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We study the Poisson boundary (≡ representation of bounded harmonic
functions) of Markov operators on discrete state spaces that are invariant
under the action of a transitive group of permutations. This automorphism
group is locally compact, but not necessarily discrete or unimodular. The
main technical tool is the entropy theory which we develop along the same
lines as in the case of random walks on countable groups, while, however, the
implementation is different and exploits discreteness of the state space on the
one hand and the path space of the induced random walk on the nondiscrete
group on the other. Various new examples are given as applications, including
a description of the Poisson boundary for random walks on vertex-transitive
graphs with infinitely many ends and on the Diestel–Leader graphs.

1. Introduction. The Poisson boundary of a Markov operator P is defined
as the space of ergodic components of the time shift in the path space. Via
the Poisson formula the space of bounded P -harmonic functions is isometric
to the space of bounded measurable functions on the Poisson boundary. This
characterizes the Poisson boundary up to a measure-theoretic isomorphism. It
also has a topological description in terms of the Martin boundary, where it
consists of the set of possible limits of the Markov chain at the boundary together
with the family of corresponding harmonic hitting (limit) distributions; see, for
example, [14]. However, we emphasize that the Poisson boundary is primarily
a measure-theoretical notion and all the objects connected with the Poisson
boundary are defined modulo subsets of measure 0 (see [24] for more details).

The principal purpose of this paper is to present methods for determining the
Poisson boundary in the case when P is a (space) homogeneous Markov operator,
that is, when there is a locally compact group G of permutations of X that acts
transitively on X and leaves P invariant:

p(gx,gy) = p(x, y) ∀x, y ∈ X, g ∈ G.

(In this paper we always deal with Markov chains which are time homogeneous
in the traditional sense; that is, their transition probabilities do not depend on
time. “Homogeneous” will always mean space homogeneous.) This comprises
the case of random walks on countable groups, where the Poisson boundary has
been studied extensively by Kaimanovich and Vershik [29], Ledrappier [32] and
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Kaimanovich [28]; see also the survey [26]. However, there are also interesting
cases that do not arise in this way, where the group G is nondiscrete and may even
be a nonunimodular group; that is, its left and right Haar measures do not coincide.

The typical setting where our results apply is when X carries the structure of a
connected, locally finite, infinite, vertex-transitive graph and P is adapted to the
graph structure in the sense that the transitive group G that leaves P invariant is
a subgroup of the graph automorphism group. Recall that the latter is the group
of self-isometries of X with respect to the graph metric d(·, ·), where d(x, y)

is the minimal length (number of edges) of a path connecting x and y. (In this
situation the Markov chain is usually called “random walk.”) A basic assumption
that we need here is finiteness of the first moment of P , that is, the number∑

y d(x, y)p(x, y).
The reader who is interested in concrete examples might first look at Section 6.

Among other things, we show that for homogeneous random walks on graphs with
infinitely many ends, the Poisson boundary coincides with the full space of ends
with the exception of a “degenerate” (but interesting) treelike case, where the
Poisson boundary may be trivial or the full space of ends according to the sign
of the modular drift (see Section 5 for a definition). Analogous results hold for
random walks on hyperbolic graphs, with the hyperbolic boundary in the place of
the space of ends, but in this situation we have less knowledge of examples for the
“degenerate” case.

Another example is the family of Diestel–Leader graphs, which are in some
sense relatives of the amenable Baumslag–Solitar groups, but with nondiscrete
automorphism groups. There, the Poisson boundary may have three different
forms, again according to the sign of the modular drift.

Homogeneous Markov chains are intermediate between random walks on
countable groups and random walks on general locally compact groups: although
the state space X is countable, the Poisson boundary of the operator P coincides
with the Poisson boundary of a certain induced random walk on the nondiscrete
automorphism group G. The main technical tool used in the paper is the entropy
theory which we develop along the same lines as in the case of random walks on
countable groups (cf. [28] and [29]). However, the implementation is different:
instead of the path space of the original Markov chain, we have to work with the
path space of the induced random walk on G. On the other hand, the fact that G

has a countable homogeneous space X still allows us to avoid technical problems
arising in the entropy theory of random walks on general locally compact groups
(cf. [24] and [26]).

A natural extension of the class of homogeneous Markov chains is that of
quasi-homogeneous chains for which the transition probabilities are preserved by
a group G acting on X with a finite number of orbits. All the results of our paper
carry over to such chains as well (more generally, one may assume that the quotient
chain on the space of orbits has a finite stationary measure). This can be done either
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directly (cf. [33] for the case of covering graphs) or by considering the induced
chain on a single orbit (cf. [25]).

The plan of the paper is as follows. In Section 2 we discuss homogeneous
Markov operators, their automorphism groups and the associated hypergroups. In
Section 3 we present the basic features of the Poisson boundary, and in Section 4
one of the main tools for its study, namely, the entropy. The principal results are
given in Section 5, concerning applications of the entropy theory (entropy and
growth, rate of escape, modular drift and spectral radius) and, in particular, criteria
for identifying the Poisson boundary. As mentioned, Section 6 contains many
examples and applications as well as additional remarks and an outline of some
further generalizations.

2. Homogeneous Markov operators and their symmetry groups.

2.1. Permutation groups. For a countable set X, denote by F(X) the semi-
group of all self-maps of X endowed with the topology of pointwise convergence,
and by S(X) ⊂ F(X) the group of all (not necessarily finitely supported!) per-
mutations of X. Note that the group S(X) is not closed in F(X) [if a sequence
gn ∈ S(X) converges to ϕ ∈ F(X), then ϕ is obviously injective, but does not have
to be surjective]. A closed subset U ⊂ F(X) is compact iff all its orbits Ux, x ∈ X,
are finite. Given a subgroup G ⊂ S(X), denote by

Gx = {g ∈ G :gx = x}, x ∈ X,

its point stabilizers.
In this paper we shall only consider subgroups G ⊂ S(X) such that

(i) G is transitive on X;
(ii) G is closed in the topology of pointwise convergence in F(X);

(iii) all point stabilizers Gx , x ∈ X, act on G with finite orbits.
(2.1)

In particular, if a group G satisfies conditions (2.1), then its point stabilizers are
compact, so that G is locally compact. A neighborhood base at the identity of G

is given by the family of all pointwise stabilizers of finite sets, so that G is totally
disconnected. We emphasize that for us the most interesting situation is when G

is uncountable; otherwise, the point stabilizers are finite, and X is just the quotient
of a countable group by a finite subgroup.

REMARK. A transitive subgroup of S(X) whose point stabilizers have finite
orbits need not be closed [for an example take a countable transitive subgroup with
infinite point stabilizers in a group satisfying (2.1)]. Also, a closed locally compact
transitive subgroup need not have compact point stabilizers. For example, there are
groups acting on nonlocally finite trees such that the edge stabilizers are compact,
but not the vertex stabilizers. As a matter of fact, any finitely generated group with
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infinitely many ends acts with finite edge stabilizers and with one or two orbits on
a tree (see, e.g., [11]), but the vertex stabilizers will be finite only when the group
is virtually free.

We fix a reference point o ∈ X (its choice is irrelevant by the transitivity
assumption) and denote by K = Go its stabilizer (another choice of o gives a
conjugate of K). The group K is open and compact, so that we may normalize the
left-invariant Haar measure mG on G in such a way that mG(K) = 1. In particular,
the restriction of mG to K is the normalized Haar measure mK on K . Denote by
m̂G the involution of mG, that is, its image under the map g 	→ g−1, and by

�(g) = �G(g) = dmG

dm̂G

(g), g ∈ G,

the modular function of the group G.

REMARK. In some situations K is a maximal compact subgroup of G, but this
is by no means the case in general. For example, if a countable group acts on itself
by translations, then the point stabilizers are trivial, but the group may well have
finite (≡ compact) subgroups.

For any two points x, y ∈ X, the subgroup Gx decomposes into a disjoint
union of |Gxy| left cosets of the subgroup Gx,y = Gx ∩ Gy (here |A| denotes
the cardinality of a finite set A). Therefore,

mG(Gx) = mG

({g :gx = y}) = |Gxy|mG(Gx,y).

Comparing the measures mG of the set {g :gx = y} and its inverse {g :gy = x},
one arrives at the following formula for the modular function on G ([39] and [43]):

�(g) = �[x,gx] ∀x ∈ X, g ∈ G,(2.2)

where

�[x, y] = |Gxy|
|Gyx| = mG(Gx)

mG(Gy)
, x, y ∈ X.(2.3)

[We use the same notation � for both the modular function on G and the
function (2.3) which should not lead to confusion; cf. the discussion of the modular
function on double-coset hypergroups in Section 2.4 and the discussion of general
multiplicative cocycles on G in Section 2.5.] One also immediately checks the
following result.

PROPOSITION 2.4. The function (2.3) is a G-invariant multiplicative cocycle
on X, that is, �[x, y]�[y, z] = �[x, z] and �[gx,gy] = �[x, y] for any
x, y, z ∈ X and g ∈ G.
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2.2. Homogeneous Markov operators. A Markov chain on a countable set X

is determined by its transition probabilities

p(x, y) ≥ 0, x, y ∈ X,
∑
y

p(x, y) = 1,

or, equivalently, by the associated Markov operator

Pf (x) = ∑
y

p(x, y)f (y)

on the space �∞(X), whose adjoint acts on the space of measures θ on X by
θP (y) = ∑

θ(x)p(x, y). We shall always assume irreducibility; that is, for every
x, y ∈ X, there is n such that p(n)(x, y) = δxP n(y) > 0.

Given a Markov operator P = (p(x, y))x,y∈X and an initial distribution θ on X,
we denote by Pθ the corresponding probability measure in the space �X = XZ+ of
paths x = (x0, x1, . . .) of the associated Markov chain, where Z+ = {0,1,2, . . .}.
Thus, the projections xn are X-valued random variables with Pθ [x0 = x] = θ(x)

and Pθ [xn+1 = y|xn = x] = p(x, y), where x, y ∈ X. As usual, when θ = δx we
write Px instead of Pθ . The Px -distribution of xn is the n-step transition probability
πx

n = p(n)(x, ·).
We denote by

Aut(X,P ) = {
g ∈ S(X) :p(x, y) = p(gx,gy) ∀x, y ∈ X

}
the group of symmetries of a Markov operator P . In other words, Aut(X,P )

consists of those elements from S(X) whose action on the space �∞(X) commutes
with P .

LEMMA 2.5. If the Markov operator P is irreducible, then the point
stabilizers of G = Aut(X,P ) have finite orbits.

PROOF. Letx, y ∈ X.There isn such thatp(n)(x, y) > 0. We have p(n)(x, y) =
p(n)(x, gy) for any g ∈ Gx . Therefore, |Gxy| ≤ 1/p(n)(x, y). �

LEMMA 2.6. If the Markov operator P is irreducible, then the group
G = Aut(X,P ) is closed.

PROOF. Clearly, we only have to prove the closedness of all point stabiliz-
ers Gx . Let gn be a pointwise convergent sequence in Gx ; that is, there exists
ϕ ∈ F(x) such that gny → ϕy for all y ∈ X. Then ϕ preserves the transition proba-
bilities and is injective, so that we just have to check that ϕ is surjective. The latter
follows from the fact that X splits into a disjoint union of finite orbits Oi of the
group Gx . Since GxOi = Oi , we have that ϕOi ⊂ Oi for any orbit Oi . Injectivity
of ϕ on the whole space X implies injectivity of its restriction to any Oi . However,
since Oi is finite, any self-injection of Oi must be a bijection. �
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A Markov operator P is called homogeneous if the group Aut(X,P ) acts on X

transitively. Then Lemmas 2.5 and 2.6 imply the following.

