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The main theorem is the large deviation principle for the doubly in-
dexed sequence of random measures

Wr�q�dx × dy� �= θ�dx� ⊗
2r∑
k=1

1Dr�k
�x�Lq�k�dy��

Here θ is a probability measure on a Polish space � , �Dr�k� k = 1� � � � �2r�
is a dyadic partition of � (hence the use of 2r summands) satisfying
θ�Dr�k� = 1/2r and Lq�1�Lq�2� � � � �Lq�2r is an independent, identically
distributed sequence of random probability measures on a Polish space �
such that �Lq�k� q ∈ N� satisfies the large deviation principle with a convex
rate function. A number of related asymptotic results are also derived.

The random measures Wr�q have important applications to the statis-
tical mechanics of turbulence. In a companion paper, the large deviation
principle presented here is used to give a rigorous derivation of maximum
entropy principles arising in the well-known Miller–Robert theory of two-
dimensional turbulence as well as in a modification of that theory recently
proposed by Turkington.

1. Introduction. Statistical mechanics and probability theory thrive in
a mutually beneficial, symbiotic relationship. Since the time of the founders,
Boltzmann and Gibbs, statistical mechanics has stimulated research into ran-
dom phenomena which has enriched probability theory immeasurably. For
example, ergodic theory, the theory of large deviations and the theory of in-
teracting particle systems all owe their origins to statistical mechanics, which
continues to be an important source of problems in these areas. Conversely, ad-
vances in probability theory—in particular, in the theory of large deviations—
continue to yield insights into ever more complicated statistical mechanical
models.

One of the main contributions of the theory of large deviations to statistical
mechanics is the systematization of a procedure for the asymptotic evalua-
tion of key statistical mechanical quantities in terms of variational formulas
over sets of macrostates. These applications, well known in the study of spin
systems such as the Ising model, are explained in that context in [8] as well
as in numerous other references. Recent applications arising in the statistical
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mechanics of turbulence can also be treated via the theory of large deviations
in a related but novel way. The analysis of such statistical mechanical models
is greatly facilitated by using a class of doubly indexed processes, whose large
deviation principles it is the aim of this paper to derive. The double indexing
is not merely a mathematical contrivance, but reflects fundamental multiscale
aspects of the models under consideration.

In order to put flesh on this skeleton of assertions, let us consider a special
case of the doubly indexed processes with which we will deal. This process
arises in the analysis of a specific model of two-dimensional turbulence that
will be studied in [2]. The asymptotics of this model lead to a rigorous deriva-
tion of maximum entropy principles arising in the well-known Miller–Robert
theory of two-dimensional turbulence [16, 18, 19] as well as in a modification
of that theory recently proposed by Turkington [22]. Let T2 denote the unit
square 	0�1� × 	0�1� with periodic boundary conditions. For u and v in N we
set r

�= 2u, q �= 22v and n
�= 2rq and consider a regular dyadic partition of

T2 into 2r squares Dr�k, called “macrocells,” each having area 1/2r. We also
consider a regular dyadic partition of each Dr�k into q = n/2r squares, called
“microcells,” each having area 1/n. The model is defined on the sites of the
uniform lattice � of n points in T2 containing the origin and having intersite
spacing equal to 1/n1/2 in each coordinate direction. Each macrocell Dr�k con-
tains q = n/2r points of � and each microcell one point of � . For s ∈ � � M�s�
denotes the unique microcell containing s. Let ρ be a probability measure on R

with bounded support � . The configuration space of the model is the product
space �n

�= � n, and a typical configuration is denoted by ζ = �ζ�s�� s ∈ � �,
which is referred to as the vorticity field. We denote by Pn the finite product
measure on �n which assigns to a Borel subset B of �n the probability

Pn�B� �=
∫
B

∏
s∈�

ρ�dζ�s���

With respect to Pn, the coordinates ζ�s� are i.i.d. random variables with com-
mon distribution ρ.

Write θ�dx� or dx for Lebesgue measure on T2 and define �θ�T2 ×� � to be
the set of probability measures on T2 ×� having first marginal θ. We consider
the random probability measure

Wr�q�dx × dy� = Wr�q�ζ� dx × dy� �= dx ⊗
2r∑
k=1

1Dr�k
�x�Lq�k�dy��(1.1)

where Lq�k is the empirical measure

Lq�k�dy� = Lq�k�ζ� dy� �= 1
q

∑
s∈� ∩Dr�k

δζ�s��dy��

Thus Wr�q assigns to a Borel subset B of T2 × � the probability

Wr�q�B� �=
2r∑
k=1

∫
B

1Dr�k
�x�dxLq�k�dy��
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Wr�q takes values in �θ�T2 × � �. The large deviation principle satisfied by
Wr�q as well as by a large class of generalizations is stated in Theorem 2.4.
These generalizations are obtained by replacing T2 and � by arbitrary Polish
spaces and Lq�k by other random measures on � . Theorem 2.4 is proved in
Section 3.

The following heuristic calculation motivates the large deviation principle
for Wr�q and suggests the form of the rate function in this particular case.
The proofs of the large deviation lower bound and upper bound in the general
context of Theorem 2.4 will follow this line of reasoning. We denote by R�· � ·�
the relative entropy and by � �� � the set of probability measures on � . Let
τ1� � � � � τ2r be probability measures on � and suppose that µ ∈ �θ�T2 × � �
satisfies R�µ � θ × ρ� < ∞ and has the form

µ�dx × dy� = dx ⊗ τ�x�dy� where τ�x�dy� �=
2r∑
k=1

1Dr�k
�x� τk�dy��

By Sanov’s theorem, for each k �Lq�k� q ∈ N� satisfies the LDP on � �� � with
rate function R�· �ρ�. Since Lq�1�Lq�2� � � � �Lq�2r are independent,

lim
q→∞

1
2rq

logPn�Wr�q ∼ µ�

= lim
q→∞

1
2rq

logPn�Lq�1 ∼ τ1�Lq�2 ∼ τ2� � � � Lq�2r ∼ τ2r�

= 1
2r

2r∑
k=1

lim
q→∞

1
q

logPn�Lq�k ∼ τk�

≈ − 1
2r

2r∑
k=1

R�τk �ρ� = −
2r∑
k=1

∫
Dr�k

R�τ�x� ·� �ρ�·��dx(1.2)

= −
∫
T2

R
(
τ�x� ·� �ρ�·�)dx

= −
∫
T2

∫
�

(
log

dτ�x� ·�
dρ�·� �y�

)
τ�x�dy�dx

= −
∫
T2

∫
�

(
log

dµ

d�θ × ρ��x�y�
)
µ�dx × dy� = −R�µ�θ × ρ��

By Lemma 3.2, any measure µ ∈ �θ�T2 × � � can be well approximated by a
sequence of measures of the form dx⊗∑2r

k=1 1Dr�k
�x� τk�dy� as r → ∞. Hence,

the calculation in the last display makes it reasonable to expect that Wr�q

satisfies a “two-parameter LDP,” which we summarize by the notation

lim
r→∞ lim

q→∞
1

2rq
logPn

{
Wr�q ∈ ·} = −R�· � θ × ρ��(1.3)

Such doubly indexed processes Wr�q, of considerable interest in their own
right, are doubly interesting because of their applications to the statistical
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mechanics of turbulence. In order to explain this, it is useful to outline in
some detail a systematic procedure, alluded to in the second paragraph of this
section, for applying the theory of large deviations to the asymptotic evalua-
tion of key statistical mechanical quantities. Whether explicitly stated or not,
this procedure is at the heart of numerous analyses of statistical mechanical
models. The procedure applies to spin systems such as the Ising model, to
models of turbulence such as will be considered in [2] and to numerous other
models.

We consider a statistical mechanical model that is defined in terms of the
following data.

1. A sequence of configuration spaces ��n�n ∈ N�.
2. A Hamiltonian Hn�ζ� of ζ ∈ �n and an additional function An�ζ� of ζ ∈ �n.

In the case of spin systems An could represent the interactions of the spins
with an external magnetic field, while in the case of turbulence it could
represent a generalized enstrophy [2]. An = 0 is allowed.

3. A sequence of positive scaling constants bn → ∞.
4. A probability measure Pn on �n.

In terms of these quantities we define for each n ∈ N and β ∈ R� the
partition function

Zn�β� �=
∫
�n

exp
[−βHn�ζ� − An�ζ�]Pn�dζ�

and the Gibbs state Pn�β, which is the probability measure on �n that assigns
to a Borel subset B of �n the probability

Pn�β�B� �= 1
Zn�β�

∫
B

exp
[−βHn�ζ� − An�ζ�]Pn�dζ��

For β ∈ R we also consider the limit

ϕ�β� �= lim
n→∞

1
bn

logZn�β�

if it exists. The function −β−1ϕ�β� is known as the specific Gibbs free energy
for the model.

