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ON THE SMALL TIME ASYMPTOTICS OF DIFFUSION
PROCESSES ON HILBERT SPACES

By T. S. Zhang

HiA Norway

In this paper, we establish a small time large deviation principle and
obtain the following small time asymptotics:

lim
t→0

2t logP�X0 ∈ B� Xt ∈ C� = −d2�B�C��

for diffusion processes on Hilbert spaces, where d�B�C� is the intrinsic
metric between two subsets B and C associated with the diffusions. The
case of perturbed Ornstein–Uhlenbeck processes is treated separately at
the end of the paper.

1. Introduction. The aim of this paper is to study the small time asymp-
totics of diffusion processes and heat semigroups on Hilbert spaces, which
include solutions of some stochastic evolution equations. Let us start by recall-
ing the basic results in finite dimensions. Let L = 1

2	 be one-half of the Lapla-
cian operator on Rd. Then we know that the heat kernel is the transition
density of the Brownian motion given by

Pt�x�y� = �2πt�−d/2 exp
(
−d

2�x�y�
2t

)
�

where d�x�y� stands for the usual distance onRd. It is clear that the following
small time asymptotics holds:

lim
t→0

2t logPt�x�y� = −d2�x�y��(1.1)

Much work has been done to extend the above asymptotics to general situ-
ations where the Laplacian is replaced by general elliptic operators, Rd is
replaced by some finite-dimensional Riemannian manifolds and d�x�y� is
the corresponding Riemannian distance. The results are quite satisfactory;
see [8], [24] and references therein.

Formula (1.1) is sometimes called the Varadhan identity. We are here con-
cerned with the above asymptotics in infinite-dimensional cases where L will
be the generator of a symmetric diffusion process Xt� t ≥ 0 on some Hilbert
space E. Because of the lack of the transition density, the natural replacement
for Pt�x�y� in (1.1) is P�X0 ∈ B� Xt ∈ C�, where C, B are two Borel subsets.
The distance d�x�y� between two points x�y is replaced by the distance of
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the two sets C and B. Specifically, we are interested in getting the following
small time asymptotics:

lim
t→0

2t logP�X0 ∈ B� Xt ∈ C� = −d2�B�C��(1.2)

where d is the appropriate Riemannian distance associated with the diffusion.
To this end, we deal with the upper bound and the lower bound separately.
The upper bound is proved for any two Borel subsets B, C with positive mea-
sures and quite general diffusions with continuous diffusion operators. For
the lower bound, we assume that the diffusion is a solution of a stochastic dif-
ferential equation or a stochastic evolution equation on the Hilbert space. We
first establish a small time large deviation principle for solutions of stochastic
evolution equations of the type

ut = x−
∫ t

0
Aus ds+

∫ t

0
b�us�ds+

∫ t

0
σ�us�dWs�(1.3)

Then the lower bound follows from the large deviation principle.
In previous works [10] and [11], small time asymptotics (1.2) was obtained

for the standard Ornstein–Uhlenbeck process on classical Wiener space and
general Ornstein–Uhlenbeck processes with unbounded linear drifts that
include solutions of some simple stochastic partial differential equations. In
both cases, the underlying processes are Gaussian. Estimates of the lower
bound rely essentially on the special properties of the Gaussian measures,
which cannot be found in the present general situation. Instead, we adopted
a SDE approach. However, our estimates of the upper bound are similar to
those in [10] and [11]. We also notice the recent preprint [1], where a similar
problem is addressed. However, our approaches are different and our results
cannot cover each other.

Now we discuss the contents of the paper in detail. Section 2 gives the
framework. We introduce the Dirichlet forms and the associated diffusions
we are going to study. In Section 3, we prove a small time large deviation
principle for solutions of stochastic evolution equations. The results are of
independent interest and will also be used later. Our idea is to show that the
solutions of the stochastic evolution equations have the same asymptotics as
the solutions of the corresponding equations without drifts. This is done by
several lemmas. Since both operators and drifts are allowed to be unbounded,
the proofs are quite involved. Both Itô calculus and the factorization method
are used. In Section 4, we prove the asymptotics (1.2) for symmetric diffusions.
The Lyons–Zheng decomposition plays an important role in the upper bound
estimates. The lower bound estimates follow from the large deviation principle.
In Section 5, we study the small time asymptotics of a class of perturbed
Ornstein–Uhlenbeck processes which cannot be covered by previous sections.
The main tool we use is the Girsanov theorem we proved in [4]. Again because
of the unboundness of the drift, careful analysis is carried out. Perturbed
Ornstein–Uhlenbeck processes have been extensively studied in the past years
in connection with quantum field theory. See [2], [3], [4] and [19]. For example,
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it is shown in [2] that the Log–Sobolev inequality holds for the Dirichlet forms
associated with perturbed Ornstein–Uhlenbeck processes.

