 ,Ž . Ž .Ž . Ž .2 TV 21 h 2

�where both sides are sharp up to some numerical constants c and c the left1 2
Ž .�inequality is sharp for the vectors h � t, 0, 0, . . . .

5. Shift inequalities of exponential type. By a similar argument, we
prove in this section the following analogue of Theorem 1.2. Set

1 1
H p � p log � 1 � p log , 0 � p � 1Ž . Ž .

p 1 � p

and define the distribution function F on the real line via its inverse

p dt
�1F p � , 0 � p � 1.Ž . H H tŽ .1�2

THEOREM 5.1. Let � be a probability measure on R. There exists c � 0
� �Ž . 2such that, for all Borel sets A 
 R of measure � A � p and every h � l ,

an inequality
�1 � � � �1 � �5.1 F F p � c h � � A � F F p � c hŽ . Ž . Ž . Ž .Ž . Ž .2 2h
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holds true, if and only if � has an absolutely continuous density � with
��� � xŽ .

5.2 exp 
 d� x � 2 for some 
 � 0.Ž . Ž .H ½ 5� xŽ .��

Ž . Ž .As we will see, the optimal constants c and 
 in 5.1 and 5.2 are
connected with the relation

1 4
5.3 � c � .Ž .

6
 


The function H is concave, symmetric around the point p � 1�2, with
Ž . Ž .H 0 � H 1 � 0, so F is a distribution function of a symmetric log-concave

Ž . Ž . Ž Ž ..probability measure on R. Since t log 1�t 	 1 � t log 1� 1 � t , for t �
1� �0, , it follows from the definition of F that2

5.4 2�expŽ�x �2. � F x � 2�expŽ�x . , x � 0.Ž . Ž .
Hence, F may be viewed as a symmetrized double exponential distribution.

Ž . Ž �1Ž . .The family of functions R p � F F p � t , t � R, forms a group witht
Ž .generator H p . Therefore, according to Lemma 2.1 with I � H, and as in the

Ž . Ž . Ž .pass from 4.1 to 4.4 , the shift inequalities in 5.1 are equivalent to the
property

1�22n

5.5 � dP � cH P A ,Ž . Ž .Ž .Ý H iž /Ai�1

n Ž . Ž . �Ž . Ž .where P � � n is an arbitrary positive integer , � x � � x �� x , x �i i i
Rn and where A is an arbitrary Borel set in Rn. To complete the proof of
Theorem 5.1, we need a statement similar to Lemma 4.1.

LEMMA 5.2. Let � , . . . , � be i.i.d. random variables on a probability1 n
Ž . Ž .space �, FF, P with E� � 0. If inequality 5.5 holds with n � 1 for some1

c � 0, then
� �5.6 E exp 
 � � 2Ž . Ž .1

Ž . Ž . Ž .with 
 � 1� 6c . Conversely, 5.6 implies 5.5 for all n with c � 4�
 .

Ž .PROOF. First assume 5.5 holds with n � 1,

5.7 � dP � cH P A , A � FF.Ž . Ž .Ž .H 1
A

Ž . � 4 Ž Ž ..For the sets A x � � � x , x 	 0, we have H � dP 	 xP A x . Recall-1 AŽ x . 1
1 1Ž . Ž . Ž Ž ..ing that H p � 2 p log 1�p for p � and assuming P A x � , we get2 2

Ž . Ž Ž .. � Ž .4from 5.7 that P A x � exp �x� 2c . With a similar argument concerning
�� , one can conclude that1

� �P � � x � min 1, 2 exp �x� 2c , x 	 0.� 4� 4 Ž .Ž .1
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Ž .Therefore, for 
 � 1� 2c ,
��

� � � �E exp 
 � � 1 � 
 exp 
 x P � � x dx� 4Ž .Ž . H1 1
0

�� x
� 1 � 
 exp 
 x min 1, 2 exp � dxŽ .H ½ 5ž /2c0

22 
 c

� .
1 � 2
 c

Ž � �.It is now easy to see that E exp 
 � � 2 for 
 c � 1�6.1
To prove the converse, we need the following lemma.