In order to carry out a large deviation analysis of the model, the following
four items are needed.

1. A Polish space � , called the hidden space.
2. For each n ∈ N a random variable Yn mapping �n into � . The sequence

�Yn�n ∈ N� is called the hidden process.
3. Bounded continuous functions H̃ and Ã mapping � into R such that

Hn�ζ� = bnH̃�Yn�ζ�� + o�bn� and An�ζ� = bnÃ�Yn�ζ�� + o�bn�
uniformly for ζ ∈ �n�

(1.4)

H̃ and Ã are called representation functions.
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4. A rate function J on � such that the sequence of Pn-distributions of Yn

satisfies the large deviation principle on � with scaling constants bn and
rate function J. In other words, J maps � into 	0�∞�, J has compact level
sets and for any closed subset F of � and open subset G of �

lim sup
n→∞

1
bn

logPn�Yn ∈ F� ≤ −J�F��

lim inf
n→∞

1
bn

logPn�Yn ∈ G� ≥ −J�G��

where J�B� denotes the infimum of J over a set B.

Given these items, the asymptotic behavior of the model is readily deter-
mined. To see this, let us summarize the large deviation principle for the
Pn-distributions of Yn by the formal notation

Pn�Yn ∈ dz� � exp	−bnJ�z��dz�

Substituting this into the definition of Zn and using (1.4), one is led, by analogy
with Laplace’s method for integrals on R, to the following formal limit, which
is not difficult to justify:

ϕ�β� �= lim
n→∞

1
bn

logZn�β�

= lim
n→∞

1
bn

log
∫
�n

exp
[−bn

(
βH̃�Yn� + Ã�Yn�

)]
dPn

= lim
n→∞

1
bn

log
∫
�

exp
[−bn

(
βH̃�z� + Ã�z�)]Pn�Yn ∈ dz�

“=” lim
n→∞

1
bn

log
∫
�

exp
[−bn

(
βH̃�z� + Ã�z� + J�z�)]dz

“=” sup
z∈�

{−βH̃�z� − Ã�z� − J�z�}�
Similar considerations motivate the fact that for each β the sequence of Pn�β-
distributions of the hidden process Yn satisfies the large deviation principle
on � with scaling constants bn and rate function

Jβ�z� �= J�z� + βH̃�z� + Ã�z� − inf
y∈�

{
J�y� + βH̃�y� + Ã�y�}�

It follows that if B is a Borel subset of � whose closure B̄ has empty inter-
section with the 0-level set �β

�= �z ∈ � � Jβ�z� = 0�, then Jβ�B̄� > 0, and so
by the large deviation upper bound

Pn�β�Yn ∈ B� ≤ C exp
(−bnJβ�B̄�/2) → 0�
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This in turn leads to the identification of � as the set of possible macrostates
for the model and of �β as the set of equilibrium macrostates.

In the case of many important spin systems, the hidden space, the hidden
process, the representation functions, and the large deviation principle are
well known. For example, as explained in [10], in the case of the Curie–Weiss
model, � equals R, Yn equals the sample mean of the spins, and the large
deviation principle is given by Cramér’s theorem; in the case of the Curie–
Weiss–Potts model, � equals the set of probability vectors in R

Q for some Q ∈
N, Yn equals the empirical vector of the spins, and the large deviation principle
is given by Sanov’s theorem; in the case of the D-dimensional Ising model, �
equals the set of strictly stationary probability measures on �1�−1�ZZD

, Yn

equals the empirical field of the spins, and the large deviation principle is
proved in [13, 17]. In any model such as these for which the hidden space,
the hidden process, and the representation functions can be identified and the
large deviation principle proved, the asymptotic behavior of the model can be
determined as discussed in the preceding paragraph.

Let us now turn to the model of two-dimensional turbulence that will be
studied in [2] and that is defined on the uniform lattice � of T2 as described
in the second paragraph of this section. For a standard choice of Hamiltonian
Hn and generalized enstrophy An given in [2], the “simplest” choice of hidden
process is the sequence of random measures,

Yn�dx × dy� = Yn�ζ� dx × dy� �= dx ⊗ ∑
s∈�

1M�s��x� δζ�s��dy��(1.5)

In this case the hidden space is �θ�T2 ×� �, and the representation functions
are readily determined. On the other hand, the large deviation principle is
by no means obvious. Presenting a proof that relies on complicated convex
analysis, some of the details of which are not spelled out, the paper [15] states
the large deviation principle for the sequence of Pn-distributions of Yn in (1.5)
with rate function R�·�θ×ρ�. For this problem, the use of convex analysis seems
to be the wrong tool since it does not take advantage of the relatively simple
spatial dependence of Yn and gives little insight into why the large deviation
principle should hold. The proof in [15] reduces to the standard convex analysis
proof of Sanov’s theorem ([3], Section 6.2) if T2 is replaced by a single point.

This state of affairs, coupled with the importance of the application to two-
dimensional turbulence, led us to develop the two-parameter techniques elu-
cidated in the present paper and applied in [2]. Our approach is to prove the
requisite large deviation principle for the hidden process Yn, not by convex
analysis, but by approximating Yn by the random measures Wr�q in (1.1) and
applying the almost intuitive two-parameter large deviation principle for Wr�q

summarized in (1.3). The approximation is straightforward. We first rewrite
Yn in the form

Yn�dx × dy� = dx ⊗
2r∑
k=1

∑
s∈� ∩Dr�k

1M�s��x� δζ�s��dy��
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Replacing, for each s ∈ � ∩ Dr�k, the point mass δζ�s� by the average q−1 ·∑
s∈� ∩Dr�k

δζ�s� = Lq�k, one expects that for large q and large r

Yn�dx × dy� ≈ dx ⊗
2r∑
k=1

( ∑
s∈� ∩Dr�k

1M�s��x�
)
Lq�k�dy�

= dx ⊗
2r∑
k=1

1Dr�k
�x�Lq�k�dy� = Wr�q�dx × dy��

In fact, by taking r large enough, one can show that with respect to an appro-
priate metric on �θ�T2 × � � the distance between Yn and Wr�q can be made
as small as desired uniformly in q.

The large deviation principle for a wide class of generalizations of Wr�q is
formulated in Section 2 of this paper together with related asymptotic results.
The main theorem is proved in Section 3. Section 4 is devoted to a restatement
of the large deviation principle that is needed in [2] and other applications.

2. Statement of the large deviation theorem and examples. In this
section we formulate the large deviation principle (LDP) and related asymp-
totic results for extensive generalizations of the random measures Wr�q de-
fined in (1.1). Let ���� �P� be a probability space, � a Polish space, � �� �
the space of probability measures on � with the topology of weak conver-
gence and I a convex rate function on � �� �. The convexity of I is a natural
hypothesis satisfied in many cases of interest. We assume that �Lq� q ∈ N�
is a sequence of random variables mapping � into � �� � which satisfies the
large deviation principle with rate function I. Thus I maps � �� � into 	0�∞�;
for each M ∈ 	0�∞�� �γ ∈ � �� �� I�γ� ≤ M� is compact (compact level sets);
for any closed subset F of � �� �

lim sup
q→∞

1
q

logP�Lq ∈ F� ≤ −I�F�

and for any open subset G of � �� �

lim inf
q→∞

1
q

logP�Lq ∈ G� ≥ −I�G��

where I�B� denotes the infimum of I over the set B. A basic example of such a
sequence, and the one that appears in the application to two-dimensional tur-
bulence in the companion paper [2], is the sequence Lq of empirical measures
of i.i.d. random variables ζi taking values in � ; thus, Lq

�= q−1 ∑q
i=1 δζi . This

and other examples will be discussed in Example 2.7. We also introduce, for
each r ∈ N, a sequence Lq�1�Lq�2� � � � �Lq�2r of 2r independent random vari-
ables mapping � into � �� �, each having the same distribution as Lq. Finally,
let � be a Polish space, θ a probability measure on � and 0r

�= �Dr�k� k =
1� � � � �2r� a dyadic partition of � satisfying the following condition.
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Condition 2.1. For each r ∈ N:

(i) θ�Dr�k� = 1/2r;
(ii) 0r+1 is a refinement of 0r in the sense that Dr�k = Dr+1�2k−1 ∪Dr+1�2k;

(iii) limr→∞ maxk∈�1�����2r� diam�Dr�k� = 0;
(iv) θ�∂Dr�k� = 0�

Part (i) of this condition states that 0r is an equivolume partition. Part (ii)
is needed in order to prove Lemma 3.2, which uses a martingale argument
to derive a key approximation property of certain measures. In applications
to turbulence, part (ii) reflects the natural way of constructing a sequence of
lattice models, where each lattice is a refinement of its predecessor. We use
part (iii) of Condition 2.1 to prove Lemma 3.1, which allows us to approximate
an arbitrary closed set in � by sets in the σ-fields generated by the parti-
tions 0r. Finally, part (iv) of Condition 2.1 is needed in Section 3.5 to prove
that the function J defined in Definition 2.3 is lower semicontinuous.