2. Framework. Let H be a separable Hilbert space and E be another
separable Hilbert space such that H is imbedded in E densely and continu-
ously and the imbedding is Hilbert–Schmidt. Let µ be a mean zero Gaussian
measure on �E���E�� with the reproducing kernel space H, where ��E�
denotes the Borel σ-field. The �H�E�µ� is an abstract Wiener space in the
sense of Gross. More generally, to cover solutions of stochastic evolution equa-
tions, let A be a self-adjoint operator on H satisfying A ≥ cIH, where c > 0
and IH stands for the identity operator on H. The associated semigroup is
denoted by Tt = e−tA. Throughout this paper, we impose the following.

Assumption 2.1. The semigroup Tt = e−tA, t ≥ 0, generated by −A, also
extends to a strongly continuous semigroup of bounded linear operators on E.

Remark 2.2. This assumption is not as strong as it looks. According to
[5], for a given operator A and a Hilbert space H one can always properly
choose E so that the above assumption holds.

Define H0 = D�√A� with inner product 
h1� h2�H0
= 
√Ah1�

√
Ah2�H.

Then

E′ ⊂H0 ⊂H ⊂ E densely and continuously.

The inclusion H0 ⊂ E is also Hilbert–Schmidt.
Introduce

� C∞
b =

{
u�x� = f�l1�x�� � � � � lm�x��� f ∈ C∞

b �Rm�� l1� � � � � lm ∈ E′� m ≥ 1
}
�

Given u ∈ � C∞
b , denote by ∇u�x� ∈H0 such that for all k ∈H0,


∇u�x�� k�H0
= ∂u�x�

∂k
= lim

ε→0

u�x+ εk� − u�x�
ε

�(2.1)

Define

� 0�u� v� = 1
2

∫
E

∇u�∇v�H0

dµ� u� v ∈ � C∞
b �(2.2)

It was shown in [3] (see also [19]) that �� 0�� C∞
b � is closable on L2�E�µ�.

The closure, denoted by �� �D�� ��, is a Dirichlet form. The diffusion process
M = ��Xt�t≥0��t�Px� x ∈ E� associated with �� �D�� �� is the Ornstein–
Uhlenbeck process Xt� t ≥ 0 on E which solves the following stochastic evo-
lution equation in the weak sense:

dXt = dwt − 1
2AXt dt�(2.3)

where wt is anE-valued Brownian motion with covariance spaceH0. A simple
example is the solution of the following SPDE:

∂u�t� x�
∂t

= ẇt�x� +
1
2
∂2u�t� x�
∂x2

− 1
2
u�t� x��(2.4)
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where H = L2�R�dx�, A = �∂2/∂x2�− I, wt�x� is a cylinder Brownian motion
on H0 = D�√A� (the Sobolev space of order 1), E is chosen to be a Hilbert
space such that the imbedding H0 ⊂ E is Hilbert–Schmidt.

To introduce general diffusions, we let �s�H0� denote the set of all symmet-
ric bounded linear operators on H0. Let A�z� be a strongly continuous map
from E into �s�H0� (i.e., A�z�h is continuous in z for every h ∈H0) such that

ĉ−1IH0
≤ A�z� ≤ ĉIH0

�(2.5)

where ĉ is a positive constant, and IH0
denotes the identity operator on H0.

Introduce the quadratic form

�0�u� v� = 1
2

∫
E

〈
A�z�∇u�z��∇v�z�

〉
H0

dµ� u� v ∈ � �∞
b �

This form is also closable on L2�E�µ� because of (2.5). Its closure, denoted by
���D����, is a Dirichlet form. Let MQ = �Xt� t ≥ 0� Qx� x ∈ E� denote the
diffusion associated with ���D���� (see [17] for the existence). The process
MQ is a quite general diffusion with the diffusion operator

√
A�z� and possibly

very singular drift.

Remark 2.3. The fact that the measure µ is Gaussian is used only in
Section 5. In Section 3, the measure µ is not involved. In Section 4, the
Gaussian measure µ can be replaced by any Borel measure ν that satisfies:

(a) The integration by parts formula,∫
E

∂f

∂k
dν = −

∫
E
βkfdν for any k ∈ E′� f ∈ � C∞

b �

where βk ∈ L2�E� ν�;
(b) The closure �� �D�� �� is the unique Dirichlet form extending �� o�

� C∞
b �. See [19], [20] for examples.