PROPOSITION 2.7. If a Markov operator P on a countable set X is
homogeneous and irreducible, then the group Aut(X,P ) satisfies conditions (2.1).

In the remainder of this article, we shall only consider operators satisfying the
conditions of Proposition 2.7.

EXAMPLES 2.8. (i) A graph structure on X is determined by a symmetric
subset E ⊂ X × X. The latter is the set of edges of a graph with vertex set X.
We write Aut(X,E) ⊂ S(X) for the group of isomorphisms of the graph (X,E).
Suppose that (X,E) is locally finite; that is, for any vertex x ∈ X, its degree
(i.e., the number of neighbors) deg(x) is finite. Then one can define the Markov
operator PE with the transition probabilities

p(x, y) =
{

1/ deg(x), (x, y) ∈ E,

0, otherwise.

The associated Markov chain on X is called the simple random walk on X. It is
irreducible if and only if the graph is connected, and Aut(X,PE) = Aut(X,E).

(ii) Obviously, the graph structure E can be uniquely recovered from the
operator PE . However, not every Markov operator can be obtained in this
way. Given a Markov operator P : �∞(X)←↩, let EP = {(x, y) :p(x, y) >

0 or p(y, x) > 0}. Then Aut(X,P ) ⊂ Aut(X,EP ), but equality does not hold in
general.

(iii) Let G be a countable group, and µ a probability measure on G. Then
the Markov operator Pµ on G with transition probabilities p(x, y) = µ(x−1y)

is called the (right) random walk on G with law µ. Obviously, in this situation
p(gx,gy) = p(x, y) for any g ∈ G, so that Aut(G,Pµ) ⊃ G and the operator P is
homogeneous. It is also clear that Aut(G,Pµ) contains the group Aut(G)µ of all
automorphisms of G which preserve the measure µ. However, Aut(G,Pµ) may
be much bigger than the group generated by G and Aut(G)µ. For an example take
the simple random walk on the free group F2 with two generators; that is, the
measure µ is equidistributed on the set of generators and their inverses. In this
case Aut(G)µ consists just of the homomorphisms induced by the permutations of
the set of generators; on the other hand, the group Aut(G,Pµ) coincides with the
group of automorphisms of the homogeneous tree of degree 4 (in particular, it is
uncountable).

More specific examples will be studied in Section 6.



SPACE HOMOGENEOUS MARKOV CHAINS 329

2.3. The correspondence with random walks on G. For what follows we
do not really need to consider the full automorphism group of a homogeneous
irreducible Markov operator, but any closed transitive subgroup that suits our
purposes. Moreover, we may even take a more abstract point of view based on
the following elementary observation.

PROPOSITION 2.9. Let G be a totally disconnected, locally compact group
with countable base of the topology, K a compact open subgroup, and X = G/K .
Denote by ": G → S(X) the group homomorphism defined as

"(g1) · g2K = g1g2K.

Then the group "(G) ⊂ S(X) satisfies conditions (2.1).

We shall always assume that the group G satisfies the conditions of Proposi-
tion 2.9 and will be interested in G-invariant Markov operators on the countable
set X = G/K . Put o = K (the image of the group identity under the natural pro-
jection g 	→ gK) as the reference point in X. For any x ∈ X, choose gx ∈ G such
that x = gxo and let

Ax = {g ∈ G :go = x} = gxK.

As in Section 2.1, normalize the left Haar measure mG by putting mG(K) = 1
and denote by mx the restrictions of the measure mG onto the sets Ax . Then mo

coincides with the normalized Haar measure on the compact group K = Ao, so
that it is bi-K-invariant. Therefore, the measures mx = gxmo are right-K-invariant
probability measures; moreover, by the uniqueness of the Haar measure on K ,
the measures mx can be characterized as the unique right-K-invariant probability
measures on the sets Ax .

Recall that any probability measure µ on G determines the right random walk
(G,µ) [cf. Example 2.8 (iii)]: the probability that the random walk goes from
a point g ∈ G to a measurable subset A ⊂ G is gµ(A) = µ(g−1A). We denote
by �G the space of increments g = (g1, g2, . . .) ∈ GN of the random walk (G,µ)

endowed with the Bernoulli product measure Q = µN.

PROPOSITION 2.10. Let µ be a probability measure on G. Then the image
of the right random walk (G,µ) under the projection g 	→ go is a Markov chain
on X if and only if

µ(gK) = µ(kgK) ∀g ∈ G, k ∈ K.(2.11)

In this case the transition probabilities of the associated Markov operator P = Pµ

on X are

p(go,ho) = µ(g−1hK).(2.12)
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PROOF. This is a special case of the general factorization theorem for Markov
chains. Namely, if P : L∞(S,m)←↩ is a Markov operator and α is a measurable
partition of the state space (S,m), then P determines a Markov operator on the
quotient space (S,m)/α if and only if P preserves the space of α-measurable
functions considered as a subspace of L∞(S,m). In our case the partition α

consists of the sets Ax , and the latter condition means that

µ(g−1
1 Ay) = µ(g−1

2 Ay) ∀x, y ∈ X, g1, g2 ∈ Ax,

which is equivalent to (2.11) and readily implies (2.12). �

COROLLARY 2.13. If condition (2.11) is satisfied, then for any x ∈ X the
measure Px on the path space �X of the quotient Markov operator P is the image
of the measure Q under the map

(: g 	→ x, xn = gxg1g2 · · ·gno.(2.14)

Any homogeneous Markov operator P can be presented as a quotient of
a certain random walk (G,µ). Moreover, the measure µ becomes uniquely
determined if we subject it to a natural additional condition.

PROPOSITION 2.15. The formulas

dµ(g) = p(o,go) dmG(g)(2.16)

and (2.12) establish a one-to-one correspondence between G-invariant Markov
operators P = (p(x, y))x,y∈X on X and bi-K-invariant probability measures µ

on G. This correspondence is convex, and

µ1 ∗ µ2 ←→ P1P2,

where ∗ denotes the convolution over G, and P1P2 is the product of the Markov
operators P1 and P2 corresponding to the measures µ1 and µ2, respectively.

PROOF. Formula (2.16) can be rewritten as

µ = ∑
x∈X

p(o, x)mx.(2.17)

The right-K-invariance of µ follows from the fact that all measures µx are right-
K-invariant. As for the left-K-invariance,

kµ = ∑
x∈X

p(o, x)kmx = ∑
x∈X

p(o, x)mkx = ∑
x∈X

p(o, kx)mkx = µ

for any k ∈ K by K-invariance of the operator P .
Conversely, if µ is a bi-K-invariant probability measure on G, then its

restriction on any set Ax is proportional to mx (because mx is the unique right-
K-invariant probability measure on Ax). The measure µ satisfies condition (2.11),



SPACE HOMOGENEOUS MARKOV CHAINS 331

and by (2.12) the transition probabilities of the corresponding quotient Markov
operator are such that p(o, x) = µ(Ax), which means that applying formula (2.17)
we recover the measure µ from the probabilities p(o, x). Convexity of the
correspondence P ←→ µ is obvious.

Now let µ1, µ2 and µ be the bi-K-invariant measures on G corresponding to
the G-invariant Markov operators P1, P2 and P = P1P2, respectively. Since the
projection g 	→ go maps the measure mG onto the counting measure mX on X, by
formulas (2.16) and (2.17) we have, for any x ∈ X,

µ(Ax) = p(o, x) = ∑
y∈X

p1(o, y)p2(y, x) =
∫

p1(o, y)p2(y, x) dmX(y)

=
∫
G

p1(o, go)p2(go, x) dmG(g) =
∫
G

µ2(g
−1Ax)dµ1(g)

= µ1 ∗ µ2(Ax).

Since the measures µ and µ1 ∗ µ2 are both right-K-invariant, they are uniquely
determined by their values on the sets Ax . Therefore, µ = µ1 ∗ µ2. �

If µ is associated with P as in (2.16), then we denote by µ̂ its involution, that
is, the image of µ under the map g 	→ g−1. The probability measure µ̂ is also
bi-K-invariant and corresponds to a homogeneous Markov operator P̂ on X (the
involution of P ). The operator P̂ is the reversal of the operator P with respect to
the stationary measure m̂X(x) = mG(Gx). See Proposition 2.23 for a proof; also
compare with [48] or [49], Lemma 3.25.

2.4. The double-coset hypergroup. The description of homogeneous Markov
operators in terms of bi-K-invariant probability measures on G is not completely
invariant as it depends on the choice of the reference point o ∈ X (or, equivalently,
of the compact subgroup K = Go). The hypergroup framework provides a more
invariant description. Moreover, this is also the most “economical” description
as the associated hypergroup automatically subsumes all the symmetries of a
homogeneous Markov operator.

Denote by H = K \G/K = {KgK,g ∈ G} the set of double cosets of the group
K in G. For any double coset ξ = KgK ∈ H , there exists a unique bi-K-invariant
probability measure mξ concentrated on ξ , which is the image of the product
measure mK ⊗ mK under the map (g1, g2) 	→ (g1gg2). Equivalently, the measure
mξ is the normalized restriction of the left Haar measure mG onto the set KgK .
Therefore, the map

µ 	→ µ̄ = ∑
µ(ξ)ξ

establishes an isomorphism between the space of finite signed bi-K-invariant
measures on G and the space �1(H). Since the former space has a structure of a
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convolution algebra (the convolution of any two bi-K-invariant measures on G is
obviously also bi-K-invariant), we obtain an algebra structure on �1(H). Actually,
the latter algebra is the hypergroup algebra of a hypergroup on H .

Roughly speaking, a hypergroup is a locally compact space with a “product”
which assigns to any two points a probability measure on that space (rather than a
point as in the group case) which still allows one to define associative convolution
of measures (see [21] and [4] for precise definitions). The set H is naturally given
a structure of a hypergroup (called the double-coset hypergroup) by putting

µ̄1 + µ̄2 = (µ1 ∗ µ2)(2.18)

for any two µ̄1, µ̄2 ∈ �1(H). Here µ1, µ2 are the corresponding bi-K-invariant
measures on G, and µ1 ∗µ2 is their convolution in G. In other words, the “product”
of ξ1, ξ2 ∈ H is the measure obtained by projecting onto H the group convolutions
of the bi-K-invariant probability measures corresponding to ξ1, ξ2. The identity of
the hypergroup H is the class ε = K , and the involution is (KgK)∧ = Kg−1K .

The maps KgK ←→ Kgo ←→ G(o,go) are easily seen to establish one-
to-one correspondences between H and the sets K\X of K-orbits in X and
G\(X×X) of G-orbits in X×X. The latter correspondence gives a more invariant
description of the hypergroup H independent of the choice of the reference point o

(or, equivalently, of the subgroup K = Go). Namely, for any pair (x, y) ∈ X × X,
denote by

[x, y] = G(x,y) ∈ H ∼= G \ (X × X)

its G-orbit considered as an element of the hypergroup H . In these terms the
identity in H is the diagonal orbit [x, x], x ∈ X, and the involution is just
[x, y]∧ = [y, x],

Applying the projections

G → X → H, g 	→ go 	→ [o,go](2.19)

to the left Haar measure mG gives the counting measure

mX(x) = mG{g :go = x} = mG(Go) = 1

on X and the measure

mH [x, y] = ∣∣{z : [x, z] = [x, y]}∣∣ = |Gxy|,(2.20)

on H , respectively. By definition, mH = mG, so that by (2.18) θ + mH = mH for
any probability measure θ on H , and mH is a left Haar measure on H (cf. [4]
and [30]).