Let θ be Lebesgue measure on �
�= 	0�1� with periodic boundary conditions.

For r ∈ N, taking Dr�k
�= 	�k − 1�/2r� k/2r�, 1 ≤ k ≤ 2r, gives an example of a

partition satisfying Condition 2.1.

Remark 2.2. By Lemma 3.3, the assumptions that Lq�1� � � � �Lq�2r are i.i.d.
copies of Lq and that �Lq� q ∈ N� satisfies the LDP on � �� � with rate function
I guarantee that for each r the sequence ��Lq�1� � � � �Lq�2r�� q ∈ N� satisfies
the LDP on � �� �2r with rate function

�ν1� � � � � ν2r� �→
2r∑
k=1

I�νk��

All that is needed in the sequel is that for each r ��Lq�1� � � � �Lq�2r�� q ∈ N�
satisfies this LDP and that for each q� Lq�1� � � � �Lq�2r have the same dis-
tributions as Lq but need not be independent. While this LDP is true under
much weaker hypotheses on Lq�k, we have adopted these assumptions to avoid
overcomplicating the exposition.

The process whose asymptotics we wish to analyze is the doubly indexed
sequence of random probability measures on � × � given by

Wr�q�dx × dy� �= θ�dx� ⊗
2r∑
k=1

1Dr�k
�x�Lq�k�dy��(2.1)

Wr�q maps � into � �� × � � and assigns to a Borel subset B of � × � the
probability

Wr�q�B� �=
2r∑
k=1

∫
B

1Dr�k
�x�θ�dx�Lq�k�dy��

The sum in (2.1) defines a stochastic kernel τ�x�dy� on � given � . In other
words, τ�x�dy� is a family of probability measures on � indexed by x ∈ �
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and for each Borel subset B of � the mapping

x �→ τ�x�B� =
2r∑
k=1

1Dr�k
�x�Lq�k�B�

is measurable. In order to avoid the complications involved in working with a
space of stochastic kernels, the measure θ has been included in the definition
of Wr�q. We denote by �θ�� ×� � the closed subset of � �� ×� � consisting of
measures with first marginal equal to θ. Then Wr�q takes values in �θ�� ×
� �. In Section 4 we introduce a standard metric that makes � �� × � � and
�θ�� × � � Polish spaces.

The LDP satisfied by Wr�q is stated in Theorem 2.4. The formal calculation
given in (1.2) can easily be generalized to motivate this LDP and suggest
the form of the rate function, which we next define. For any µ ∈ �θ�� × � �
there exists a stochastic kernel τ�x�dy� on � given � such that µ�dx×dy� =
θ�dx� ⊗ τ�x�dy� ([6], Theorem A.5.4). The definition of the rate function for
Wr�q uses this decomposition, which we summarize as µ = θ ⊗ τ.

Definition 2.3. Let I denote the convex rate function for �Lq� on � �� �.
Given µ = θ ⊗ τ ∈ �θ�� × � �� define

J�µ� �=
∫
�
I�τ�x� ·�� θ�dx��

J�µ� is well defined since the mapping x ∈ � �→ τ�x� ·� ∈ � �� � is mea-
surable ([6], Theorem A.5.2) and I is nonnegative and lower semicontinu-
ous. Clearly J is nonnegative, and because I is convex, J is convex. We will
prove in general, by an indirect argument, that J has compact level sets.
It is possible to see this directly in several cases. For example, assume that
Lq�1�Lq�2� � � � �Lq�2r are i.i.d. copies of the empirical measure Lq

�=q−1 ∑q
i=1 δζi

of i.i.d. random variables ζi having the common distribution ρ. Then

J�µ� = R�µ � θ × ρ��

where R�·�·� denotes the relative entropy. Thus J has compact level sets since
the relative entropy has this property. Details are given in Example 2.7(a).

We now state the two-parameter large deviation theorem for Wr�q. It is
proved in Section 3. The convexity of the rate function I is needed in the proof
(see Lemmas 3.4 and 3.5). We have no example of a nonconvex I for which
the two-parameter large deviation principle in Theorem 2.4 is false.

Theorem 2.4. Let Wr�q be defined by (2.1). We assume that Lq�1�Lq�2� � � � �
Lq�2r are i.i.d. copies of Lq, that �Lq� q ∈ N� satisfies the LDP on � �� �
with a convex rate function I and that the partitions 0r = �Dr�k� satisfy
Condition 2.1. Then the function J defined in Definition 2.3 is a convex rate
function. Furthermore, the sequence Wr�q satisfies the two-parameter LDP on
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�θ�� × � � with rate function J in the following sense. For any closed subset
F of �θ�� × � �

lim sup
r→∞

lim sup
q→∞

1
2rq

logP�Wr�q ∈ F� ≤ −J�F��

and for any open subset G of �θ�� × � �

lim inf
r→∞ lim inf

q→∞
1

2rq
logP�Wr�q ∈ G� ≥ −J�G��

The proof of the equivalence between the one-parameter LDP and the
Laplace principle, given in Section 1.2 of [6], carries over with obvious mod-
ifications to the two-parameter setting. The two-parameter Laplace principle
implied by the LDP in Theorem 2.4 is stated next. It will be needed in the
application to two-dimensional turbulence given in [2].

Corollary 2.5. Under the same conditions as in Theorem 2.4, the se-
quence Wr�q satisfies the two-parameter Laplace principle on �θ�� ×� � with
rate function J in the following sense. For any bounded continuous function h
mapping �θ�� × � � into R

lim
r→∞ lim

q→∞
1

2rq
log

∫
�θ�� ×� �

exp
[
2rqh�µ�]P�Wr�q ∈ dµ�

= sup
µ∈�θ�� ×� �

{
h�µ� − J�µ�}�

Another corollary of Theorem 2.4 that will also be needed in the applica-
tion to two-dimensional turbulence is the LDP for a sequence of measures on
�θ�� × � � defined in terms of the distributions of Wr�q. Let 5 be a bounded
continuous function mapping �θ�� ×� � into R and consider the sequence of
probability measures �P̃r� q� r ∈ N� q ∈ N� on �θ�� ×� � that assign to a Borel
subset B of �θ�� × � � the probability

P̃r� q�B� �=
∫
B

exp	2rq5�µ��P�Wr�q ∈ dµ�

× 1∫
�θ�� ×� � exp	2rq5�µ��P�Wr�q ∈ dµ� �

(2.2)

From Corollary 2.5 we can easily derive the two-parameter Laplace principle
for P̃r� q with rate function

J5�µ� �= J�µ� − 5�µ� − inf
ν∈�θ�� ×� �

�J�ν� − 5�ν���(2.3)
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Indeed, for any bounded continuous function h mapping �θ�� × � � into R

lim
r→∞ lim

q→∞
1

2rq
log

∫
�θ�� ×� �

exp	2rqh�µ�� P̃r� q�dµ�

= lim
r→∞ lim

q→∞
1

2rq
log

∫
�θ�� ×� �

exp
[
2rq �h�µ� + 5�µ��]P�Wr�q ∈ dµ�

− lim
r→∞ lim

q→∞
1

2rq
log

∫
�θ�� ×� �

exp	2rq5�µ��P�Wr�q ∈ dµ�

= sup
µ∈�θ�� ×� �

{
h�µ� + 5�µ� − J�µ�} − sup

ν∈�θ�� ×� �
�5�ν� − J�ν��

= sup
µ∈�θ�� ×� �

�h�µ� − J5�µ���

Since the two-parameter Laplace principle implies the two-parameter LDP
with the same rate function, we have proved part (a) of the next corollary.
Part (b) will enable us to characterize the equilibrium states of the continuum
limit of the model of two-dimensional turbulence to be considered in [2].

Corollary 2.6. Under the same conditions as in Theorem 2.4, the follow-
ing conclusions hold.