3. A large deviation principle. In this section, we prove a small time
large deviation principle for solutions of a class of stochastic evolution equa-
tions. This corresponds not only to small noise but also small drift perturba-
tion where an unbounded operator A and unbounded drifts are involved. The
results are of their own interest and will also be used later. Let H, E, A, H0
be as in Section 2. Let L�2��H0�H� denote the set of all Hilbert–Schmidt oper-
ators from H0 into H with the Hilbert–Schmidt norm � · ��2�. Let b, σ be two
measurable mappings. Assume throughout this section:

(I) b� E→ E, σ � E→ L�2��H0�H� satisfy
�b�x� − b�y��E ≤ c2�x− y�E� �σ�x� − σ�y���2� ≤ c1�x− y�E�

(II) �b�x��E ≤ c2 + c3�x�E� sup
x
�σ�x���2� ≤M�
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or

(I)′ The imbedding H → E is a trace class and b� E → E, σ � E → � �H0�
satisfy

�b�x� − b�y��E ≤ c2�x− y�E� �σ�x� − σ�y��� �H0� ≤ c1�x− y�E�
(II)′ �b�x��E ≤ c2 + c3�x�E� sup

x
�σ�x��� �H0� ≤M�

where c1� c2� c3 and M are constants.

Remark. These assumptions are more than sufficient for the existence and
uniqueness of the corresponding stochastic evolution equation, but they are
necessary for the proof of Lemma 3.4.

Let Wt� t ≥ 0 be an E-valued Brownian motion with the reproducing
Hilbert space H0 defined on some probability space �.��t�P�. Given x ∈ E.
Let ut be the unique solution of the stochastic evolution equation

ut = x−
∫ t

0
Aus ds+

∫ t

0
b�us�ds+

∫ t

0
σ�us�dWs(3.1)

In general, ut� t > 0, will not belong to the domain ofA and (3.1) is interpreted
in the following sense:

ut = Ttx+
∫ t

0
T�t−s��b�us��ds+

∫ t

0
T�t−s�σ�us�dWs�(3.2)

where Tt = e−tA is the semigroup generated by −A as in Section 2.
The existence of the solution of the above equation under the assumptions

(I), (II) or (I)′, (II)′ is well known (see [17] and [18]). Let ε > 0. It is easy to
see that the process uεt coincides in law with the solution of the following
equation:

uεt = Tεtx+ ε
∫ t

0
Tε�t−s�

(
b�uεs�

)
ds+ ε1/2

∫ t

0
Tε�t−s�σ�uεs�dWs�(3.3)

Let µxε be the law of uε. on C��0�1�→E�. Define a functional I�f� on C��0�1� →
E� by

I�f� = inf
h∈/f

{
1
2

∫ 1

0
�ḣ�t��2H0

dt

}
�

where

/f =
{
h ∈ C��0�1� →H0�� h�·� is absolutely continuous and such that

f�t� = x+
∫ t

0
σ
(
f�s�)ḣ�s�ds� 0 ≤ t ≤ 1

}
�
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Theorem 3.1. µxε satisfies a large deviation principle with the rate function
I�·�, that is;

(i) For any closed set F,

lim sup
ε→0� xn→x

ε logµxnε �F� ≤ − inf
f∈F

(
I�f�)�

(ii) For any open set G,

lim inf
ε→0� xn→x

ε logµxnε �G� ≥ − inf
f∈G

I�f��

Proof. We prove the theorem for xn = x� n ≥ 1. Slight modifications of
the proof led to the general case. Let νε be the law of the solution vε. of the
following stochastic equation:

vεt = x+ ε1/2
∫ t

0
σ�vεs�dWs� t ≥ 0�(3.4)

Then it is known (see, e.g., [7]) that νε satisfies a large deviation principle on
C��0�1� → E� with rate function I�·�. Thus by Theorem 4.2.13 in [9] it suffices
to show that the two families �µε�, �νε� of probability measures are so-called
exponentially equivalent. That is, the following:

Proposition 3.2. For any δ > 0,

lim
ε→0

ε logP
(
sup
0≤t≤1

�uεt − vεt �E > δ

)
= −∞�(3.5)

Proof. Observe that

uεt−vεt = �Tεtx−x�+ε
∫ t

0
Tε�t−s�

(
b�uεs�

)
ds

+ε1/2
∫ t

0
�Tε�t−s�−I�σ�uεs�dWs+ε1/2

∫ t

0

(
σ�uεs�−σ�vεs�

)
dWs

(3.6)

Denote the four terms on the right-hand side respectively by Iεt , II
ε
t , III

ε
t

and IVε
t . Since limε→0 Iε = 0, it suffices to establish that for any δ > 0,

lim
ε→0

ε logP
(
sup
0≤t≤1

�Y�t > δ

)
= −∞(3.7)

for Yt = IIεt , III
ε
t and IV

ε
t . This will be done in the following lemmas.