Doing the same with the right Haar measure m̂G = �−1mG, we obtain the
measure

m̂X(x) = �−1(g)
∣∣
go=xmX(x) = mG(Gx)(2.21)
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on X and the (right Haar) measure

m̂H [x, y] = mH [y, x] = |Gyx|
on H . Therefore, by (2.3),

�[x, y] = mH [x, y]
m̂H [x, y] = m̂X(x)

m̂X(y)
(2.22)

is the modular function of the hypergroup H (since the cocycle � is G-invariant
by Proposition 2.4, it may be considered as a function on H , also denoted by �).
Note that, as it follows from (2.21), the modular function of H is the projection of
the modular function of G under the map (2.19).

We may now reformulate Proposition 2.15 in the following way.

PROPOSITION 2.23. The formula

p(x, y) = µ̄[x, y]
mH [x, y]

establishes a one-to-one correspondence between the set of probability measures µ̄

on the hypergroup H and the set of G-invariant Markov operators P on X. This
correspondence is convex, and

µ̄1 + µ̄2 ←→ P1P2,

where µ̄1 + µ̄2 is the convolution in H , and P1P2 is the product of Markov
operators. Moreover, ̂̄µ ←→ P̂ , where ̂̄µ is the involution in the space of
probability measures on H , and P̂ is the reversal of the operator P with respect
to the measure m̂X .

PROOF. We only have to prove the claim concerning the involutions. All the
rest follows from Proposition 2.15 in view of the above discussion. Since the
Markov operator of the random walk (G,µ) acts on the right, it preserves the right
Haar measure m̂G. Applying the projection g 	→ go, we obtain that the measure
m̂X on X is preserved by all G-invariant Markov operators on X. (The latter fact is
basically the content of the “mass-transport principle” of Benjamini, Lyons, Peres
and Schramm [2].)

If P and P̂ are two G-invariant Markov operators on X such that the
corresponding probability measures on H are in the involution, then their transition
probabilities are related by the formula

mH [x, y]p(x, y) = mH [y, x]p̂(y, x),

whence, by (2.22),

p̂(y, x) = p(x, y)
mH [x, y]
mH [y, x] = p(x, y)�[x, y] = p(x, y)

m̂X(x)

m̂X(y)
. �
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2.5. Stationary measures, reversibility and symmetry. As we have proved
in Proposition 2.23, the reversal of any G-invariant Markov operator on X

with respect to the measure m̂X is also G-invariant. We shall now describe all
measures on X with this property. More generally, we shall consider λ-stationary
measures θ , that is, such that θP = λP for a certain eigenvalue λ > 0. Denote
by P +

θ the reversal of the operator P with respect to the measure θ . Its transition
probabilities are given by the formula

λθ(y)p+
θ (y, x) = θ(x)p(x, y).(2.24)

If P +
θ = P , then the operator P is called reversible with respect to the measure θ

(in this case necessarily λ = 1).

PROPOSITION 2.25. Let P be an irreducible G-invariant Markov operator
on X and let θ be a λ-stationary measure of P . Then the operator P +

θ is
G-invariant if and only if all translations gθ, g ∈ G, of the measure θ are pairwise
proportional, that is, if there exists a multiplicative character χ of the group G

such that

gθ = χ(g)θ ∀g ∈ G.(2.26)

PROOF. Let P +
θ be G-invariant. Take x, y ∈ X. Since P is irreducible, we may

assume without loss of generality that p(x, y) > 0. Then, by (2.24),

θ(gy)

θ(gx)
= θ(y)

θ(x)
∀g ∈ G,

which yields (2.26). Conversely, by looking at formula (2.24) one immediately
sees that (2.26) implies G-invariance of P +

θ . �

COROLLARY 2.27. A G-invariant Markov operator P on X is reversible with
respect to some stationary measure if and only if there exists a character χ such
that

p(gx, x) = χ(g)p(x, gx) ∀x ∈ X, g ∈ G.

Any character χ : G → R∗+ determines a unique (up to a multiplier) measure θχ

on X satisfying (2.26) by the formula θχ (g−1o) = gθχ(o) = χ(g). Since χ ≡ 1 on
the compact group K , the character χ determines a G-invariant cocycle on X and
descends to H as

χ [x,gx] = χ(g) ∀x ∈ X, g ∈ G.(2.28)

Then

χ [x, y] = θχ (x)

θχ (y)
∀x, y ∈ X.(2.29)
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PROPOSITION 2.30. Let P be a G-invariant Markov operator on X repre-
sented by a probability measure µ̄ on the hypergroup H , and let χ be a multi-
plicative character of G. Then the measure θχ is λ-stationary with respect to P

with the ( possibly infinite) eigenvalue

λ = λ(P,χ) = ∑
ξ∈H

χ(ξ)

�(ξ)
µ̄(ξ).

PROOF. By (2.29), for any y ∈ X,

θχP (y) = ∑
x∈X

p(x, y)θχ (x) = ∑
ξ∈H

∑
x : [x,y]=ξ

p(x, y)θχ (x)

= θχ (y)
∑
ξ∈H

χ(ξ)
∑

x : [x,y]=ξ

p(x, y).

On the other hand, by formula (2.20) and Proposition 2.23,

∑
x : [x,y]=ξ

p(x, y) = mH (̂ξ)
µ̄(ξ)

mH (ξ)
= µ̄(ξ)

�(ξ)
. �

Below we shall use the simplified notation P +
χ for the reversal of the operator P

with respect to the measure θχ [which is well defined if λ(P,χ) < ∞]. We shall
omit the subscript for the trivial character 1(g) ≡ 1 which determines the counting
measure mX . Formula (2.24) in combination with (2.22) and Proposition 2.23
implies the following result.

PROPOSITION 2.31. If λ = λ(P,χ) < ∞, then the measures µ̄, µ̄+
χ on the

hypergroup H representing the operators P and P +
χ , respectively, are connected

by the formula

µ̄+
χ (̂ξ ) = 1

λ
· χ(ξ)

�(ξ)
· µ̄(ξ) ∀ξ ∈ H.

COROLLARY 2.32. If P = P +
χ , then

µ̄(̂ξ ) = χ(ξ)

�(ξ)
· µ̄(ξ) ∀ξ ∈ H.

REMARKS.

1. As it follows from (2.21), the measure m̂X on X corresponds to the modular
character �. Proposition 2.30 shows the special role of the modular character
in our context: λ(P,�) = 1 and P +

� = P̂ for all G-invariant operators P . On the
other hand, λ(P,χ) a priori may take an arbitrary positive (and even infinite)
value for any other character χ (including the trivial character 1, if � �= 1).
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2. A Markov operator P on X is involutive if P̂ = P and symmetric if p(x, y) =
p(y, x) for all x, y ∈ X. Equivalently, the former means that P is reversible
with respect to the stationary measure m̂X , and the latter means that the
counting measure mX is P -stationary [i.e., λ(P,1) = 1], and P is reversible
with respect to this measure (i.e, P = P +). An example of a symmetric
homogeneous Markov operator is provided by the simple random walk on a
homogeneous graph. The above discussion shows that the operators P̂ = P +

�

and P + are always different in the nonunimodular case (i.e., when � �= 1).
Therefore, if � �= 1, then P̂ �= P for any symmetric operator, and P + �= P for
any involutive operator.

3. Corollary 2.32 implies that an operator P is reversible with respect to the
measure θχ if and only if its involution P̂ is reversible with respect to the
measure θχ̂ , where χ̂ = �2/χ .

3. The Poisson boundary. From now on we shall fix an irreducible G-inva-
riant Markov operator P on the countable set X = G/K , where G is a totally
disconnected, second countable, locally compact group and K is its compact open
subgroup. Fix o = K as a reference point in X. By µ (resp., µ̄) we denote the
bi-K-invariant probability measure on G (resp., the probability measure on the
hypergroup H = K\G/K) associated with the operator P by Proposition 2.15
(resp., Proposition 2.23).

3.1. Measures in the path space and the Poisson boundary. Having chosen
o ∈ X, we put P = Po and πn = πo

n . The measure P is concentrated on the space
�X,o of all sample paths starting from o.

Recall that the Poisson boundary 0 of the operator P is defined as the space of
ergodic components of the time shift in the path space. Let bnd be the associated
projection from �X to 0. The image bnd Px = νx is the harmonic measure
corresponding to the starting point x. For an arbitrary initial distribution θ , its
harmonic measure is νθ = bnd Pθ = ∑

θ(x)νx . The harmonic measures satisfy
the stationarity condition

νx = ∑
y

p(x, y)νy ∀x ∈ X.

In view of the irreducibility assumption, this implies that all harmonic measures νx

are equivalent to the measure ν = νo.
In our situation gPθ = Pgθ for all g ∈ G and any initial distribution θ , where

gPθ denotes the image of the measure Pθ under the coordinate-wise action of G

on the path space �X . Since the action of G on the path space commutes with the
time shift, it descends from �X to an action on 0 which preserves the type of the
harmonic measure ν. Since G acts on 0, we can convolve measures on G with
measures on 0. In particular, writing gνx = δg ∗ νx , we have gνx = νgx for any
g ∈ G, x ∈ X.
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A function f ∈ �∞(X) is called harmonic if Pf = f . The Poisson formula

f (x) = 〈F,νx〉 =
∫
0

F (γ ) dνx(γ )

establishes an isometry between the space H ∞(X,P ) ⊂ �∞(X) of bounded
harmonic functions f and the space L∞(0, ν) of bounded measurable functions
F on the Poisson boundary.

PROPOSITION 3.1. The Poisson boundaries of the operator P and of the
random walk (G,µ) are isomorphic.

PROOF. In view of Proposition 2.15, the formula f (go) = f̃ (g) establishes a
one-to-one correspondence between the space of bounded harmonic functions f of
the operator P and the space of bounded harmonic functions f̃ of the operator Pµ

of the right random walk (G,µ). The latter space is isometric to the Poisson
boundary (0̃, ν̃ ) of the random walk (G,µ) via the Poisson formula f̃ (g) =
〈F̃ , gν̃〉. Since µ is bi-K-invariant, the measure ν̃ is K-invariant, so that if we put
ν′
go = gν̃, then the space 0̃ equipped with the family of measures ν′

x , x ∈ G, gives
a Poisson representation of the space of bounded P -harmonic functions on X.
Therefore, 0̃ must be isomorphic (as a measure G-space equipped with the family
of harmonic measures) to the Poisson boundary 0 of the operator P . �

REMARK. The measure µ̄ (see Proposition 2.23) determines a random walk
on the hypergroup H with the transition probabilities p(ξ1, ξ2) = ξ1 + µ̄(ξ2). The
bounded harmonic functions of this random walk are in one-to-one correspondence
with bi-K-invariant bounded harmonic functions on G, that is, via the Poisson
formula, with K-invariant bounded functions on the Poisson boundary (0̃, ν̃ ).
Therefore, the Poisson boundary of the random walk on H coincides with the
space of ergodic components of the K-action on 0̃. We shall return to the
characterization of the Poisson boundary of the hypergroup H elsewhere.

Since triviality of the Poisson boundary of the random walk (G,µ) implies
amenability of G [16], we have the following result.