(a) The sequence of measures P̃r� q defined in (2.2) satisfies the two-para-
meter Laplace principle and LDP on �θ�� ×� � with rate function J5 defined
in (2.3).

(b) The set �
�= �µ ∈ �θ�� ×� �� J5�µ� = 0� is a nonempty compact subset

of �θ�� ×� �. Furthermore, if B is a Borel subset of �θ�� ×� � whose closure

has empty intersection with � , then limr→∞ limq→∞ P̃r� q�B� = 0.

The assertion about � in part (b) of the corollary follows from the fact that
J5 is a rate function. The second assertion in part (b) is a consequence of the
fact that if the closure of B, B̄, has empty intersection with � , then J5�B̄� > 0.
Hence by the large deviation upper bound in (a)

P̃r� q�B� ≤ C exp�−J5�B̄�/2� → 0

as q → ∞, r → ∞.
The assertion in Theorem 2.4 that J is a rate function requires showing

that J has compact level sets. This proof, given in Section 3.5, is surpris-
ingly complicated, and it is only in this proof that part (iv) of Condition 2.1
is needed. The main effort is required to show that J is lower semicontinu-
ous. This property, together with other estimates to be obtained, will yield the
compactness of the level sets of J. The requirement that a function governing
the large deviations of a process have compact level sets is not required in
all aspects of the theory. For example, it is not needed to prove that an LDP
implies a corresponding Laplace principle, although it is needed to show the
reverse implication.
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We next present four cases of processes Lq for which the LDP in Theo-
rem 2.4 is of interest. Case (a) involves the empirical measures of i.i.d. random
variables, case (b) the α-variate empirical measures of certain Markov chains
for α ≥ 2 and case (d) the empirical processes of certain Markov chains. In all
these cases, we can prove directly from the form of J that it has compact level
sets, avoiding Condition 2.1 and the complicated proof in Section 3.5. However,
in case (c), which involves the empirical measures of certain Markov chains,
Condition 2.1 and the proof in Section 3.5 seem unavoidable since we cannot
prove directly from the form of J that it has compact level sets.

Example 2.7. (a) Empirical measures of i.i.d. random variables. Let �
be a Polish space and �ζi� i ∈ N� a sequence of i.i.d. random variables taking
values in � and having common distribution ρ. We define Lq�1, Lq�2� � � � �Lq�2r

to be i.i.d. copies of

Lq
�= 1
q

q∑
i=1

δζi�

which takes values in � ���. Sanov’s theorem ([6], Theorem 2.2.1) implies
that �Lq� q ∈ N� satisfies the LDP on � ��� with the convex rate function
I�γ� �= R�γ �ρ�, where R is the relative entropy

R�γ �ρ� �=



∫
�

(
log

dγ

dρ

)
dγ� if γ � ρ�

∞� otherwise.

As a consequence of the chain rule ([6], Corollary C.3.2), if µ ∈ �θ�� ×�� has
the decomposition µ = θ ⊗ τ, then

J�µ� = J�θ ⊗ τ� =
∫
�
R�τ�x� ·� �ρ� θ�dx�

= R�θ ⊗ τ � θ × ρ� = R�µ � θ × ρ��
Thus J has compact level sets since the relative entropy has this property
([6], Lemma 1.4.3(c)). This proof that J has compact level sets does not require
Condition 2.1. According to Theorem 2.4, Wr�q defined with these Lq�k satisfies
the two-parameter LDP on �θ�� × �� with rate function J.

(b) α-variate empirical measures of certain Markov chains, α ≥ 2� Let
�ζi� i ∈ N� be a Markov chain taking values in a Polish space � and hav-
ing transition probability function p�y�dz�. We denote by 	b��� the set of
bounded continuous functions mapping � into R. It is assumed that p�y�dz�
satisfies the Feller property; that is, for all f ∈ 	b��� the function mapping

y ∈ � �→ �pf��y� �=
∫
�
f�z�p�y�dz� ∈ R

is continuous. It is also assumed that for some C ∈ 	1�∞�, all y�y′ ∈ �, and
all Borel subsets A of �

p�y�A� ≤ Cp�y′�A��(2.4)
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We consider the bivariate empirical measures of the Markov chain, which
is the case α = 2 of the α-variate empirical measures. The case of general
α ≥ 3 can be handled similarly and will be omitted. Let Lq�1�Lq�2� � � � �Lq�2r

be i.i.d. copies of the bivariate empirical measure

Lq
�= 1
q

q∑
i=1

δ�ζi� ζi+1��(2.5)

which takes values in � ��2�. Given γ ∈ � ��2�, we denote by γ1 and γ2 the
first and second marginals of γ obtained by projection onto the corresponding
coordinates. Under the hypotheses on p�y�dz�, Theorem 1.4 in [9] proves that
�Lq� q ∈ N� satisfies the LDP on � ��2� with the convex rate function

I�γ� �=
{
R�γ �γ1 ⊗ p�� if γ1 = γ2�

∞� otherwise.
(2.6)

Denote by J�2� the function on �θ�� × �2� defined in Definition 2.3 in terms
of this I. According to Theorem 2.4, Wr�q defined with these Lq�k satisfies the
two-parameter LDP on �θ�� × �2� with rate function J�2�.

At the end of this section we prove directly from the form of J�2� that this
function has compact level sets. Condition 2.1 is not required. In order to carry
this out, it is useful to rewrite J�2�. Given µ = µ�dx×dz1×dz2� ∈ �θ�� ×�2�,
we denote by µi, i = 1�2�3, the ith marginal of µ obtained by projection onto
the ith coordinate and by µi�j, 1 ≤ i < j ≤ 3, the marginal of µ obtained by
projection onto the ith and jth coordinates. The measure µ1 equals θ, and if
J�2��µ� < ∞, then it follows from (2.6) and the chain rule that µ2 = µ3 and

J�2��µ� = R
(
µ�dx × dz1 × dz2� �µ1�2�dx × dz1� ⊗ p�z1� dz2�

)
�(2.7)

(c) Empirical measures of certain Markov chains. Let �ζi, i ∈ N� be a
Markov chain taking values in a Polish space � and having transition proba-
bility function p�y�dz�. We assume that p�y�dz� satisfies the same properties
as in case (b). Let Lq�1�Lq�2� � � � �Lq�2r be i.i.d. copies of the empirical measure

Lq
�= 1
q

q∑
i=1

δζi �

Under the hypotheses on p�y�dz�, [21] proves that �Lq� q ∈ N� satisfies the
LDP on � ��� with the convex rate function

I�µ� �= sup
u∈
���

∫
�

u�y�
�pu��y� µ�dy��(2.8)

where 
��� denotes the set of u ∈ 	b��� satisfying u ≥ ε on � for some
ε = ε�u� > 0. See also Chapter IV of [4]. Denote by J the function on �θ�� ×��
defined in Definition 2.3 in terms of this I. According to Theorem 2.4, Wr�q

defined with these Lq�k satisfies the two-parameter LDP on �θ�� × �� with
rate function J. We cannot prove directly from the form of J that it has
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compact level sets, but must resort to the proof in Section 3.5 which requires
Condition 2.1.

Using the contraction principle ([3], Theorem 4.2.1), we can obtain another
representation for the rate function J. Indeed, denote by W

�2�
r� q the process

defined in (2.1), where we take Lq�1�Lq�2� � � � �Lq�2r to be independent copies

of the bivariate empirical measure Lq in (2.5). As pointed out in part (b), W�2�
r� q

satisfies the two-parameter LDP on �θ�� ×�2� with rate function J�2�. Now
let ; denote the continuous function mapping �θ�� × �2� into �θ�� × ��
defined by ;�µ� �= µ1�2. Since ;�W�2�

r� q� = Wr�q, it follows that Wr�q satisfies
the two-parameter LDP on �θ�� × �� with rate function

J̃�γ� �= inf
{
J�2��µ�� µ ∈ �θ�� × �2�� µ1�2 = γ

}
�

Since a rate function for Wr�q is unique, it follows that under Condition 2.1
J equals J̃.