LEMMA 5.3. Let � be a random variable.
1�� � 2Ž . � � Ž . Ž .a If Ee � 2, E� � 0 and t � , then E exp t� � exp 5t �2 .2

1�Ž . Ž . Ž . Ž Ž ..b If Ee � 2 and P A � , then H � dP � 2P A log 1�P A .A2

1Ž . � �PROOF. a As in the proof of Lemma 4.2, on the interval t � , consider2
Ž . Ž . Ž . �Ž .the function v t � log E exp t� . It is convex with v 0 � v 0 � 0 and

�Ž . 2 Ž . 2 Ž � � . 2 Ž � � .v t � E� exp t� � E� exp � �2 . Applying the inequality � exp � �2 �
5 � 2Ž � �. Ž . Ž .exp � , we get v t � 5. This implies v t � 5t �2.2

Ž . Ž .To prove b , recall that the inequality E exp � � 2 is equivalent to the
Ž . Ž . Ž .property E � � log 2 g � Ent g , for all bounded g 	 0. For indicator func-

Ž . Ž . Ž Ž ..tion g � 1 , this gives H � dP � P A log 2 � P A log 1�P A . Since log 2 �A A
Ž Ž ..log 1�P A , we obtain the result.

Ž . Ž .Now we can derive 5.5 from 5.6 . Since E� � 0 and since the function Hi
Ž .is symmetric around the point 1�2, we may assume that P A � 1�2. By

12Ž . Ž . Ž . � �Lemma 5.3 a with � � 
� , we have E exp t
� � exp 5t �2 , for all t � .i i 2

Therefore, the same inequality holds for r.v.’s � � a � � ��� �a � , where1 1 n n
2 2 Ž . Ž .a � ��� �a � 1. In particular, for t � 1�2, E exp 
��2 � exp 5�8 � 2. By1 n

Ž .Lemma 5.3 b with � � 
��2,
n
 1

a � dP � 2P A log .Ž .ÝH i i2 P AŽ .A i�1

Ž . Ž . Ž .Optimizing over the coefficients a and since p log 1�p � H p , we obtaini
Ž .5.5 with c � 4�
 . Lemma 5.2 and Theorem 5.1 are proved. �

Ž . Ž .Using 5.2 � 5.4 , with the proof very much similar to the one of Corollary
4.3, we get the following.

COROLLARY 5.4. Let � be a probability measure on R with an absolutely
Ž . 2continuous density � satisfying 5.2 . Then, for all h � l ,

� � �� 1�exp�� h � 2 �
 45.8 � � � � 2 1 � 2 .Ž . Ž .TVh

Acknowledgment. I am grateful to W. Li for stimulating discussions.
The paper was partly prepared during the author’s stay at the School of
Mathematics, Georgia Institute of Technology, Atlanta.



SINGULAR COMPONENT AND SHIFT INEQUALITIES 431

REFERENCES
� � Ž .1 BOGACHEV, V. I. and SMOLYANOV, O. G. 1990 . Analytic properties of infinite-dimensional

distributions. Russian Math. Surveys 45 3�83.
� � Ž .2 CACOULLOS, T. 1982 . On upper and lower bounds for the variance of a function of a random

variable. Ann. Probab. 10 799�809.
� � Ž .3 FELDMAN, J. 1961 . Examples of non-Gaussian quasi-invariant distributions on Hilbert

space. Trans. Amer. Math. Soc. 99 342�349.
� � Ž .4 KAKUTANI, S. 1948 . On equivalence of infinite product measures. Ann. Math. 49 214�224.
� � Ž .5 KRUGOVA, E. P. 1997 . On translates of convex measures. Sbornik Math. 188 227�236.
� � Ž .6 KUELBS, J. and LI, W. V. 1998 . Some shift inequalities for Gaussian measures. Progr.

Probab. 43 233�243.
� � Ž .7 MAZ’JA, V. G. 1985 . Sobolev Spaces. Springer, Berlin.
� � Ž .8 SHEPP, L. A. 1965 . Distinguishing a sequence of random variables from a translate of itself.

Ann. Math. Statist. 36 1107�1112.

DEPARTMENT OF MATHEMATICS

SYKTYVKAR UNIVERSITY

167001 SYKTYVKAR

RUSSIA

E-MAIL: bobkov@ssu.edu.komi.ru