COROLLARY 3.2. If the group G is nonamenable, then the Poisson boundary
of the operator P is necessarily nontrivial.

REMARK. By reproducing the arguments from [25], one can show that either
the Poisson boundary is trivial or the harmonic measure ν is purely nonatomic.
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3.2. The tail boundary. Another measure-theoretic boundary associated with
a Markov operator is the tail boundary. It is obtained by taking the quotient of
the path space with respect to the tail partition α∞ which is the limit of the
decreasing sequence of the coordinate partitions α∞

n , where two paths x and x′
belong to the same element of α∞

n if and only if xi = x′
i for all i ≥ n. Denote

by d the period of the operator P , that is, the greatest common divisor of the
set {k ∈ Z+ :p(k)(o, o) > 0} (it is finite by the irreducibility assumption), and let
o ∈ D0,D1, . . . ,Dd−1 be the periodic classes; that is, if p(x, y) > 0 and x ∈ Di ,
then necessarily y ∈ Di+1 (addition modd). Set κ(x) = i if x ∈ Di , i ∈ Zd . Take
a reference probability distribution θ on X equivalent to the counting measure.

THEOREM 3.3. The tail boundary of an irreducible homogeneous Markov
operator is Pθ -mod 0 isomorphic to the product of Zd and of the Poisson
boundary 0, and it is the image of the path space under the map x 	→
(bnd x,κ(x0)).

PROOF. Let us first show that for d = 1 the tail and the Poisson boundaries
coincide. Indeed, d = 1 means that there exists an N > 0 such that pN(o, o) and
pN+1(o, o) are both positive. Denote by δ their minimum. Then, for any initial
distribution θ and any n > N ,

‖θP n − θP n+1‖ ≤ ‖θP N − θP N+1‖ ≤ 2 − 2δ,

which by the corresponding 0–2 law of Derriennic [8] (see also [24]) implies
coincidence of the tail and the Poisson boundaries.

Now let d > 1. By the definition of the period, κ(xn) = κ(x0) + n modd for
almost every sample path x, so that the map x 	→ κ(x0) is measurable with respect
to the tail partition α∞. On the other hand, the preceding argument applied to the
power P d shows that the tail and the Poisson boundaries coincide for the initial
distribution concentrated on a single periodicity class. �

COROLLARY 3.4. The tail and the Poisson boundaries coincide Px -mod 0 for
any starting point x ∈ X.

4. The entropy. The coincidence of the tail and the Poisson boundaries and
the fact that the former one is obtained by taking the quotient of the path space
with respect to a decreasing sequence of coordinate partitions allow one to use
the entropy theory of measurable partitions due to Rokhlin [36] for studying the
Poisson boundary.

4.1. The asymptotic entropy. Recall that the entropy of a discrete probability
distribution p = (pi) is defined as

H(p) = −∑
pi logpi.
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We shall say that a probability measure 6 on �X has asymptotic entropy h(6)

[27] if it has the following Shannon–Breiman–McMillan type of equidistribution
property:

−1

n
logλn(xn) → h(6)(4.1)

for 6-almost every sequence x = {xn} ∈ �X and in the space L1(�X,6), where
λn is the distribution of the nth projection xn with respect to 6.

THEOREM 4.2. Let P : �∞(X)←↩ be a homogeneous Markov operator. If the
entropy of its one-step transition probabilities H(π1) is finite, then the asymptotic
entropy h(P) of the measure P exists.

PROOF. Recall the space (�G,Q) of “increments” defined in Section 2.3. It
will be more convenient to deal with (�G,Q) instead of the path space (�X,o,P)

because the former one is endowed with the measure-preserving action of the
Bernoulli shift T .

Given a measurable partition α of the path space (�X,o,P), denote by α the
partition of the space (�G,Q) consisting of the preimages of the elements of α

with respect to the mapping ( of (2.14). Then the entropies and the conditional
entropies of all partitions of the space (�X,o,P) coincide with the entropies and
the conditional entropies of the corresponding preimage partitions of the space
(�G,Q).

Define on the space (�G,Q) the sequence of nonnegative functions

ϕn(g) = − log p(n)(o, g1g2 · · · gno).

Obviously, for any two elements g,h ∈ G and for any two integers n,m,

p(n+m)(o, gho) ≥ p(n)(o, go)p(m)(go, gho) = p(n)(o, go)p(m)(o,ho).

Therefore, the sequence ϕn is subadditive with respect to the transformation T :

ϕn+m(g) ≤ ϕn(g) + ϕm(T ng) ∀n,m ≥ 0.

Moreover, ∫
ϕ1(g) dQ(g) = H(π1) < ∞

by the assumption of the theorem. Thus, we can apply to the sequence ϕm the
subadditive ergodic theorem of Kingman [31] (see also [9]), which immediately
yields the claim. �

We shall call the asymptotic entropy h(P) the entropy of the operator P and
denote it by h = h(P ).
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COROLLARY 4.3. The entropy h is the linear rate of growth of the entropies
of the n-step transition probabilities of the operator P :

h = lim
n→∞

H(πn)

n
.

4.2. Boundary triviality. For m ≥ k, denote by αm
k the partition of the path

space (�X,o,P) determined by the positions of the Markov chain at times k,
k + 1, . . . ,m (i.e., two sample paths x, x′ belong to the same class of αm

k if and
only if xi = x′

i for all i = k, k + 1, . . . ,m).

LEMMA 4.4. For any k ≥ 1,

H(αk
1) = kH(π1).

PROOF. The entropy H(αk
1) coincides with the entropy H(αk

1) of the
corresponding preimage partition of the space (�G,Q). Therefore,

H(αk
1) = −

∫ [
log p(o,g1o) + logp(g1o,g1g2o)

+ · · · + log p(g1g2 . . . gk−1o,g1g2 . . . gk−1gko)
]
dQ(g)

= −k

∫
logp(o,g1o) dQ(g) = kH(π1). �

LEMMA 4.5. The conditional entropy of the partition αk
1 , k ≥ 1, with respect

to the tail partition α∞ is

H(αk
1 |α∞) = kH(α1

1 |α∞) = k[H(π1) − h].

PROOF. We shall use the fact that the tail partition α∞ is the decreasing limit
of the coordinate partitions α∞

n . By the Markov property, the conditional measures
on the elements of the partition αk

1 with respect to the partition α∞
n for n > k are

the same as the conditional measures with respect to the partition αn
n . Therefore,

the value of this conditional measure on the element of the partition αk
1 containing

a sample path x is

p(o, x1)p(x1, x2) · · ·p(xk−1, xk)p
(n−k)(xk, xn)

p(n)(o, xn)
.

Integrating the logarithms of these conditional probabilities, we get that

H(αk
1 |α∞

n ) = kH(π1) + H(πn−k) − H(πn), n > k.(4.6)

As α∞
n is a decreasing sequence of measurable partitions, there exists a limit

of (4.6) as n tends to ∞, so that the difference H(πn) − H(πn−k) must converge.
By Corollary 4.3, the limit of this difference is then kh. �
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THEOREM 4.7. Suppose that the entropy H(π1) of the one-step transition
probabilities of the irreducible homogeneous Markov operator P is finite. Then its
Poisson boundary is trivial if and only if h(P ) = 0.

PROOF. If h(P ) = 0, then, by Lemmas 4.4 and 4.5, the tail partition α∞ is
independent of all coordinate partitions αk

1 , which by the Kolmogorov 0–1 law
is only possible if α∞ is trivial. Conversely, if α∞ is trivial, then H(αk

1 |α∞) =
H(αk

1) = kH(π), whence h(P ) = 0. Now, by Corollary 3.4, triviality of the
Poisson boundary of the operator P is equivalent to triviality of the tail partition
α∞ of the space (�X,o,P). �

Theorem 4.2 now implies the following result.

COROLLARY 4.8. The Poisson boundary is trivial if and only if there exist
ε > 0 and a sequence of sets An such that πn(An) > ε and log |An| = o(n).

4.3. Conditional chains. Almost every point γ of the Poisson boundary
determines the conditional chain on X whose transition probabilities (no longer
G-invariant) are

pγ (x, y) = p(x, y)
dνy

dνx

(γ ).(4.9)

By Pγ we denote the corresponding probability measure in the path space �X,o.
Given a G-invariant partition ξ of the Poisson boundary 0, denote by 0ξ

the associated quotient space, and by ν
ξ
x , x ∈ X (resp., νξ = ν

ξ
o ), the images of

the harmonic measures νx (resp., ν = νo). By α∞
ξ we denote the corresponding

partition of the path space (�X,P), and by bndξ the projection from the path

space to 0ξ , so that ν
ξ
x = bndξ Px , x ∈ X. Since the partition ξ is G-invariant, the

action of G descends from 0 to 0ξ , and gν
ξ
x = ν

ξ
gx for any g ∈ G and x ∈ X. In

terms of the random walk on the group G determined by the measure µ, we may
say that the space (0ξ , ν

ξ
o ) is a µ-boundary (see [16]).

The transition probabilities of the conditional chains determined by the points
from 0ξ are

pγξ (x, y) = p(x, y)
dν

ξ
y

dν
ξ
x

(γξ )(4.10)

(cf. [28], Theorem 3.3). Denote by Pγξ the corresponding probability measures in
the space �X . In other words, Pγξ are the conditional measures of the measure P
with respect to the partition α∞

ξ .
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4.4. The asymptotic entropy of conditional chains.

LEMMA 4.11. For any k ≥ 1,

H(αk
1 |α∞

ξ ) = kH(α1|α∞
ξ ) = k

[
H(π1) −

∫
log

dν
ξ
x1

dνξ
(bndξ x) dP(x)

]
.

PROOF. Given a sample path x ∈ �X,o, the conditional probability of the
element of the partition αk

1 containing x with respect to the partition α∞
ξ is

p(o, x1)p(x1, x2) · · ·p(xk−1, xk)
dν

ξ
xk

dνξ
(bndξ x),

whence, integrating, we obtain

H(αk
1|α∞

ξ ) = kH(π1) −
∫

log
dν

ξ
xk

dνξ

(bndξ x) dP(x).

Passing to the space (�G,Q), the last term on the right-hand side can be rewritten
as ∫

log
dg1g2 · · ·gkν

ξ

dνξ

[
bndξ

(
((g)

)]
dQ(g).(4.12)

Since the Bernoulli shift T preserves the measure Q and

g1bndξ

(
((T g)

) = bndξ

(
((g)

)
,(4.13)

telescoping (4.12) we get the claim. �

LEMMA 4.14. Let ξ and ξ ′ be two G-invariant measurable partitions of the
Poisson boundary (0, ν) such that ξ ′ is a refinement of ξ . Then H(α1

1|α∞
ξ ) ≥

H(α1
1 |α∞

ξ ′ ), and equality holds if and only if ξ = ξ ′.

PROOF. Obviously, if ξ ′ is a refinement of ξ , then α∞
ξ ′ is a refinement of α∞

ξ ,
so that the inequality follows from the general properties of the conditional en-
tropy. If H(α1

1 |α∞
ξ ) = H(α1

1 |α∞
ξ ′ ), then, by Lemma 4.11, H(αk

1 |α∞
ξ ) = H(αk

1 |α∞
ξ ′ )

for any k ≥ 1, which by the general properties of the conditional entropy means
that for ν-almost every point γ ∈ 0 the measures Pγξ and Pγξ ′ are the same, which
is only possible when ξ = ξ ′. �

THEOREM 4.15. Let ξ be a measurable G-invariant partition of the Poisson
boundary (0, ν). Then, for νξ -almost every point γξ ∈ 0ξ , the asymptotic entropy
(in the sense of Definition 4.1) of the conditional measure Pγξ exists and is equal
to

h(Pγξ ) = H(α1
1 |α∞

ξ ) − H(α1
1|α∞).