(d) Empirical processes of certain Markov chains. Let �ζi, i ∈ N� be a
Markov chain taking values in a Polish space � and having transition prob-
ability function p�y�dz�. We assume that p�y�dz� satisfies the same proper-
ties as in case (b). Define �Z to be the product space

∏
j∈Z �j, where for each

j��j
�= �, and let �T��Z� denote the space of probability measures P on �Z

which satisfy P ◦ T = P; T denotes the shift operator on �Z. For each q ∈ N

we repeat the sequence �ζ1� ζ2� � � � � ζq� periodically into a doubly infinite se-
quence, obtaining a point ζ�q� ∈ �Z. We then let Lq�1�Lq�2� � � � �Lq�2r be i.i.d.
copies of the empirical process

Lq
�= 1
q

q−1∑
i=0

δTiζ�q��

which takes values in �T��Z�.
In order to specify the rate function, additional notation is needed. For

�z �= �� � � � z−2� z−1� z0� z1� � � �� ∈ �Z, let z−∞
−1

�= �� � � � z−2� z−1�. We denote by X̂j,
j ∈ Z, the mapping that takes �z to zj and by X̂−∞

−1 the mapping that takes �z
to z−∞

−1 ; thus X̂−∞
−1 = �� � � � X̂−2� X̂−1�. For P ∈ �T��Z� we define P∗�z−∞

−1 � dz0�
to be a regular conditional distribution, with respect to P, of X̂0 given X̂−∞

−1 =
z−∞

−1 , and we write P∗�dz−∞
−1 � for the P-distribution of X̂−∞

−1 . Finally, let �−∞
−1

�=∏−∞
j=−1 �j.
Under the hypotheses on p�y�dz�, Theorem 1.3 in [11] proves that �Lq� q ∈

N� satisfies the LDP on � ��Z� with the convex rate function

I�P� �=



∫
�−∞

−1

R
(
P∗�z−∞

−1 � ·� �p�z−1� ·�
)
P�dz−∞

−1 �� if P ∈ �T�� Z��

∞� otherwise�
(2.9)

Denote by J the function on �θ�� ×� Z� defined in Definition 2.3 in terms of
this I. According to Theorem 2.4, Wr�q defined with these Lq�k satisfies the
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two-parameter LDP on �θ�� ×� Z� with rate function J. While it is possible
to prove directly from the form of J that it has compact level sets, this proof
is omitted.

We end this section by giving a direct proof that the function J�2� in case (b)
of Example 2.7 has compact level sets. This proof does not require Condi-
tion 2.1. For M ∈ 	0�∞�, we show that any sequence �µn�n ∈ N� in �θ�� ×�2�
satisfying J�2��µn� ≤ M is tight; J�2� is given by (2.7). Since R is lower semi-
continuous in both variables ([6], Lemma 1.4.3(b)) and p satisfies the Feller
property, the proof that J�2� has compact level sets is completed by Prohorov’s
theorem.

We fix a point y′ ∈ � and set ν�dz2� �= p�y′� dz2�. By (2.7) and the Donsker–
Varadhan variational formula ([6], Lemma 1.4.3(a)), for any n ∈ N and any
g ∈ 	b���

M ≥ J�2��µn�

≥
∫
� ×�2

g�z2�µn�dx × dz1 × dz2�

− log
∫
� ×�2

exp�g�z2���µn�1�2�dx × dz1� ⊗ p�z1� dz2��

and so by (2.4)

M + logC ≥
∫
�
g�z2��µn�3�dz2� − log

∫
�

exp�g�z2��ν�dz2��

Since g ∈ 	b��� is arbitrary, we conclude that for any n ∈ N

M + logC ≥ R
(�µn�3 � ν)�

The compactness of the level sets of R�· � ν� implies that the sequence of
marginals ��µn�3� is tight, and since J�2��µn� ≤M<∞, the sequence ��µn�2� =
��µn�3� is also tight. Since �µn�1 = θ is tight, we conclude that �µn�n ∈ N� is
tight. This completes the proof that J�2� has compact level sets.

3. Proof of Theorem 2.4. This section consists of five subsections, which
prove the following: (1) a number of preliminary lemmas, (2) the large devia-
tion lower bound in Theorem 2.4, (3) the exponential tightness of �Wr�q� q ∈ N�
for each fixed r, (4) the large deviation upper bound in Theorem 2.4, and (5) the
compactness of the level sets of J. Together, (2), (4) and (5) yield the theorem.

We metrize � �� × � � with the dual-bounded-Lipschitz metric defined in
[5], page 310. � �� × � � is a Polish space with respect to this metric, which
is compatible with the topology of weak convergence ([5], Property 11.3.2,
Theorem 11.3.3, Corollary 11.5.5). As a closed subset of � �� × � �,

�θ�� × � � �= {
µ ∈ � �� × � �� µ1 = θ

}
is also a Polish space when metrized by d. Given µ ∈ �θ�� × � � and ε > 0,
B�µ� ε� denotes the open ball centered at µ with radius ε and B̄�µ� ε� denotes
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the closed ball centered at µ with radius ε. In the present paper, the form of the
metric d is not used; for example, the Lévy–Prohorov metric could be employed
in its place. However, in the application to two-dimensional turbulence given
in [2], the use of the metric d facilitates the proof of a key estimate.

3.1. A number of preliminary lemmas. The second lemma in this subsec-
tion is an approximation result for stochastic kernels needed in the proof of
the large deviation lower bound and in the proof that J has compact level sets.
In order to prove this lemma, we first need to know that σ�⋃r∈N �r� = ��� �,
where �r denotes the σ-field generated by the partition 0r and ��� � denotes
the Borel σ-field of � .

Lemma 3.1. Let 0r
�= �Dr�k� k = 1� � � � �2r� be a partition of � satisfying

parts (ii) and (iii) of Condition 2.1. Then σ�⋃r∈N �r� = ��� �.

Proof. Let F be any closed subset of � . It suffices to prove that there
exists a sequence �Dr�F�� r ∈ N� of subsets of � such that Dr�F� ∈ �r for
each r and Dr�F� ↓ F. Define

Ar
�= {

k ∈ �1� � � � �2r�� Dr�k ∩ F #= ∅} and Dr�F� �= ⋃
k∈Ar

Dr�k�

For each r ∈ N� Dr�F� ∈ �r, and due to part (ii) of Condition 2.1, Dr+1�F� ⊂
Dr�F�. It must be shown that

⋂∞
r=1 Dr�F� = F. Since F ⊂ Dr�F� for each

r, one direction of containment is obvious. We prove by contradiction that⋂∞
r=1 Dr�F� ⊂ F. Thus suppose that there exists x ∈ ⋂∞

r=1 Dr�F� and x /∈ F.
Since F is closed, there exists δ > 0 such that m�x�F� > δ, where m denotes
the metric on � . For all r ∈ N, x ∈ Dr�F� and so x ∈ Dr�k for some k ∈ Ar.
Hence there exists yr ∈ Dr�k ∩ F. It follows that for every r ∈ N

0 < δ < m�x�F� ≤ m�x�yr� ≤ diam�Dr�k� ≤ max
i=1�����2r

diam�Dr� i��

By part (iii) of Condition 2.1, the right-hand side of this display tends to zero
as r → ∞. This contradiction completes the proof. ✷

The next lemma approximates an arbitrary stochastic kernel by a stochastic
kernel which, when viewed as a mapping from � into � �� �, is constant on
the cells of the partition 0r.

Lemma 3.2. We assume parts (i)–(iii) of Condition 2.1. Let µ be any mea-
sure in �θ�� × � � with the decomposition µ = θ ⊗ τ, where τ�x�dy� is a
stochastic kernel on � given � . For r ∈ N and k ∈ �1� � � � �2r� define the
probability measures on �

τrk�·� �= 2r
∫
Dr�k

τ�x� ·� θ�dx�
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and the stochastic kernels on � given �

τr�x�dy� �=
2r∑
k=1

1Dr�k
�x� τrk�dy��

Then as r → ∞, τr�x� ·� ⇒ τ�x� ·� θ-a.s. for x ∈ � , and θ ⊗ τr ⇒ θ ⊗ τ = µ.

Proof. Let f be any bounded continuous function mapping � into R.
Suppose we can prove that θ-a.s. for x ∈ �

lim
r→∞

∫
�
f�y� τr�x�dy� =

∫
�
f�y� τ�x�dy��(3.1)

Then a standard separability argument implies that τr�x� ·� ⇒ τ�x� ·� θ-a.s.
for x ∈ � . From this one can show the weak convergence θ ⊗ τr ⇒ θ ⊗ τ
by considering integrals with respect to g�x�h�y� for g ∈ 	b�� � and h ∈
	b�� � ([12], Proposition 4.6, page 115). The Lebesgue dominated convergence
theorem completes the proof.