Let J denote the Hilbert–Schmidt injection mapping from H to E. If T ∈
� �H�, since T = JT as an operator from H to E, we have T ∈ L�2��H�E�
and ��T���2� ≤ ��J���2���T��� �H�. In the following, c will denote a generic constant
which may vary from line to line, but is independent of ε� t� s.

Lemma 3.3. Let δ > 0. Then

lim
ε→0

ε logP
(
sup
0≤t≤1

�IIεt �E > δ

)
= −∞�(3.8)
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Proof. By assumption (II) and the fact that Tt is also a strongly contin-
uous semigroup on E, we have

sup
0≤s≤t

�εuεs �E ≤ c�εx�E + cε2 +
∫ t

0
cε2�uεs �E ds

+ sup
0≤t≤1

∣∣∣∣ε3/2 ∫ t

0
Tε�t−s�σ�uεs�dWs

∣∣∣∣
E

(3.9)

By the Gronwall inequality,

sup
0≤s≤1

�εuεs �E ≤
(
c�εx�E + cε2 + sup

0≤t≤1

∣∣∣∣ε3/2 ∫ t

0
Tε�t−s�σ�uεs�dWs

∣∣∣∣
E

)
eεc�

Thus,

lim
ε→0

ε logP
(

sup
0≤s≤1

�εuεs �E >
1
2
δ

)

≤ lim
ε→0

ε logP
(

sup
0≤t≤1

∣∣∣∣ε3/2 ∫ t

0
Tε�t−s�σ�uεs�dWs

∣∣∣∣
E

>
1
4
δ

)
�

(3.10)

Since

sup
0≤t≤1

�IIεt �E ≤ cε

(
c2 +

∫ 1

0
�uεt �E dt

)
�

it follows from (3.10) that

lim
ε→0

ε logP
(

sup
0≤t≤1

�IIεt �E > δ

)

≤ lim
ε→0

ε logP
(

sup
0≤t≤1

∣∣∣∣ε3/2 ∫ t

0
Tε�t−s�σ�uεs�dWs

∣∣∣∣
E

> 1
4δ

)

However, according to Lemma 5.1 in [6],

lim
ε→0

ε logP
(

sup
0≤t≤1

∣∣∣∣ε3/2 ∫ t

0
Tε�t−s�σ�uεs�dWs

∣∣∣∣
E

> 1
4δ

)
= −∞�

This ends the proof. ✷

Lemma 3.4. Let δ > 0. Then

lim
ε→0

ε logP
(
sup
0≤t≤1

�IIIεt �E > δ

)
= −∞�(3.11)

Proof. We shall use a factorization method which was adopted in [23].
The method is based on the following identity:∫ t

r
�t− s�α−1�s− r�−α ds = π

sin�πα� � 0 ≤ r ≤ t� 0 < α < 1/2�(3.12)
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We write

IIIεt = ε1/2
sinπα
π

[ ∫ t

0
Tε�t−r�

∫ t

r
�t− s�α−1�s− r�−α dsσ�uεr�dWr

−
∫ t

0

∫ t

r
�t− s�α−1�s− r�−α dsσ�uεr�dWr

]

= ε1/2
sinπα
π

[ ∫ t

0
Tε�t−s��t− s�α−1Yε

1�s�ds−
∫ t

0
�t− s�α−1Yε

2�s�ds
]
�

where

Yε
1�s� =

∫ s

0
Tε�s−r��s− r�−ασ�uεr�dWr�

Yε
2�s� =

∫ s

0
�s− r�−ασ�uεr�dWr�

So

IIIεt = ε1/2
sinπα
π

[ ∫ t

0
Tε�t−s��t− s�α−1(Yε

1�s� −Yε
2�s�

)
ds

+
∫ t

0

(�Tε�t−s� − I��t− s�α−1)Yε
2�s�ds

]
�

Notice that

Yε
1�s� −Yε

2�s� =
∫ s

0
�Tε�s−r� − I��s− r�−ασ�uεr�dWr�

�Tε�t−s� − I�Yε
2�s� =

∫ s

0
�Tε�t−s� − I��s− r�−ασ�uεr�dWr�

Set δε = sup0≤s≤ε �Ts − I�L�H�E�. Then limε→0 δε = 0 since the imbedding
H→ E is Hilbert–Schmidt. Applying Theorem 4.1 in Chow and Menaldi [6],
we have that for all s ≤ 1,