SPACE HOMOGENEOUS MARKOV CHAINS 343

PROOF. We have to check that, for νξ -almost every point γξ ∈ 0ξ ,

−1

n
log π

γξ
n (xn) → H(α1

1 |α∞
ξ ) − H(α1

1|α∞)

for Pγξ -almost every sample path x = {xn} and in the space L1(�X,o,Pγξ ),
where π

γξ
n are the one-dimensional distributions of the measure Pγξ . Since the

measures Pγξ are conditional measures of the measure P, it amounts to proving
that

−1

n
log π

bndξ x
n (xn) → H(α1

1 |α∞
ξ ) − H(α1

1 |α∞)

P-almost everywhere and in the space L1(�X,o,P). Passing to the space (�G,Q),
we may rewrite formula (4.10) as

π
bndξ x
n (g1g2 · · ·gno) = πn(g1g2 · · ·gno)

dg1g2 · · ·gnνξ

dνξ

[
bndξ

(
((g)

)]
,

whence we get the claim by applying Theorem 4.2, Lemma 4.11 and the Birkhoff
ergodic theorem for the Bernoulli shift T . �

Now, combining Lemma 4.14 with Theorem 4.15, we get the following
generalization of Theorem 4.7.

THEOREM 4.16. A µ-boundary (0ξ , νξ ) is the Poisson boundary if and only if
the asymptotic entropy h(Pγξ ) of almost all conditional measures of the measure P
with respect to 0ξ vanishes.

COROLLARY 4.17. A µ-boundary (0ξ , νξ ) is the Poisson boundary if and
only if, for νξ -almost every point γξ ∈ 0ξ , there exist ε > 0 and a sequence of sets
An = An(γξ ) ⊂ X such that log |An| = o(n) and π

γξ
n (An) > ε for all sufficiently

large n.

5. Applications of the entropy theory.

5.1. Entropy and growth. Throughout this section we shall assume that the
space X is endowed with a G-invariant connected graph structure and that the
number of neighbors (which is the same for any vertex) is finite. Denote by
d(·, ·) the resulting G-invariant graph metric on X, and by |[x, y]| = d(x, y) its
projection onto the hypergroup H . Put |x| = d(o, x). By

B(x,n) = {
y ∈ X :d(x, y) ≤ n

}
we denote the balls of the metric d . Note that, for every x ∈ X,

|B(x,n)| = |B(o,n)| = mG

({g ∈ G : |go| ≤ n})
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and that B(o,m + n) = ⋃
x∈B(o,m) B(x,n). Therefore, |B(o,m + n)| ≤ |B(o,m)|

|B(o,n)|, and the limit

gr(X) = lim
n→∞

log |B(o,n)|
n

exists. It is called the (exponential) growth rate of X. If gr(X) > 0, one says that
the graph X has exponential growth; otherwise, one speaks of subexponential
growth. For details regarding the growth of finitely generated groups (i.e., their
Cayley graphs) and transitive graphs, see, for example, the surveys of Grigorchuk
and de la Harpe [18] or Imrich and Seifter [20]. In particular, we note that transitive
graphs with polynomial growth [i.e., |B(o,n)| ≤ Cnd ] are “very similar” to Cayley
graphs of nilpotent groups (see [42]).

We shall say that the operator P has a finite first moment if the first moment of
its one-step transition probabilities is finite:∑ |x|p(o, x) = ∑

ξ

|ξ |µ̄(ξ) < ∞.

The subadditive ergodic theorem immediately implies the following (compare with
the proof of Theorem 4.2; see [49], Theorem 8.14).

PROPOSITION 5.1. If P has a finite first moment, then there exists a finite
number � = �(P ) such that |xn|/n → � for P-almost every sample path x = {xn}
and in the space L1(�X,o,P).

We shall call the number �(P ) the (linear) rate of escape of the operator P . The
following is easy to prove (compare with [10]).

LEMMA 5.2. If the operator P has a finite first moment, then the entropy
H(π1) of its one-step transition probabilities is finite.

THEOREM 5.3. If P has a finite first moment, then h(P ) ≤ �(P )gr(X).

PROOF. Fix a number ε > 0. Let h = h(P ). By Theorem 4.2 and Proposi-
tion 5.1, there exists an integer N such that

πn

({x ∈ X : − log πn(x) ≥ (h − ε)n, |x| ≤ (� + ε)n}) ≥ 1 − ε

for all n ≥ N . Therefore, |B(o, (� + ε)n)|e−(h−ε)n ≥ 1 − ε. Taking logarithms,
dividing by n and making ε arbitrarily small, we get the claim. �

COROLLARY 5.4. Suppose that P has a finite first moment. Then the Poisson
boundary of P is trivial if

(a) X has subexponential growth

or if

(b) the rate of escape �(P ) vanishes.
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REMARK. As we shall see below (Corollaries 5.14 and 5.15), under some
additional conditions triviality of the Poisson boundary in fact implies (b).

5.2. The modular drift. Recall that any multiplicative character χ descends to
the hypergroup H by formula (2.28).

LEMMA 5.5. If the operator P has a finite first moment, then the number

δ(P,χ) = ∑
x

log χ [o, x]p(o, x) =
∫
G

log χ(g) dµ(g) = ∑
ξ

logχ(ξ)µ̄(ξ)

is finite.

PROOF. Since the number of neighbors of o is finite, there is a constant C > 0
such that | logχ [o, x]| ≤ C for any x ∈ B1. By G-invariance this means that
| logχ [x, y]| ≤ C whenever d(x, y) ≤ 1. Therefore, | logχ(ξ)| ≤ C|ξ | for any
ξ ∈ H . �

We call the number δ(P,χ) the drift of the operator P with respect to the
character χ . In particular, the drift δ(P,�) with respect to the modular character
� is called the modular drift of P . By Proposition 2.15, δ(P1P2, χ) = δ(P1, χ) +
δ(P2, χ) for any two G-invariant Markov operators P1,P2 on X. In particular,
δ(P n,χ) = nδ(P,χ). By Corollary 2.13, log χ [o, xn] is a sum of i.i.d. random
variables. Therefore, the law of large numbers immediately implies the following.

PROPOSITION 5.6. If the operator P has a finite first moment, then

logχ [o, xn]
n

→ δ(P,χ)

P-almost everywhere and in the space L1(�X,o,P).

PROPOSITION 5.7. If the operator P has a finite first moment and λ(P,χ) <

∞, then

δ(P,χ) − δ(P,�) ≤ log λ(P,χ),

and equality holds if and only if χ = �.

PROOF. By Jensen’s inequality applied to the formula for λ(P,χ), from
Proposition 2.30,

log λ(P,χ) = log
∑
ξ

χ(ξ)

�(ξ)
µ̄(ξ) ≥ ∑

ξ

log
χ(ξ)

�(ξ)
µ̄(ξ) = δ(P,χ) − δ(P,�),

and the equality holds if and only if the ratio character χ ′ = χ/� is equal to a
constant C > 0 on supp µ̄. The latter implies that χ ′ = Cn on the support of the
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n-fold convolution µ̄n of µ̄. By irreducibility,
⋃

n supp µ̄n = H . In particular, for
any ξ ∈ supp µ̄, the involution ξ̂ belongs to supp µ̄n for a certain n > 0. Then
simultaneously χ ′(ξ) = C and χ ′(ξ) = [χ ′(̂ξ )]−1 = C−n, so that C = 1. �

COROLLARY 5.8. If P = P +
χ , then λ(P,χ) = 1, so that δ(P,χ) < δ(P,�)

unless χ = �. In particular (taking χ = 1), in the nonunimodular case the
modular drift is strictly positive for any symmetric operator P .

THEOREM 5.9. If the operator P has a finite first moment, then

h(P ) = h(P̂ ) + δ(P,�).

PROOF. By Proposition 2.23, the entropy of the n-step transition probabilities
of the operator P is

H(πn) = −∑
ξ

log
µ̄n(ξ)

mH (ξ)
µ̄n(ξ) = H(µ̄n) + ∑

ξ

log mH (ξ) µ̄n(ξ).

Using the same formula for the operator P̂ , we obtain

H(πn) − H(πn) = ∑
ξ

log
mH (ξ)

mH (̂ξ)
µ̄n(ξ)

= ∑
ξ

log �(ξ)µ̄n(ξ) = δ(P n,�) = nδ(P,�),

whence the claim. �

REMARKS.

1. In the context of Brownian motion on foliations, an analogous formula was first
obtained in [22].

2. Proposition 2.31 shows that there is no analogous general formula connecting
the entropies of an operator P and its reversal P +

χ unless χ = �.

COROLLARY 5.10. (a) If the modular drift of P is positive, then the Poisson
boundary of P is nontrivial.

(b) If the Poisson boundaries of both operators P and P̂ are trivial, then the
modular drift of P vanishes.

COROLLARY 5.11. If the group G is nonunimodular, then the Poisson
boundary of the simple random walk on X is nontrivial.

REMARK. Triviality of the Poisson boundaries of both P and P̂ does not
imply that the group G has to be unimodular; see the class of examples provided
by Theorem 6.6(i).
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5.3. Entropy and the rate of escape. Recall that the range of a Markov
operator P is defined as

R = R(P ) = max
{
d(x, y) :p(x, y) > 0

};
that is, R(P ) is the minimal number such that p(x, y) = 0 whenever d(x, y) > R.
The following is a specialization of a general estimate of Carne [5] to our situation.

LEMMA 5.12. If the operator P has bounded range R = R(P ) and is
reversible with respect to a measure θχ , then, for any x, y ∈ X and any n > 0,

p(n)(x, y) ≤ 2χ [x, y]−1/2 exp
(

− d2

2R2n

)
,

where d = d(x, y).

THEOREM 5.13. If the homogeneous G-invariant Markov operator P is
reversible with respect to a measure θχ (where χ is a multiplicative character
of G) and has a bounded range, then

h(P ) ≥ 1

2
δ(P,χ) + �2(P )

2R2(P )
.

PROOF. Apply Lemma 5.12 to the transition probabilities p(n)(o, xn) along
P-a.e. sample path of the Markov chain (X,P ) and use Theorem 4.2 and
Propositions 5.1 and 5.6. �

COROLLARY 5.14. If h(P ) = 0 and δ(P,χ) ≥ 0, then �(P ) = 0.

In the last corollary, observe the particular case χ = 1. In the specific case of
random walks on discrete groups, the following was proved by Varopoulos [44].

COROLLARY 5.15. For the simple random walk on a homogeneous graph,
the entropy h(P ) and the rate of escape �(P ) are zero or nonzero simultaneously.

5.4. Entropy and the spectral radius. The number

ρ(P ) = lim sup
n→∞

p(n)(x, y)1/n

is called the spectral radius of the operator P . It is independent of the choice of
x, y ∈ X, and if P is aperiodic, then the “lim sup” in the above is a “lim.” If the
operator P is reversible, that is, P = P +

χ for a certain character χ (see Section 2.5),
then ρ(P ) is the norm of P in the space �2(X, θχ).