We now prove (3.1). For r ∈ N denote by �r the σ-field generated by the
partition 0r and define

Xf
r �x� �=

∫
�
f�y� τr�x�dy� and Xf�x� �=

∫
�
f�y� τ�x�dy��

X
f
r is an �r-measurable function mapping � into R and supr∈N Eθ�Xf

r � ≤
'f'∞. By part (ii) of Condition 2.1 �r ⊂ �r+1, and for any B ∈ �r∫

B
Xf

r dθ =
∫
B
Xf dθ�

Thus X
f
r = E�Xf ��r�. A standard result of Lévy ([20], Theorem 3, page 510)

and Lemma 3.1 yield the θ-a.s. convergence

lim
r→∞Xf

r = lim
r→∞E�Xf ��r� = E

{
Xf

∣∣∣∣σ
(⋃
r∈N

�r

)}
= Xf�

This completes the proof of the lemma. ✷

The following lemma is a consequence of Lemmas 2.5, 2.7, 2.8 in [14] and the
assumptions that Lq�1� � � � �Lq�2r are i.i.d. copies of Lq and that the sequence
�Lq� q ∈ N� satisfies the LDP on � �� � with rate function I.

Lemma 3.3. For each r the sequence ��Lq�1� � � � �Lq�2r�� q ∈ N� satisfies the

LDP on � �� �2r
with rate function

�ν1� � � � � ν2r� �→
2r∑
k=1

I�νk��
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The next lemma shows that the convex rate function I on � �� � can be
represented in terms of a Legendre–Fenchel transform. In the case that I�·�
equals the relative entropy R�· �ρ� for some ρ ∈ � �� �, this lemma states the
Donsker–Varadhan variational formula for the relative entropy. In this case,
for f ∈ 	b�� �� I∗�f� = log

∫
� exp�f�dρ.

Lemma 3.4. Let � be a Polish space and @ a convex, lower semicontinuous
function mapping � ��� into �−∞�∞� such that @ is not identically equal
to ∞; in particular, let @ equal the convex rate function I on � �� �. Define
@∗� 	b��� �→ �−∞�∞� by

@∗�f� �= sup
ν∈� ���

{∫
�
fdν − @�ν�

}
�

Then for all ν ∈ � ���

@�ν� = sup
f∈	b���

{∫
�
fdν − @∗�f�

}
�

Proof. Let � ��� denote the space of finite signed measures on �. With
the topology of weak convergence, � ��� is a locally convex, Hausdorff topolog-
ical space whose topological dual is 	b��� ([4], Lemma 3.2.3). We extend @ to
a convex, lower semicontinuous function @̃ on � ��� by defining @̃�ν� �= @�ν�
for ν ∈ � ��� and @̃�ν� �= ∞ for ν ∈ � ��� \ � ���. Then for any f ∈ 	b���

@̃∗�f� �= sup
ν∈� ���

{∫
�
fdν − @̃�ν�

}
= @∗�f��

and thus by ([4], Theorem 2.2.15), for any ν ∈ � ���

@̃�ν� = sup
f∈	b���

{∫
�
fdν − @̃∗�f�

}
= sup

f∈	b���

{∫
�
fdν − @∗�f�

}
�

Taking ν ∈ � ��� completes the proof. ✷

We now prove a Jensen-type inequality that involves the convex rate func-
tion I on � �� �. This is needed in the proof of the large deviation lower bound
and in the proof that J has compact level sets.

Lemma 3.5. Let γ be a probability measure on � and τ a stochastic kernel
on � given � . Then∫

�
I�τ�x� ·��γ�dx� ≥ I

(∫
�
τ�x� ·�γ�dx�

)
�

Remark 3.6. In the case that I�·� = R�· �ρ� for some ρ ∈ � �� �, the lemma
states the well-known fact that R�µ �γ × ρ� ≥ R�µ2 �ρ�. This follows immedi-
ately from the chain rule and the Donsker–Varadhan variational formula for
the relative entropy.
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Proof. By Lemma 3.4, for any f ∈ 	b�� �∫
�
I�τ�x� ·�� θ�dx� ≥

∫
�

[∫
�
f�y�τ�x�dy� − I∗�f�

]
θ�dx�

=
∫
�
f�y�dγ�y� − I∗�f��

where γ�·� �= ∫
� τ�x� ·�θ�dx�. Taking the supremum over f ∈ 	b�� � gives∫

�
I�τ�x� ·��θ�dx� ≥ I�γ� = I

(∫
�
τ�x� ·� θ�dx�

)
�

This completes the proof. ✷

3.2. Proof of the large deviation lower bound. Under parts (i)–(iii) of Con-
dition 2.1 we prove that for any open subset G of �θ�� × � �

lim inf
r→∞ lim inf

q→∞
1

2rq
logP�Wr�q ∈ G� ≥ −J�G��(3.2)

Let µ = θ ⊗ τ be any measure in G and choose ε > 0 so that B�θ ⊗ τ� ε� ⊂ G.
Also choose N ∈ N such that for all r ≥ N B�θ⊗ τr� ε/2� ⊂ B�θ⊗ τ� ε�, where
τr is the stochastic kernel on � given � defined in Lemma 3.2 in terms of τ.
Such an N exists because of the weak convergence θ ⊗ τr ⇒ θ ⊗ τ proved in
that lemma. Finally, define the open set

Gr�ε
�=
{
�ν1� � � � � ν2r� ∈ � �� �2r � θ�dx� ⊗

2r∑
k=1

1Dr�k
�x�νk�dy�

∈ B�θ ⊗ τr� ε/2�
}
�

(3.3)

Then for all r ≥ N Lemmas 3.3 and 3.5 yield

lim inf
q→∞

1
2rq

logP
{
Wr�q ∈ G

}

≥ lim inf
q→∞

1
2rq

logP
{
Wr�q ∈ B�θ ⊗ τr� ε/2�

}

= lim inf
q→∞

1
2rq

logP
{�Lq�1� � � � �Lq�2r� ∈ Gr�ε

}

≥ − 1
2r

inf
{ 2r∑
k=1

I�νk�� �ν1� � � � � ν2r� ∈ Gr�ε

}
(3.4)

≥ − 1
2r

2r∑
k=1

I�τrk�

= − 1
2r

2r∑
k=1

I

(
2r

∫
Dr�k

τ�x� ·�θ�dx�
)
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≥ −
2r∑
k=1

∫
Dr�k

I�τ�x� ·��θ�dx�

= −
∫
�
I�τ�x� ·�� θ�dx�

= −J�µ��
This implies that

lim inf
r→∞ lim inf

q→∞
1

2rq
logP�Wr�q ∈ G� ≥ −J�µ��

Since µ ∈ G is arbitrary, the proof of the lower bound (3.2) is complete. ✷

For use in Section 3.5, we record the content of display (3.4).

Corollary 3.7. For any open subset G of �θ�� × � � and µ ∈ G, there
exists N ∈ N such that for all r ≥ N

lim inf
q→∞

1
q

logP�Wr�q ∈ G� ≥ −2rJ�µ��

3.3. Proof of exponential tightness. We prove that for each fixed r ∈ N the
sequence �Wr�q� q ∈ N� is exponentially tight. For this proof Condition 2.1
is not needed. The exponential tightness will be used in Section 3.4 to pass
from the large deviation upper bound for fixed r and for compact subsets of
�θ�� ×� � to the large deviation upper bound for fixed r and for closed subsets
of �θ�� × � �.

Lemma 3.8. Fix r ∈ N. Then for each M ∈ �0�∞� there exists a compact
subset KM of �θ�� × � � such that

lim sup
q→∞

1
q

logP
{
Wr�q ∈ �KM�c} ≤ −M�

Proof. Since Lq�1� � � � �Lq�2r have the same distributions as Lq and �Lq�
q ∈ N� satisfies the LDP on � �� �, there is a compact subset DM of � �� �
such that for all k ∈ �1� � � � �2r� ([14], Lemma 2.6)

lim sup
q→∞

1
q

logP
{
Lq�k ∈ �DM�c} ≤ −M�

Prohorov’s theorem implies that for each n ∈ N there exists a compact subset
An of � such that

inf
σ∈DM

σ�An� ≥ 1 − 1
n
�

Hence

DM ⊂ DM
�=

∞⋂
n=1

{
σ ∈ � �� �� σ�An� ≥ 1 − 1

n

}
�



LARGE DEVIATIONS FOR RANDOM MEASURES 317

Since DM is a compact subset of � �� �,

D̃M
�= {

µ ∈ �θ�� × � �� µ2 ∈ DM

}
is a compact subset of �θ�� ×� �. The convexity of DM now allows us to write

lim sup
q→∞

1
q

logP
{
Wr�q ∈ �D̃M�c}

= lim sup
q→∞

1
q

logP
{

1
2r

2r∑
k=1

Lq�k ∈ �DM�c
}

≤ lim sup
q→∞

1
q

logP
{ 2r⋃
k=1

{
Lq�k ∈ �DM�c}}

= max
k=1�����2r

lim sup
q→∞

1
q

logP
{
Lq�k ∈ �DM�c}

≤ max
k=1�����2r

lim sup
q→∞

1
q

logP
{
Lq�k ∈ �DM�c}

≤ −M

This yields the lemma with KM
�= D̃M. ✷

3.4. Proof of the large deviation upper bound. The large deviation upper
bound states that for any closed subset F of �θ�� × � �

lim sup
r→∞

lim sup
q→∞

1
2rq

logP�Wr�q ∈ F� ≤ −J�F��(3.5)

The upper bound is first derived for compact subsets of �θ�� ×� �, for which
it suffices to prove the bound for an arbitrary closed ball in �θ�� ×� �. As we
will see, the exponential tightness proved in Lemma 3.8 will then yield (3.5)
for all closed subsets F of �θ�� × � �. Throughout this section we assume
only part (i) of Condition 2.1.