P
(�Yε

1�s�−Yε
2�s��E≥d

) ≤ 3exp
(
− d2

2cα�Mδ2ε

)
�

P

(
sup
s≤t≤1

∣∣∣∣
(
Tε�t−s�−I

)
Yε

2�s�
∣∣∣∣
E

≥d
)
= P

(
�Yε

2�s��E≥
d

δε

)
≤3exp

(
− d2

2cα�Mδ2ε

)
�

where cα�M is a constant only depending on α and the constant M appearing
in (II). These two inequalities imply that there exists a constant M1 indepen-
dent of ε such that

sup
0≤s≤1

E

[
exp

(
1

3cα�Mδ2ε
�Yε

1�s� −Yε
2�s��2E

)]
≤M1�(3.13)

sup
0≤s≤1

E

[
exp

(
1

3cα�Mδ2ε
sup
s≤t≤1

∣∣�Tε�t−s� − I�Yε
2�s�

∣∣2
E

)]
≤M1�(3.14)
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Let Zε
t = ε−1/2�π/ sin�πα��IIIεt . By Hölder inequality, for m ≥ �1/2α� + 1,

sup
0≤t≤1

�Zε
t �2mE

≤ sup
0≤t≤1

(∫ t

0
�t−s��α−1��2m/2m−1�ds

)2m−1
22m−1

× sup
0≤t≤1

(∫ t

0

∣∣Yε
1�s�−Yε

2�s�
∣∣2m
E
+∣∣�Tε�t−s�−I�Yε

2�s�
∣∣2m
E

)
ds

)

≤ρ2mα
∫ 1

0

(
�Yε

1�s�−Yε
2�s��2mE + sup

s≤t≤1
��Tε�t−s�−I�Yε

2�s��2mE
)
ds�

(3.15)

where

ρα =
2

1+ α− 2��1/α� + 1�/2�1/α� + 1
�

Thus we can find a constant c1α such that

E

[
exp

(
1

3cα�Mδ2ερ2α
sup
0≤t≤1

�Zε
t �2E

)]

=
∞∑
m=0

1
m!

E

(
1

3cα�Mδ2ερ2α
sup
0≤t≤1

�Zε
t �2E

)m

≤ c1α

∞∑
m=0

1
m!

E

[ ∫ 1

0

{(
1

3cα�Mδ2ε
�Yε

1�s� −Yε
2�s��2E

)m

+
(

1
3cα�Mδ2ε

sup
s≤t≤1

∣∣∣�Tε�t−s� − I�Yε
2�s�

∣∣∣2
E

)m}
as

]

≤ 2c1αM1�

(3.16)

where the last inequality follows from (3.13) and (3.14). For δ > 0, applying
Chebyshev’s inequality and (3.16),

P

(
sup
0≤t≤1

�IIIεt �E > δ

)

= P

(
1

3cα�Mδ2ερ2α
sup
0≤t≤1

�Zε
t �2E >

δ2

3cα�Mδ2ερ2α

( π

sin�πα�
)2 1
ε

)

≤ 2c1αM1 exp
(
− δ2

3cα�Mδ2ερ2α

( π

sin�πα�
)2 1
ε

)
�

(3.17)

This gives

lim
ε→0

ε logP
(

sup
0≤t≤1

�IIIεt �E > δ

)
≤ − lim

ε→0

(
δ2

3cα�Mδ2ερ2α

( π

sin�πα�
)2)

= −∞�

which proves the lemma. ✷
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Lemma 3.5. Let δ > 0. Then

lim
ε→0

ε logP
(

sup
0≤t≤1

�IVε
t �E > δ

)
= −∞�

Proof. SetXε
t = Iεt +IIεt +IIIεt . For notional convenience, in the following

we use yεt to denote IVε
t . For any ρ > 0, introduce stopping times

τε1 = inf
{
t > 0� �Xε

t � > ρ
}
� τε2 = inf

{
t > 0� �yεt � > δ

}
�

and define φλ�h� = �ρ2 + �h�2E�λ, h ∈ E, where λ > 2 will be chosen later.
Put τ = τε1 ∧ τε2. By Itô’s formula,