If P is the simple random walk, then ρ(P ) = 1 if and only if the graph is
amenable, which means that inf |∂A|/|A| = 0, where the infimum is taken over



348 V. A. KAIMANOVICH AND W. WOESS

finite subsets of X and ∂A denotes the set of edges from A to X \ A. This
equivalence was proved by Dodziuk [12] and does not require transitivity of the
group action. Under the assumption of transitivity, the graph X is amenable ⇐⇒
ρ(P ) = 1 for some (equivalently, every) symmetric, irreducible, homogeneous
transition operator P ⇐⇒ the group G is both amenable and unimodular;
see [37], [38] and [40].

THEOREM 5.16. If the operator P is reversible with respect to a measure θχ

(where χ is a multiplicative character of G) and has a finite first moment, then

−2 logρ(P ) ≤ h(P ) − δ(P,χ).

PROOF. By (2.24) and (2.29), we have

p(2n)(o, o) = ∑
x

p(n)(o, x)p(n)(x, o)

= ∑
x

p(n)(o, x)p(n)(o, x)
θχ (o)

θχ (x)

= ∑
x

p(n)(o, x)p(n)(o, x)χ [o, x],

whence, by concavity of the logarithm,

logp(2n)(o, o) ≥ ∑
x

p(n)(o, x) logp(n)(o, x) + ∑
x

p(n)(o, x) logχ [o, x]

= −H(πn) + nδ(P,χ),

which after dividing by n and passing to the limit on n implies the claim. �

COROLLARY 5.17. If the graph X is nonamenable, then the Poisson
boundary of the simple random walk is nontrivial.

REMARKS.

1. The inequality p(2n)(o, o) ≥ p(n)(o, xn)p
(n)(xn, o) along P-a.e. sample path of

the Markov chain (X,P ) would give just − log ρ(P ) ≤ h(P ) − δ(P,χ). Our
proof is based on the trick used by Avez for random walks on groups [1].
A better estimate of ρ(P ) in terms of h(P ) can be obtained by using the
methods of Ledrappier [33].

2. Theorem 5.16 applied to the operator P̂ (see Remark 3 at the end of Section 2)
gives the inequality

−2 logρ(P ) = −2 logρ(P̂ ) ≤ h(P̂ ) − δ(P̂ , χ̂)

= h(P ) − δ(P,�) + δ(P, χ̂) = h(P ) + δ(P,�) − δ(P,χ).
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5.5. Criteria for identification of the Poisson boundary. Combinatorial or
geometric considerations often provide us with a certain “pattern” of behavior at
infinity of sample paths of the Markov chain determined by our operator P . In the
measure-theoretic language, this pattern determines a measure space (B,λ) which
a priori is just the quotient (0ξ , νξ ) of the whole Poisson boundary (0, ν) with
respect to a certain G-invariant partition ξ (we may assume that this partition is
G-invariant because all “natural” combinatorial or geometric constructions must,
by definition, be G-invariant). In other words, (B,λ) is a µ-boundary (recall that µ

is the bi-K-invariant probability measure on G which determines the operator P ).
If we want to identify the Poisson boundary, we have to prove that, in fact, the
µ-boundary (B,λ) ∼= (0ξ , νξ ) coincides with the whole Poisson boundary, that is,
prove that the partition ξ is the point partition.

We shall give two geometric criteria for identification of the Poisson boundary
based on Theorem 4.16. For simplicity, we shall always assume that the operator P

has a finite first moment, although this assumption could, in fact, be relaxed;
see [28]. Denote by x 	→ x∞ the projection from the path space (�X,o,P) onto
the µ-boundary (B,λ) ∼= (0ξ , νξ ) under consideration. The first criterion (“ray
approximation”) immediately follows from Theorem 4.16.

THEOREM 5.18. Let P be a homogeneous Markov operator with a finite first
moment and let (B,λ) be a µ-boundary. If there exists a sequence of measurable
maps Rn: B → X such that

d
(
xn,Rn(x∞)

) = o(n)

for P-almost every sample path x ∈ �X,o, then (B,λ) is the whole Poisson
boundary of the operator P .

In the second criterion (“strip approximation”), we shall assume that simulta-
neously with a µ-boundary (B+, λ+) we are also given a µ̂-boundary (B−, λ−)

which is a G-equivariant quotient of the Poisson boundary of the reverse Markov
operator P̂ . This criterion is symmetric with respect to the time reversal and leads
to a simultaneous identification of the Poisson boundaries of the operators P

and P̂ . The strip approximation criterion for homogeneous Markov operators is
very similar to the analogous criterion for random walks on countable groups
(see [28]); however, for the sake of completeness, we shall present below an outline
of the proof.

THEOREM 5.19. Let P be a homogeneous Markov operator with a finite first
moment and let (B+, λ+), (B−, λ−) be a µ- and a µ̂-boundary, respectively.
If there exists a measurable G-equivariant map S assigning to pairs of points
(b−, b+) ∈ B− × B+ nonempty “strips” S(b−, b+) ⊂ X such that

1

n
log

∣∣S(b−, b+) ∩ B(o,n)
∣∣ −→
n→∞ 0
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for λ− ⊗ λ+-almost every (b−, b+) ∈ B− × B+, then (B+, λ+) and (B−, λ−) are
the Poisson boundaries of the operators P and P̂ , respectively.

PROOF. Replacing, if necessary, the strips S(b−, b+) with their d-neighbor-
hoods

S′(b−, b+) = {
x ∈ X :d

(
x,S(b−, b+)

) ≤ d
}

for a sufficiently large d , we may assume that

λ− ⊗ λ+
({(b−, b+) ∈ B− × B+ :o ∈ S(b−, b+)}) = κ > 0.

Let us now consider the space (�G,Q) of bilateral sequences g of independent
µ-distributed increments (gi), i ∈ Z. The image of the measure Q under the map

g 	→ ( x̂,x), x = (o, g1o,g1g2o, . . .), x̂ = (o, g−1
0 o,g−1

0 g−1
−1o, . . .)

from �G to the product �X,o × �X,o is the product of the measure P and the
measure P̂ determined by the operator P̂ . Denote by T the Bernoulli shift in
the space (�G,Q) and let x∞ ∈ B+ and x−∞ ∈ B− be the boundary points
corresponding to the sample paths x and x̂, respectively. Then, by formula (4.13),
the boundary points x′∞ ∈ B+, x′−∞ ∈ B− corresponding to the shifted sequence
g′ = T ng, n > 0, are

x′±∞ = g−1
1 g−1

2 · · ·g−1
n x±∞.

Since T preserves the measure Q, we obtain that, for any n > 0,

Q
({g :xn ∈ S(x−∞, x∞)})

= Q
({g :g1g2 · · ·gno ∈ S(x−∞, x∞)})

= Q
({g :o ∈ S(x′−∞, x′∞)})

= Q
({g :o ∈ S(x−∞, x∞)})

= λ− ⊗ λ+
({

(b−, b+) ∈ B− × B+ :o ∈ S(b−, b+)
}) = κ > 0,

or, in a slightly different form,∫
P

({x :xn ∈ S(b−, x∞)})dλ−(b−) = κ.

Therefore, there exists b− ∈ B− such that

P
({x :xn ∈ S(b−, x∞)}) =

∫
πb+

n

[
S(b−, b+)

]
dλ+(b+) ≥ κ,

where π
b+
n is the one-dimensional distribution at time n of the conditional measure

Pb+ determined by a point b+ ∈ B+. The latter inequality implies that

λ+
({

b+ ∈ B+ :πb+
n

[
S(b−, b+)

] ≥ κ

2

})
≥ κ

2
.
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As it follows from Proposition 5.1, if n is sufficiently large, then

λ+
({

b+ ∈ B+ :πb+
n

[
S(b−, b+) ∩ B2�n

] ≥ κ

4

})
≥ κ

4
,

where � = �(P ) is the rate of escape of the operator P . [We may exclude the
case �(P ) = 0 since then also �(P̂ ) = 0 and both Poisson boundaries are trivial
by Corollary 5.4.] The last inequality means that for any sufficiently large n

there exists a subset An of B with λ+(An) ≥ κ/4 such that, for any b+ ∈ An,
the one-dimensional distribution at time n of the conditional measure Pb+ is
concentrated on a subset of X of asymptotically subexponential size. Since the
measures Pb+ all have the same asymptotic entropy, this is only possible when this
asymptotic entropy is 0, that is, when (B+, λ+) is the whole Poisson boundary
(Theorem 4.16). �

6. Applications and examples.

6.1. The homogeneous tree and its affine group. This example is well
understood from Cartwright, Kaimanovich and Woess [6], but as it is a key
example that will be used subsequently, we reconsider it briefly.

Let T = Tq be the homogeneous tree with degree q + 1, where q ≥ 2, and let
∂T be its boundary (space of ends). We omit repeating the description of ∂T and
the topology of T̂ = T ∪ ∂T, which should be well known and can be found, for
example, in [6]. We choose and fix an end ω ∈ ∂T and consider the affine group
Aff(T) of T, that is, the group of all automorphisms (self-isometries) of T that
leave ω fixed. This is the simplest example of a group that acts transitively on a
graph and is nondiscrete, amenable and nonunimodular (cf. [40] and [43]).

Now let P be a homogeneous Markov operator with finite first moment on T
such that G = Aut(T,P ) is a transitive subgroup of Aff(T). It is closed and
again nonunimodular. Using formula (2.2), one can compute the modular function
�(g) = �[o,go]. The level sets of x 	→ �[o, x] are the horocycles Hk , k ∈ Z;
see [40] and Figure 1. If hor(x) denotes the Busemann function of x [i.e., hor(x) =
k for x ∈ Hk ; see Figure 1], then �[o, x] = qhor(x). The horocycles may be thought
of as successive “generations,” so that each vertex in Hk has q “sons” in Hk+1 and
a unique “father” in Hk−1.

The following is known from [6], Theorems 2 and 4.

THEOREM 6.1 [6]. (a) Let δ(P,�) = (log q)
∑

x hor(x)p(o, x) be the mod-
ular drift of the Markov chain on T. Then the rate of escape is �(P ) =
δ(P,�)/ log q .

(b) If δ(P,�) > 0, then the Markov chain (xn) converges almost surely to
a random point x∞ ∈ ∂∗T = ∂T \ {ω}. Denoting by ν the Po-distribution of x∞
on ∂∗T, we have that supp(ν) = ∂∗T.

(c) If δ(P,�) < 0, then xn → ω almost surely.
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FIG. 1.

Here, convergence refers to the topology of T̂. If δ(P,�) = 0, then almost sure
convergence to ω is known only under an exponential moment condition. However,
for our present purpose this is irrelevant.

THEOREM 6.2. (i) If δ(P,�) ≤ 0, then the Poisson boundary is trivial.
(ii) If δ(P,�) > 0, then the Poisson boundary coincides with the measure space

(∂∗T, ν), where ν is the Po-distribution of x∞.

PROOF. If δ(P,�) = 0, then we can apply Corollary 5.4(c).
If δ(P,�) > 0, then δ(P̂ ,�) < 0, both operators have finite first moment and

we can use Theorem 5.19: by Theorem 6.1(b), the pair (∂∗T, ν) is a µ-boundary,
where—as usual—µ is associated with P by (2.16). By Theorem 6.1(a), the
pair ({ω}, δω) is a µ̂-boundary. Thus, we can choose the geodesic lines between
b ∈ ∂∗T and ω as the strips S(b,ω) required by the criterion of Theorem 5.19.
Measurability of the map b 	→ S(b,ω) is obvious, and gS(b,ω) = S(gb,ω) for
every g ∈ G and b ∈ ∂∗T. This proves (ii).