For any µ = θ ⊗ τ ∈ �θ�� × � �, ε > 0, and r ∈ N, we define the closed set

Fr�ε
�=
{
�ν1� � � � � ν2r� ∈ � �� �2r � θ�dx� ⊗

2r∑
k=1

1Dr�k
�x�νk�dy� ∈ B̄�µ� ε�

}
�

We also define �θ� r�� × � � to be the set of µ ∈ �θ�� × � � having the form

µ�dx × dy� = θ�dx� ⊗ ν�x�dy� where ν�x�dy� =
2r∑
k=1

1Dr�k
�x� νk�dy�
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for some ν1� � � � � ν2r ∈ � �� �. By Lemma 3.3, since θ�Dr�k� = 1/2r,

lim sup
q→∞

1
q

logP
{
Wr�q ∈ B̄�µ� ε�}

= lim sup
q→∞

1
q

logP
}�Lq�1� � � � �Lq�2r� ∈ Fr�ε

}

≤ −2r inf
{

1
2r

2r∑
k=1

I�νk�� �ν1� � � � � ν2r� ∈ Fr�ε

}

= −2r inf
{∫

�
I�ν�x� ·�� θ�dx�� θ�dx� ⊗ ν�x�dy� ∈ B̄�µ� ε� ∩ �θ� r�� × � �

}

≤ −2r inf
{∫

�
I�ν�x� ·��θ�dx�� θ�dx� ⊗ ν�x�dy� ∈ B̄�µ� ε�

}

= −2rJ
(
B̄�µ� ε�)�

Since B̄�µ� ε� is an arbitrary closed ball in �θ�� ×� �, the last display implies
that for any r ∈ N and any compact subset K of �θ�� × � �

lim sup
q→∞

1
q

logP�Wr�q ∈ K� ≤ −2rJ�K��(3.6)

Thus, by the exponential tightness proved in Lemma 3.8, for all r ∈ N and all
closed subsets F of �θ�� × � � ([4], Lemma 2.1.5)

lim sup
q→∞

1
q

logP�Wr�q ∈ F� ≤ −2rJ�F��

Dividing both sides of this inequality by 2r and taking the limit superior as
r → ∞ yield the desired upper bound (3.5). ✷

3.5. Proof of compact level sets of J. The main effort in this subsection
will be to prove that under Condition 2.1,

J�µ� �=
∫
�
I�τ�x� ·�� θ�dx�

is lower semicontinuous. By adapting Lemma 2.1.5 in [4], we now show that
the lower semicontinuity of J implies that J has compact level sets. According
to Lemma 3.8, for each r ∈ N and M ∈ 	0�∞� there exists a compact subset
K2r�M+1� in �θ�� × � � such that

lim sup
q→∞

1
q

logP
{
Wr�q ∈ �K2r�M+1��c

} ≤ −2r�M + 1��

Given δ ∈ �0�1�, choose µ ∈ �K2r�M+1��c such that

J�µ� ≤ J
(�K2r�M+1��c

) + δ�
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Then by Corollary 3.7 there exists N ∈ N such that for all r ≥ N

lim inf
q→∞

1
q

logP
{
Wr�q ∈ �K2r�M+1��c

} ≥ −2rJ�µ� ≥ −2rJ
(�K2r�M+1��c

) − 2rδ�

Hence for any r ≥ N

−2r�M + 1� ≥ lim sup
q→∞

1
q

logP
{
Wr�q ∈ �K2r�M+1��c

}

≥ lim inf
q→∞

1
q

logP
{
Wr�q ∈ �K2r�M+1��c

}
≥ −2rJ

(�K2r�M+1��c
) − 2rδ�

It follows that J��K2r�M+1��c� ≥ M + 1 − δ > M or that{
µ ∈ �θ�� × � �� J�µ� ≤ M

} ⊂ K2r�M+1��

The lower semicontinuity of J and the compactness of K2r�M+1� imply that
�µ� J�µ� ≤ M� is compact.

The proof that J is lower semicontinuous uses the next weak convergence
result.

Lemma 3.9. Let �γn� n ∈ N� be a sequence of probability measures on a
Polish space � that converges weakly to γ and let B be a Borel subset of �
satisfying γ�∂B� = 0. Then as subprobability measures on � γn�B ∩ ·� ⇒
γ�B ∩ ·�.

Proof. By the portmanteau theorem it suffices to prove that for any closed
subset F of �

lim sup
n→∞

γn�B ∩ F� ≤ γ�B ∩ F��

We denote the metric on � by m. As pointed out on page 14 of [1], there exists
a sequence δk → 0 such that each set Fk

�= �x ∈ �� m�x�F� ≤ δk� satisfies
γ�∂Fk� = 0. Since

γ�∂�B ∩ Fk�� ≤ γ�∂B� + γ�∂Fk� = 0

and γn ⇒ γ,

lim sup
n→∞

γn�B ∩ F� ≤ lim sup
n→∞

γn�B ∩ Fk� = lim
n→∞γn�B ∩ Fk�

= γ�B ∩ Fk��
Sending k → ∞ completes the proof of the lemma since B ∩ Fk ↓ B ∩ F and
thus γ�B ∩ Fk� ↓ γ�B ∩ F�. ✷

Proof that J is lower semicontinuous. We prove the lower semicontinuity via
Lemma 3.9 and the following lemma, which produces a sequence �Jr� r ∈ N�
of functions mapping �θ�� × � � into R with three properties. Properties (a)
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and (b) imply that J = supr∈N Jr. The lower semicontinuity of each Jr proved
in (c) yields the lower semicontinuity of J. Part (iv) of Condition 2.1 is used
to prove property (c).

Lemma 3.10. There exists a sequence �Jr� r ∈ N� of functions mapping
�θ�� × � � into R with the following three properties:

(a) Jr ≤ J;
(b) lim inf r→∞ Jr ≥ J;
(c) Jr is lower semicontinuous.

Proof. For each r ∈ N, k ∈ �1� � � � �2r�, and µ = θ ⊗ τ ∈ �θ�� × � �,
let θr�k�dx� denote the probability measure 2r1Dr�k

�x�θ�dx� on � and let
τr�x�dy� be the stochastic kernel defined in Lemma 3.2 in terms of τ. We
define

Jr�µ� �=
∫
�
I�τr�x� ·�� θ�dx� = 1

2r

2r∑
k=1

I

(∫
�
τ�x� ·�θr�k�dx�

)
�

We prove that Jr has the three properties given in the statement of
Lemma 3.10.