φλ�yεt∧τ� = ρ2λ + ε1/2
∫ t∧τ

0

〈
φ′λ�yεs�� �σ�uεs� − σ�vεs��dWs

〉
+ 1

2ε
∫ t
0 tr

[
φ′′λ�yεs∧τ��σ�uεs∧τ� − σ�vεs∧τ���σ�uεs∧τ� − σ�vεs∧τ��∗

]
ds

= ρ2λ +Mε
t +

∫ t

0
gs ds�

(3.18)

where Mε
t denotes the martingale part and

gs = 1
2ε

[
2λ

(
ρ2 + �yεs∧τ�2E

)λ−1 tr(σ�uεs∧τ� − σ�vεs∧τ�
)(
σ�uεs∧τ� − σ�vεs∧τ�

)∗
+ 4λ�λ− 1�(ρ2 + �yεs∧τ�2E)λ−2 tr��yεs∧τ ⊗ yεs∧τ�

(
σ�uεs∧τ� − σ�vεs∧τ�

)
× �σ�uεs∧τ� − σ�vεs∧τ��∗

]
≤ 1

2εc�4λ2 − 2λ��ρ2 + �yεs∧τ�2E�λ−1�uεs∧τ − vεs∧τ�2E�

By the choice of τ,

�uεs∧τ − vεs∧τ�2E ≤ 2
(�Xε

s∧τ�2E + �yεs∧τ�2E
) ≤ 2�ρ2 + �yεs∧τ�2E��(3.19)

Thus,

gs ≤ εc4λ2φ�yεs∧τ��(3.20)

Taking expectation in (3.18), we get from (3.20) that

E�φ�yεt∧τ�� ≤ ρ2λ + εc4λ2
∫ t

0
E�φλ�yεs∧τ��ds�

By the Gronwall inequality, we have that

E�φ�yε1∧τ�� ≤ ρ2λ exp�4εcλ2��
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Consequently,

P

(
sup
0≤s≤1

�yεs �E > δ� sup
0≤t≤1

�Xε
t � ≤ ρ

)
�ρ2 + δ2�λ

≤ P�τε2 ≤ 1� τε1 > 1��ρ2 + δ2�λ

≤ E�φ�yε1∧τ�� ≤ ρ2λ exp�4εcλ2��

(3.21)

Let λ = 1/ε. It follows that

P

(
sup
0≤s≤1

�yεs �E > δ� sup
0≤t≤1

�Xε
t � ≤ ρ

)
≤

(
ρ2

ρ2 + δ2

)1/ε

exp
(
4c

1
ε

)
�

Hence,

lim sup
ε→0

ε logP
(

sup
0≤s≤1

�yεs �E > δ� sup
0≤t≤1

�Xε
t � ≤ ρ

)
≤ log

(
ρ2

ρ2 + δ2

)
+ 4c�(3.22)

On the other hand, Lemmas 3.3, 3.4 imply that for any ρ > 0,

lim sup
ε→0

ε logP
(

sup
0≤t≤1

�Xε
t � > ρ

)
= −∞�(3.23)

Combination of (3.22) and (3.23) yields

lim sup
ε→0

ε logP
(

sup
0≤s≤1

�IVε
s �E > δ

)

≤
(
lim sup
ε→0

ε logP
(

sup
0≤s≤1

�yεs �E > δ� sup
0≤t≤1

�Xε
t � ≤ ρ

))

∨
(
lim sup
ε→0

ε logP
(

sup
0≤t≤1

�Xε
t � > ρ

))
≤ log

(
ρ2

ρ2 + δ2

)
+ 4c�

Sending ρ to 0, we get that

lim sup
ε→0

ε logP
(

sup
0≤s≤1

�IVε
s �E > δ

)
= −∞�

Combination of Lemmas 3.3, 3.4, 3.5 gives Proposition 3.2, hence Theorem 3.1.
✷

As an illustration of the result, we look at the following simple example.
For more sophisticated examples, please see [7].

Example 3.6. Let D be a smooth bounded domain in Rd. Set H = L2�D�.
Let A = −	 be the Laplacian operator on H with Dirichlet boundary. Then
H0 = H1

0�D�, defined in Section 2, is the Sobolev space of order 1. Take E
to be a Hilbert space such that the imbedding H1

0�D� → E is a trace class.
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Theorem 3.1 applies to the solution of the following stochastic partial differ-
ential equation:

∂ut�x�
∂t

= 	ut�x� + σ�ut�x��Ẇt�x��

where Wt�x� is a cylindrical Brownian motion on H1
0�D�.