Exchanging the roles of P and P̂ , the same argument proves (i) in the case
δ(P,�) < 0. �

In [6], this identification of the Poisson boundary is indicated (under more
general assumptions) via the criterion of “ray approximation” in its variant for
locally compact groups.

COROLLARY 6.3. If δ(P,�) > 0, then h(P ) = δ(P,�). Otherwise, h(P ) = 0.
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6.2. The Diestel–Leader graphs. We start with two trees T1 = Tq and
T2 = Tr , where q ≥ r ≥ 2. As in the previous subsection, we choose and fix
reference vertices o1 and o2 and ends ω1 and ω2 of Tq and Tr , respectively.
The corresponding Diestel–Leader graph is the following subgraph of the direct
product of the two trees:

DLq,r = {
x1x2 ∈ Tq × Tr : hor(x1) + hor(x2) = 0

}
.

Here, hor(·) stands for the Busemann function with respect to the chosen end in
the respective tree. Thus, the ∼ neighborhood of a point x1x2 in the graph DLp,q

is given by

x1x2 ∼ y1y2 ⇐⇒ x1 ∼ y1, x2 ∼ y2.

To visualize this graph, draw Tq as in Figure 1 and draw (on the right) Tr in the
same way, but upside down, with the respective horocycles Hk(Tq) and H−k(Tr )

on the same level. Connect the two origins o1, o2 by an elastic spring. It can move
along each of the two trees and may expand infinitely, but must always remain in
a horizontal position. The vertex set of DLq,r consists of all admissible positions
of the spring. From a position x1x2 with hor(x1) + hor(x2) = 0, the spring may
move downward to one of the “sons” of x2 and at the same time to the “father”
of x1, or upward in an analogous way. Such a move corresponds to going to a
neighbor of x1x2. See Figure 2, which corresponds to DL2,2.

As our reference point in DLq,r , we choose o = o1o2. As was shown by
Bertacchi [3], the distance in DLq,r is given by

d(x1x2, y1y2) = d(x1, y1) + d(x2, y2) − |hor(y1) − hor(x1)|.
The group of automorphisms

G = {
g = g1g2 ∈ Aff(Tq) × Aff(Tr) : hor(g1o1) + hor(g2o2) = 0

}
(6.4)

acts transitively on DLq,r and is amenable. Here, we mean, of course, that for
a pair g1g2 the action of g1 is on Tq and the action of g2 on Tr . If q �= r ,
then G is the whole automorphism group (Schramm, personal communication),
it is nonunimodular and DLq,r is a nonamenable graph by [40]. On the other hand,
when q = r , this group is unimodular and the graph DLq,q is amenable. Indeed,
we have �G(g) = �[o,go], where, for x = x1x2 and y = y1y2 ∈ DLq,r ,

�[x, y] = �Tq [x1, y1]�Tr [x2, y2] = (q/r)hor(y1)−hor(x1).

The same remains true when in (6.4) we replace the affine subgroups of the two
trees by arbitrary closed subgroups that act transitively on the respective tree. In
the remainder of this article, we may assume that G is of this more general form.

REMARK. We did not study the question whether every transitive subgroup of
the group of (6.4) must factorize in this way, and if this is not the case, whether the
modular function may look differently.



354 V. A. KAIMANOVICH AND W. WOESS

FIG. 2.

The graph DLq,r has a natural compactification D̂Lq,r , namely, its closure in
T̂q × T̂r . Thus,

D̂Lq,r = (
T̂q × {ω2}) ∪ ({ω1} × T̂r

)
.

We split the boundary into five disjoint pieces:

∂DLq,r = (
∂∗Tq × {ω2}) ∪ ({ω1} × ∂∗Tr

)
∪ ({ω1} × {ω2}) ∪ (

Tq × {ω2}) ∪ ({ω1} × Tr

);
compare with [3]. The first piece consists of the limits of sequences x(n) = x1

nx2
n

in DLq,r for which x1
n → ξ1 ∈ ∂∗Tq and x2

n → ω2 in the topologies of T̂q and T̂r ,
respectively. The second piece is analogous, by exchanging roles. The third piece
consists of the limits of sequences where |hor(x1

n)| = |hor(x2
n)| remains bounded,

while |x1
n| and |x2

n| tend to ∞. The fourth piece corresponds to sequences where
almost all x1

n coincide, while |x2
n| → ∞, and the fifth piece is again analogous, by

exchanging roles.
Now let P be a G-invariant, irreducible transition operator on DLq,r with finite

first moment. We define the vertical drift of P as

vd(P ) = ∑
x

p(o, x)hor
(
x1)

.

Note that the modular drift is δ(P,�) = vd(P ) log(q/r). Then the following is
known in analogy with Theorem 6.1.

THEOREM 6.5 [3]. (a) The rate of escape of the Markov chain generated by
P is �(P ) = |vd(P )|.
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(b) If vd(P ) > 0, then the Markov chain (xn) converges almost surely to a
random point x∞ = x1∞ω2 ∈ ∂∗Tq × {ω2}. Denoting by ν the Po-distribution of
x1∞ on ∂∗Tq , we have that supp(ν) = ∂∗Tq .

(c) If vd(P ) < 0, then (xn) converges almost surely to a random point x∞ =
ω1x2∞ ∈ {ω1} × ∂∗Tq . Denoting by ν the Po-distribution of x2∞ on ∂∗Tr , we have
that supp(ν) = ∂∗Tr .

THEOREM 6.6. (i) If vd(P ) = 0, then the Poisson boundary is trivial.
(ii) If vd(P ) > 0, then the Poisson boundary coincides with the measure space

(∂∗Tq, ν), where ν is the Po-distribution of x1∞.
(iii) If vd(P ) < 0, then the Poisson boundary coincides with the measure space

(∂∗Tr , ν), where ν is the Po-distribution of x2∞.

PROOF. This is very similar to the proof of Theorem 6.2. If vd(P ) = 0, then
we can apply Corollary 5.4(c).

Let µ be the probability measure on G associated with P . If vd(P ) > 0,
then vd(P̂ ) < 0. By Theorem 6.5(b), the pair (∂∗Tq, ν) is a µ-boundary. By
Theorem 6.5(c), the pair (∂∗Tr , ν̂) is a µ̂-boundary, where ν̂ is the P̂o-distribution
of x2∞.

We use Theorem 5.19. If ξ1 ∈ ∂∗Tq and ξ2 ∈ ∂∗Tr , then we define the strip
S(ξ1, ξ2) as the set of all vertices x = x1x2 in DLq,r such that x1 lies on the two-
way-infinite geodesic from ω1 to ξ1 in Tq and x2 on the analogous geodesic in Tr .
It is clear that all requirements of Theorem 5.19 are satisfied.

If vd(P ) < 0, then we just have to exchange the two “sides.” �

REMARKS.

1. The Diestel–Leader graphs are “relatives” of the Cayley graphs of the
amenable Baumslag–Solitar groups BS1,p = 〈a, b | ab = bpa〉. The latter has a

representation as the group of all matrices g = ( pk m/p�

0 1

)
, where k, �,m ∈ Z.

To understand the analogy, suppose for simplicity that p is a prime. Then BS1,p

can be considered as a subgroup of the affine group of the field Qp of p-
adic numbers and as such acts by graph automorphisms on Tq . Analogously,
BS1,p can be seen as a subgroup of the affine group over R that acts by
isometries (Möbius transformations) on the hyperbolic upper half plane H.
Both embeddings of BS1,p are nonclosed and nondiscrete, but the diagonal
embedding of BS1,p into Aff(Qp) × Aff(R) is discrete. The joint action of
BS1,p on Tp × H is similar to the action of the group G of (6.4) on Tq × Tr .
(Think of the tree as a discrete analogue of the hyperbolic plane!) Random
walks on the groups BS1,p were first considered in [29]. The description of the
Poisson boundary for the Diestel–Leader graphs is analogous to its description
for the groups BS1,p, for which it is the real line, or the dyadic line, or is trivial,
depending on the sign of the drift [23].
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2. The Diestel–Leader graphs are a particular case of the following general
construction. Let Xi , i = 1,2, . . . , n, be homogeneous graphs presented
as Gi/Ki , where Gi are totally disconnected locally compact groups with
compact open subgroups Ki . Suppose that the groups Gi are endowed with
homomorphisms ϕi onto abelian groups Ai . Denote by ϕ: G1 × G2 × · · · ×
Gn → A the composition of ϕ1 × ϕ2 × · · · × ϕn with a homomorphism from
A1 × A2 × · · · × An onto another abelian group A, and put G = kerϕ, K =
G ∩ ∏

Ki . Then X = G/K is endowed with a homogeneous graph structure
coming from the graph structures of the Xi in the same way as for the Diestel–
Leader graphs (for them n = 2 and A1 = A2 = A = Z). It will be interesting to
have a closer look at this generalization in future work.

6.3. Graphs with infinitely many ends. Let X be a connected, locally finite
graph with edge set E(X). We describe its end compactification, originally
introduced by Freudenthal [15], in the context of random walks (Markov chains);
see [46] and [49], Section 21, for more details.

For a general locally compact topological space X, the space of ends ∂X
is defined as the projective limit of the spaces ∂KX of connected components
of X \ K when compacts K exhaust X. The corresponding compactification
X̂ = X ∪ ∂X obtained as the projective limit of the compactifications X ∪ ∂KX
is called the end compactification of X. However, in the context of graphs, a more
explicit description better suits our purposes.

An infinite path without self-intersections in a graph X is a sequence p =
[x0, x1, . . .] of distinct vertices such that xi ∼ xi−1 for all i. If F is a finite
set of edges of X, then the (induced) graph X \ F has finitely many connected
components. Every path p must have all but finitely many points in precisely one of
them, and we say that p ends up in that component. Two paths are called equivalent
if, for any finite F ⊂ E(X), they end up in the same component of X \ F . An end
of X is an equivalence class of paths. In this subsection, we write ∂X for the
space of ends of X, and X̂ = X ∪ ∂X. If C is a component of X \ F [F ⊂ E(X)

finite], then we write ∂C for the set of those ends whose paths end up in C, and
Ĉ = C ∪ ∂C for the resulting completion of C.

We now explain the topology of X̂. If F ⊂ E(X) is finite and w ∈ X̂, then there
is precisely one component of X \ F whose completion contains w. We denote it
by Ĉ(w,F ). Varying F , we obtain a neighborhood base of w. Then X̂ is compact,
the topology is discrete on X, it has a countable base and it is Hausdorff. Each
Ĉ(w,F ) is open and compact, and X̂ is totally disconnected.

For Cayley graphs of a finitely generated group, the end compactification is
independent of the choice of the finite generating set that induces the Cayley graph,
and one speaks of the ends of the group itself.

A transitive, infinite graph X has one, two or infinitely many ends. If it has one
end, then the end compactification is not suitable for a good description of the
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structure of X at infinity. If it has two ends, then it is roughly isometric with the
two-way-infinite path, and it is easily understood that the Poisson boundary of any
homogeneous Markov chain with finite first moment is trivial (compare with [49],
Theorem 25.4). Thus, we consider the case when X has infinitely many ends and
G = Aut(X,P ) acts transitively.

We use the powerful theory of cuts and structure trees developed by Dunwoody;
see the book by Dicks and Dunwoody [11]. For a more detailed description with
the same notation as used here, see [49] and also [41].