Property (a). This is a consequence of Lemma 3.5, which yields

Jr�µ� = 1
2r

2r∑
k=1

I

(∫
�
τ�x� ·� θr�k�dx�

)
≤ 1

2r

2r∑
k=1

∫
�
I�τ�x� ·�� θr�k�dx� = J�µ��

Property (b). Since τr�x� ·� ⇒ τ�x� ·� θ-a.s. for x ∈ � (Lemma 3.2), Fatou’s
lemma and the nonnegativity and lower semicontinuity of I imply

lim inf
r→∞ Jr�µ� = lim inf

r→∞

∫
�
I
(
τr�x� ·�)θ�dx� ≥

∫
�
I�τ�x� ·��θ�dx� = J�µ��

Property (c). We must show that if µn = θ⊗ τn ∈ �θ�� × � � ⇒ µ = θ⊗ τ,
then lim infn→∞ Jr�µn� ≥ Jr�µ�. Since I is nonnegative and lower semicon-
tinuous, this reduces to showing for all k ∈ �1� � � � �2r� that as probability
measures on �∫

�
τn�x� ·�θr�k�dx� = 2rµn�Dr�k × ·� = 2rµn

{�Dr�k × � � ∩ �� × ·�}
⇒ 2rµ

{�Dr�k × � � ∩ �� × ·�}
= 2rµ�Dr�k × ·� =

∫
�
τ�x� ·� θk� r�dx��

Since by part (iv) of Condition 2.1 µ�∂�Dr�k × � �� = θ�∂Dr�k� = 0, the weak
convergence in the last display is a consequence of Lemma 3.9. ✷

With this proof that J has compact level sets, the proof of Theorem 2.4 is
complete.
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4. Restatement of results in Section 2. Theorem 2.4 and Corollary
2.5 state the two-parameter LDP and Laplace principle for the sequence of
random probability measures

Wr�q�dx × dy� �= θ�dx� ⊗
2r∑
k=1

1Dr�k
�x�Lq�k�dy��

which take values in �θ�� ×� �. In those results it is assumed that Lq�1�Lq�2�
� � � �Lq�2r are i.i.d. copies of a random measure Lq on � and that �Lq� q ∈ N�
satisfies the LDP on � �� � with a convex rate function I. In preparation for
applications to the statistical mechanics of turbulence [2], we now restate
those results for a class of processes defined like Wr�q but with Lq�1� � � � �Lq�2r

replaced by other sequences of random measures which satisfy the LDP with
different scaling constants.

These applications all involve a sequence of random measures �Yn�n ∈ N�
for which the LDP will be proved in a novel way; namely, by approximat-
ing it by a suitable doubly indexed sequence for which the LDP is read-
ily available. The doubly indexed sequences that typically arise are defined
next. Let ���� �P� be a probability space, � a Polish space and I a con-
vex rate function on � �� �. For each n and r in N, we consider a sequence
Ln�r�1�Ln� r�2� � � � �Ln� r�2r of independent random variables mapping � into
� �� � with the property that for each r ∈ N and k = 1�2� � � � �2r� �Ln�r� k� n ∈
N� satisfies the LDP on � �� � with scaling constants n/2r and rate function
I. In other words, for any closed subset F of � �� �

lim sup
n→∞

1
n/2r

logP�Ln�r� k ∈ F� ≤ −I�F��

and for any open subset G of � �� �

lim inf
n→∞

1
n/2r

logP�Ln�r� k ∈ G� ≥ −I�G��

An example of such a sequence Ln�r� k is given in Example 4.4. Finally, let �
be a Polish space, θ a probability measure on � and 0r

�= �Dr�k� k = 1� � � � �2r�
a partition of � satisfying Condition 2.1. The process whose asymptotics we
will analyze in this section is the doubly indexed sequence

Wn�r�dx × dy� �= θ�dx� ⊗
2r∑
k=1

1Dr�k
�x�Ln�r� k�dy��(4.1)

which takes values in �θ�� × � �. As noted in Remark 2.2, the assumptions
on Ln�r� k can be considerably weakened.

The two-parameter large deviation theorem and Laplace principle for Wn�r

are stated next. The function J in (4.2) coincides with the function given in
Definition 2.3.

Theorem 4.1. Let Wn�r be defined by (4.1). We assume that for each n and
r in N Ln�r�1�Ln� r�2� � � � �Ln� r�2r are independent, that there exists a convex
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rate function I such that for each k ∈ �1� � � � �2r� �Ln�r� k� n ∈ N� satisfies the
LDP on � �� � with scaling constants n/2r and rate function I, and that the
partitions 0r = �Dr�k� satisfy Condition 2.1. Then the following conclusions
hold:

(a) For µ = θ ⊗ τ ∈ �θ�� × � �

J�µ� �=
∫
�
I�τ�x� ·�� θ�dx�(4.2)

is a convex rate function.
(b) The sequence Wn�r satisfies the two-parameter LDP on �θ�� ×� � with

rate function J in the following sense. For any closed subset F of �θ�� × � �

lim sup
r→∞

lim sup
n→∞

1
n

logP�Wn�r ∈ F� ≤ −J�F��

and for any open subset G of �θ�� × � �

lim inf
r→∞ lim inf

n→∞
1
n

logP�Wn�r ∈ G� ≥ −J�G��

(c) The sequence Wn�r satisfies the two-parameter Laplace principle on
�θ�� × � � with rate function J in the following sense. For any bounded con-
tinuous function h mapping �θ�� × � � into R

lim
r→∞ lim

n→∞
1
n

log
∫
�θ�� ×� �

exp	nh�µ��P�Wn�r ∈ dµ� = sup
µ∈�θ�� ×� �

{
h�µ� − J�µ�}�

As in Corollary 2.6, Theorem 4.1 implies a number of related asymptotic
results, which we will not state. The Laplace principle in part (c) of Theorem
4.1 is a direct consequence of the LDP in part (b) and is proved exactly as
in the one-parameter case ([6], Section 1.2). Since the proofs of parts (a) and
(b) of Theorem 4.1 are completely analogous to the proof of Theorem 2.4, we
restrict our comments, omitting all details.

The proof of Theorem 4.1 relies on a number of lemmas. Of these, Lem-
mas 3.1, 3.2, 3.4, and 3.5 remain valid without change in the present setting.
Lemma 3.3 is replaced by the following. It is a consequence of Lemmas 2.5,
2.7, 2.8 in [14] and the assumptions that for each n and r� Ln� r�1� � � � �Ln� r�2r

are independent and that for each r and k� �Ln�r� k� n ∈ N� satisfies the LDP
on � �� � with scaling constants n/2r and rate function I.

Lemma 4.2. For each r the sequence ��Ln�r�1� � � � �Ln� r�2r�� n ∈ N� satisfies

the LDP on � �� �2r
with scaling constants n/2r and rate function

�ν1� � � � � ν2r� �→
2r∑
k=1

I�νk��
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The proof of the large deviation lower bound in Theorem 4.1 is similar to
the proof in Section 3.2; Lemma 4.2 is used in place of Lemma 3.3. Lemma 3.8,
an exponential tightness result used to prove Theorem 2.4, is replaced by the
following, the proof of which is omitted.

Lemma 4.3. Fix r ∈ N. Then for each M ∈ �0�∞� there exists a compact
subset KM of �θ�� × � � such that

lim sup
n→∞

1
n/2r

logP
{
Wn�r ∈ �KM�c} ≤ −M�

The proof of the large deviation upper bound in Theorem 4.1 is similar to
the proof in Section 3.4; Lemmas 4.2 and 4.3 are used in place of Lemmas 3.3
and 3.8. Finally, the proof that J has compact levels sets is similar to the proof
in Section 3.5 and is omitted.

We end this section by giving an example of a sequence Ln�r�1� � � � �Ln� r�2r

satisfying the hypotheses of Theorem 4.1.

Example 4.4. Each of the four cases considered in Example 2.7 gives
rise to random measures Ln�r�1� � � � �Ln� r�2r satisfying the hypotheses of The-
orem 4.1. For simplicity we treat only the analogue of case (a). For each r ∈ N

and k ∈ �1� � � � �2r�� let �α�n� r� k�� n ∈ N� be a sequence satisfying

lim
n→∞

α�n� r� k�
n/2r

= 1�(4.3)

and for each n and r in N let A�n� r�1�� � � � �A�n� r�2r� be a sequence of disjoint
subsets of N such that card�An�r� k� = α�n� r� k�. For example, define

An�r� k
�=
{
i ∈ N� n�k − 1�

2r
< i ≤ nk

2r

}
and α�n� r� k� �= card�An�r� k��

In this case (4.3) is valid because
n

2r
− 1 ≤ α�n� r� k� ≤ n

2r
+ 1�

Now let � be a Polish space and �ζi� i ∈ N� a sequence of i.i.d. random
variables taking values in � and having common distribution ρ. For each n
and r in N we define for k ∈ �1� � � � �2r� the empirical measures

Ln�r� k
�= 1
α�n� r� k�

∑
i∈A�n� r� k�

δζi�

which take values in � ���. Then Ln�r�1� � � � �Ln� r�2r are independent, and for
each r and k Sanov’s theorem implies that �Ln�r� k� n ∈ N� satisfies the LDP
on � ��� with scaling constants α�n� r� k� and the convex rate function I

�=
R�· �ρ�. Since α�n� r� k�/�n/2r� → 1 as n → ∞, �Ln�r� k� n ∈ N� also satisfies
the LDP on � ��� with scaling constants n/2r. According to Theorem 4.1,
Wn�r defined with these Ln�r� k satisfies the two-parameter LDP and Laplace
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principle on �θ�� ×� � with rate function J�µ� = R�µ � θ×ρ�. This completes
the example.
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