4. The small time asymptotics. Let MQ = �Xt� t ≥ 0� Qx� x ∈ E� be
the diffusion as in Section 2. Set, for u� v ∈ � �∞

b ,

/�u� v��z� = 〈
A�z�∇u�z��∇v�z�〉

H0
�(4.1)

The intrinsic metric d�x�y� on E × E determined by the Dirichlet form
���D���� is defined as

d�x�y� = sup
u∈� C∞b � /�u�u�≤1

�u�x� − u�y���(4.2)

From the definition, it is easy to see that d�x�y� <∞ if and only if x−y ∈H0.
Let B be a Borel subset of E. We define d�x�B� = inf�d�x�y�� y ∈ B�. For
two Borel subsets B, C with µ�B� > 0 and µ�C� > 0, let

d�B�C� = sup
(
ess inf

z∈B
d�z�C�� ess inf

z∈C
d�z�B�

)
�(4.3)

Set u�x� = d�x�B�. Since d�·� ·� is lower semicontinuous on E×E, we see that
u�x� is measurable if B is a union of a sequence of compact sets.

Proposition 4.1. Assume B = ⋃
n Kn, where Kn is compact. Then for any

constant c > 0, uc�x� = u�x� ∧ c ∈ D��� and /�uc� uc��z� ≤ 1.

Proof. Let h ∈H0. Then we see that

�uc�x+ h� − uc�x��
≤ d�x+ h�x�
= sup

v∈� C∞b � /�v� v�≤1
�v�x+ h� − v�x��

= sup
v∈� C∞b � /�v� v�≤1

∣∣∣∣ ∫ 1

0

〈∇v�x+ sh�� h〉
H0
ds

∣∣∣∣
≤ sup

v∈� C∞b � /�v� v�≤1

∣∣∣∣ ∫ 1

0

∣∣∇v�x+ sh�∣∣
H0
�h�H0

ds

∣∣∣∣
= sup

v∈� C∞b � /�v� v�≤1

∣∣∣∣ ∫ 1

0

∣∣A−1/2A1/2�x+ sh�∇v�x+ sh�∣∣
H0
�h�H0

ds

∣∣∣∣
≤ c sup

v∈� C∞b � /�v� v�≤1

∫ 1

0
�/�v� v��x+ sh��1/2�h�H0

ds ≤ c�h�H0
�

(4.4)
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By Theorem 2.3 in [19], this implies that uc ∈ D���. Next, we are going to
prove /�uc� uc��x� ≤ 1. Since /�uc� uc��x� = �A1/2�x�∇uc�x��2H0

, it is enough to
establish ∣∣〈A1/2�x�∇uc�x�� h

〉
H0

∣∣ ≤ �h�H0
for all h ∈H0

Observe that∣∣uc�x+ sA1/2�x�h� − uc�x�
∣∣ ≤ d�x+ sA1/2�x�h�x�

≤ sup
v∈� C∞b � /�v� v�≤1.

∣∣∣∣�v�x+ sA1/2�x�h� − v�x��∣∣
= sup

v∈� C∞b � /�v� v�≤1.

∣∣∣∣ ∫ s

0

〈∇v�x+ tA1/2�x�h��A1/2�x�h〉
H0
dt

∣∣∣∣
≤ sup

v∈� C∞b � /�v� v�≤1.

∣∣∣∣ ∫ s

0

〈∇v�x+ tA1/2�x�h��

A1/2�x+ tA1/2�x�h�h〉
H0
dt

∣∣∣∣
+ sup

v∈� C∞b � /�v� v�≤1.

∣∣∣∣ ∫ s

0

〈∇v�x+ tA1/2�x�h�� �A1/2�x�

−A1/2�x+ tA1/2�x�h��h〉
H0
dt

∣∣∣∣
≤ sup

v∈� C∞b � /�v� v�≤1.

∫ s

0
/�v� v�1/2�x+ tA1/2�x�h��h�H0

dt

+ c
∫ s

0

∣∣∣∣�A1/2�x� −A1/2�x+ tA1/2�x�h��h
∣∣∣∣
H0

dt�

(4.5)

Hence, ∣∣∣〈A1/2�x�∇uc�x�� h
〉
H0

∣∣
=

∣∣∣∣〈∇uc�x�� A1/2�x�h〉
H0
=

∣∣∣∣ ∂uc�x�
∂A1/2�x�h

∣∣∣∣
=

∣∣∣∣ lims→0

(
uc�x+ sA1/2�x�h� − uc�x�

s

)∣∣∣∣
≤ lim sup

s→0

∣∣∣∣uc�x+ sA1/2�x�h� − uc�x�
s

∣∣∣∣
≤ lim sup

s→0

(
1
s

∫ s

0
�h�H0

dt

)