A cut of a connected graph X is a set F of edges whose deletion disconnects X.
If it disconnects X into precisely two connected components A = A(F ) and
A∗ = A∗(F ) = X \ A, then we call F tight, and A,A∗ are the sides of F .
Thomassen in [41] has given a clever proof of the following.

LEMMA 6.7 [41]. For any k ∈ N, there are only finitely many tight cuts F with
|F | = k that contain a given edge of X.

Two cuts F,F ′ are said to cross if all four sets

A(F ) ∩ A(F ′), A(F ) ∩ A∗(F ′), A∗(F ) ∩ A(F ′), A∗(F ) ∩ A∗(F ′)

are nonempty. Dunwoody [13] has proved the following important theorem; see
also [11].

THEOREM 6.8. Every infinite, connected graph with more than one end has a
finite tight cut F with infinite sides such that F crosses no gF , where g ∈ Aut(X).

A cut with these properties will be called a D-cut. Owing to Lemma 6.7 and
Theorem 6.8, one can construct Dunwoody’s structure tree of X. Let F be a D-cut
of X and define

E = {
A(gF ),A∗(gF ) :g ∈ G

}
.

This collection has the following properties.

1. All A ∈ E are infinite and connected.
2. If A ∈ E then A∗ = X \ A ∈ E .
3. If A,B ∈ E and A ⊂ B then there are only finitely many C ∈ E such that

A ⊂ C ⊂ B .
4. If A,B ∈ E , then one of A ⊂ B , A ⊂ B∗, A∗ ⊂ B or A∗ ⊂ B∗ holds.

To construct the structure tree T of X with respect to G and the D-cut F , it
will be convenient to think of an unoriented edge of T as a pair of oriented edges,
where the second edge points from the endpoint to the initial point of the first one.
We define T in terms of its edges and their incidence. The oriented edge set of T
is E . If A ∈ E , then (A,A∗) constitutes a pair of oppositely oriented edges between
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the same two vertices. If A,B ∈ E and B �= A∗, then the endpoint of A is the initial
point of B if A ⊃ B and there is no C ∈ E such that A ⊃ C ⊃ B properly.

The tree is countable, but not necessarily locally finite. We write ∂T for the
set of ends of T . The group G acts by automorphisms on T via A 	→ gA, where
g ∈ G and A ∈ E . The action has one or two orbits on E according to whether
gA(F ) = A∗(F ) for some g ∈ G or not.

We introduce the structure map ϕ: X̂ → T̂ . Let z ∈ X̂. Then there is some
A0 ∈ E that contains z. If there is a minimal A ∈ E with this property, then we
define ϕz as the end vertex of A as an edge of T . If there is no minimal A

with this property, then there must be a maximal strictly descending sequence
A0 ⊃ A1 ⊃ A2 ⊃ · · · in E such that w ∈ An for all n. As edges of T , the An

constitute a path that defines an end in ∂T . This end is ϕz. The image of z does
not depend on the particular choice of the initial A0 ∈ E containing z.

Via (g,A) 	→ gA for A ∈ E , the group G acts on T , and ϕ commutes with the
actions of G on X̂ and on T̂ .

If x is a vertex of X, then ϕx is a vertex of T . Given an end of T , its preimage
under ϕ consists of a single end of X. However, usually there are ends of X that
are mapped to vertices of T under ϕ. We write ∂(0)X = ϕ−1∂T . This is a Borel
subset of ∂X.

Now let P be a homogeneous Markov operator on X with G = Aut(X,P ). We
have to distinguish two substantially different cases.

CASE 1. No end of X is fixed by G. Then G is nonamenable by [45], and the
following is known.

THEOREM 6.9 [46]. The Markov chain (xn) converges almost surely in the
end topology to a random point x∞ ∈ ∂X. Denoting by ν the Po-distribution
of x∞, we have that (i) supp(ν) = ∂X, (ii) ν({ξ}) = 0 for every ξ ∈ ∂X and
(iii) ν(∂X \ ∂(0)X) = 0.

In [46], ∂(0)X is denoted by �(0), and the structure tree appears only implicitly.
The main result of [46] is a proof, using a completely different method, of the
following under the restriction that P has bounded range [i.e., there is M such that
p(x, y) > 0 only when d(x, y) ≤ M]. Here, we need only the finite first moment
assumption.

THEOREM 6.10. If G does not fix an end of X and P has finite first moment,
then the Poisson boundary of P coincides with the measure space (∂X, ν).

PROOF. By Theorem 6.9, the pair (∂X, ν) is a µ-boundary for the probability
measure µ of (2.16). Theorem 6.9 also applies to P̂ , and if we denote the
corresponding limit distribution on ∂X by ν̂, then (∂X, ν̂) is a µ̂-boundary.
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We intend to apply the “strip criterion” (5.19) once more. Let F be the D-cut
that we have used to define E and the structure tree. We write F 0 for the set of all
end vertices of the edges of F . For ends ξ, η ∈ ∂X, we define

S(ξ, η) = ⋃{
gF 0 :g ∈ G, Ĉ(ξ, gF ) �= Ĉ(η, gF )

}
.

Clearly, gS(ξ, η) = S(gξ, gη) for every g ∈ G. The “strip” S(ξ, η) is the union of
all gF 0 such that the sides of gF , seen as edges of the structure tree T , lie on the
geodesic between ϕξ and ϕη. This geodesic can be empty (when ϕξ = ϕη), finite,
one way infinite or two way infinite. The latter holds precisely when ξ, η ∈ ∂(0)X

are distinct, and in view of properties (i), (ii) and (iii) of ν and ν̂ , we have to
check the condition of Theorem 5.19 only in this case. But by Lemma 6.7 and the
fact that F is a D-cut, there is an integer k > 0 such that the following holds: if
A0,A1, . . . ,Ak ∈ E and A0 ⊃ A1 ⊃ · · · ⊃ Ak properly, then d(Ak,A

∗
0) ≥ 2 (i.e., if

Ak is one of the sides of gF , where g ∈ G, then gF 0 is entirely contained in A0).
Finiteness of F 0 now implies that there is a constant c > 0 such that∣∣S(ξ, η) ∩ B(o,n)

∣∣ ≤ c n

for all n and for all distinct ξ, η ∈ ∂(0)X. �

CASE 2. G fixes an end ω of X. Then the following facts are known from
[34], [45] and [46]; see [49] a for unified presentation.

THEOREM 6.11 ([34], [45] and [46]). (i) The group G is amenable, and G

acts transitively on ∂∗X = ∂X \ {o}.
(ii) The structure tree T is homogeneous with finite degree q + 1 ≥ 3.
(iii) The structure map ϕ: X̂ → T̂ is onto, and its restriction to ∂X is a

homeomorphism ∂X → ∂T. There is an integer a > 0 such that

dT (ϕx,ϕy) ≤ dX(x, y) ≤ a
(
d(ϕx,ϕy) + 1

)
.

This means that the picture is—up to the small “perturbation” described by
the structure map—precisely the same as in the example of Section 6.1. Since G

acts with compact stabilizers on the edges of T and T is locally finite, G also
acts with compact stabilizers on the vertices of T . Therefore, we may use in
the formula (2.2) the action of G on T to determine the modular function
of G. In other terms, �[x, y] = �[ϕx,ϕy] for the cocycles �[·, ·] on X and T ,
respectively. Thus, one only has to make a few obvious modifications in the proofs
of the results of [6] that we have subsumed above in Theorem 6.1 to obtain the
following.

THEOREM 6.12. Let P be a homogeneous Markov operator on X.

(a) If the modular drift δ(P,�) = 0, then the Poisson boundary is trivial.
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(b) If δ(P,�) > 0, then the Markov chain (xn) converges almost surely to a
random point x∞ ∈ ∂∗X. Denoting by ν the Po-distribution of x∞ on ∂∗X, we
have that supp(ν) = ∂∗T, and the pair (∂∗X,ν) is the Poisson boundary.

(c) If δ(P,�) < 0, then xn → ω almost surely, and the Poisson boundary is
trivial.

6.4. Hyperbolic graphs. A graph X with its discrete metric d(·, ·) is called
hyperbolic (in the sense of Gromov) if there is a δ ≥ 0 such that every geodesic
triangle (with vertices in X) is δ-thin. The latter means that for any point on
one of the three sides there is another point at distance at most δ on one of the
other two sides. We shall not lay out once more the basic features of hyperbolic
graphs and their hyperbolic boundary and compactification, which (by an abuse
of the notation of Section 6.3) we denote by ∂X and X̂, respectively. The reader
is referred to the texts by Gromov [19], Ghys and de la Harpe [17], Coornaert,
Delzant and Papadopoulos [7] or, for a presentation in the context of random walks
on graphs, [49], Section 22.

The boundary of an infinite vertex-transitive hyperbolic graph is either infinite
or has cardinality 2. In the latter case, it is again a graph with two ends that is
roughly isometric with the two-way-infinite path, and the Poisson boundary of
any homogeneous Markov operator with finite first moment is trivial (compare
with Section 6.3). Thus, we assume that ∂X is infinite and—as usual—that
G = Aut(X,P ) acts transitively on X. In close analogy with Theorem 6.9, the
following is known from Woess [47] (see also [49]) without assuming any moment
condition.

THEOREM 6.13 [47]. If G does not fix an element of ∂X, then G is
nonamenable and the Markov chain (xn) converges almost surely in the hyperbolic
topology to a random point x∞ ∈ ∂X. Denoting by ν the Po-distribution of x∞, we
have that (i) supp(ν) = ∂X and (ii) ν({ξ}) = 0 for every ξ ∈ ∂X.

In the special case of discrete groups that are Gromov-hyperbolic, the following
result was proved by the same method by Kaimanovich [28].

THEOREM 6.14. If G does not fix an element of ∂X and P has finite first
moment, then the Poisson boundary of P coincides with the measure space
(∂X, ν).

PROOF. The proof is as in the preceding examples. Theorem 6.13 applies
both to P and to P̂ , so that, analogously to the µ-boundary (∂X, ν), we get the
µ̂-boundary (∂X, ν̂ ). We have to define the “strips” S(ξ, η), where ξ, η ∈ ∂X. By
property (ii) of ν and ν̂ , we have ν ⊗ ν̂({(ξ, ξ) : ξ ∈ ∂X}) = 0, so that it is sufficient
to define S(ξ, η) when ξ �= η. We let

S(ξ, η) = ⋃{x ∈ X :x lies on a two way infinite geodesic between ξ and η}.
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Now, in a δ-hyperbolic graph as introduced above in terms of geodesic triangles,
any two geodesics between the same pair of boundary points are at Hausdorff
distance at most 2δ, and therefore there is a constant c > 0 such that

|S(ξ, η) ∩ B(o,n)| ≤ c n

for all n and for all distinct ξ, η ∈ ∂(0)X, just as in Theorem 6.10. �

What one still has to consider is the “degenerate” case when G fixes a point
in ∂X (which then has to be unique, given that ∂X is assumed to be infinite).
The question is whether there exists an example of this type that goes beyond
Theorem 6.11. In other words, if X is hyperbolic and has infinitely many ends
and G fixes a point of the hyperbolic boundary, then it is easy to understand
that the graph X is precisely as described in Theorem 6.11 (since the ends are
the connected components of the hyperbolic boundary by Pavone [35]). So the
question is whether there is a one-ended hyperbolic graph with a transitive group
of automorphisms that fixes a boundary point. We have asked a few experts who
believe that the answer is “no.” (We gratefully acknowledge E-mail conversations
with Nadia Benakli and Werner Ballmann on this question.)
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