+ c lim sup
s→0

1
s

∫ s

0

∣∣∣∣�A1/2�x� −A1/2�x+ tA1/2�x�h��h
∣∣∣∣
H0

dt

= �h�H0
�

which proves the proposition. ✷



550 T. S. ZHANG

Set

Q�·� =
∫
E
Qx�·�dµ�

Theorem 4.2. Let B, C be two Borel subsets with µ�B� > 0� µ�C� > 0.
Then

lim sup
t→0

2t logQ�X0 ∈ B� Xt ∈ C� ≤ −d2�B�C��

Proof. We proceed as in [10] and [11]. First, note that we can assume B
and C are a union of compact sets. Otherwise, we replace B and C by subsets
that also have the same measures as B and C. Furthermore, we can assume
d�B�C� > 0. Let λ be any positive number such that λ < d�B�C�. Then,
ess inf x∈B d�x�C� > λ or ess inf x∈C d�x�B� > λ. We assume, for example, the
latter holds. This implies that there exists a Borel set K ⊂ C with µ�K� =
µ�C� such that

d�x�B� > λ for all x ∈K�(4.6)

Now fix an integer n > λ. Define u�x� = d�x�B� ∧ n. By Proposition 4.1, we
know u ∈ D�� �. Then, by the Lyons–Zheng’s decomposition (see [15], [16]),
under Q the following holds:

u�Xs� − u�X0� = 1
2M

u
s − 1

2

(
Mu

t �γt�ω�� −Mu
t−s�γt�ω��

)
for 0 ≤ s ≤ t�(4.7)

where Mu is an �t = σ�Xs� s ≤ t�-square integrable martingale with


Mu�t =
∫ t

0
/�u�u��Xs�ds(4.8)

and γt is the reverse operator such that Xs�γt�ω�� = w�t− s�� 0 ≤ s ≤ t.
Remarking that µ is an invariant measure of the diffusion process, we have

Q�X0 ∈ B� Xt ∈ C� = Q�X0 ∈ B� Xt ∈K�
≤ Q

(
u�Xt� > λ� u�X0� = 0

) ≤ Q
(
u�Xt� − u�X0� > λ

)
= Q

(
1
2
�Mu

t −Mu
t �γt�ω��� > λ

)
≤ Q�Mu

t > λ� +Q�−Mu
t > λ�

≤ 4
∫ ∞
λ/
√
t

1√
2π

exp
(
− s2

2

)
ds�

(4.9)

where we have used the reversibility of the diffusion and 
Mu�t ≤ t which
follows from (4.8) and /�u�u��z� ≤ 1. Thus we get from (4.9) that

lim sup
t→0

2t logP�X0 ∈ B� Xt ∈ C� ≤ −λ2�(4.10)
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Letting λ→ d�B�C�, the assertion follows. ✷

For the lower bound, more assumptions on A�z� are needed. Basically, the
assumption can be formulated as follows.

Assumption 4.3. The operator functionA�z� is smooth enough so that the
diffusion MQ is a solution of a stochastic differential equation or stochastic
evolution equation on the Hilbert space E with coefficients satisfying (I), (II)
or (I)′, (II)′ in Section 3. For example, A�z� ∈ C2

b�E→ �s�H0��, A = IH0
.

Theorem 4.4. Assume assumption 4.3 holds. Let B, C be two Borel subsets
with µ�B� > 0� µ�C� > 0. If B or C is open, then

lim inf
t→0

2t logQ�X0 ∈ B� Xt ∈ C� ≥ −d2�B�C��

Proof. Assume, for example, C is open. Let λ = d�B�C� and ε > 0. Since
ess inf x∈B d�x�C� < λ+ε, there exists a compact subsetK ⊂ B with µ�K� > 0
such that d�x�C� < λ+ ε on K. For any x ∈ K, applying the large deviation
principle in Theorem 3.1 we have

lim inf
t→0� xn→x�

2t logQxn
�Xt ∈ C� ≥ −d�x�C�2 ≥ −�λ+ ε�2�(4.11)

Since C is open, 2t logP�Xx
t ∈ C� is lower semicontinuous on �0�1�×K. Hence

it is lower bounded by (4.11). Applying Fatou’s lemma and Jensen’s inequality,

lim inf
t→0

2t logQ�X0 ∈ B� Xt ∈ C�

≥ lim inf
t→0

2t logQ�X0 ∈K� Xt ∈ C�

= lim inf
t→0

2t log
( ∫

K
Qx�Xt ∈ C�µ�dx�

)
≥ lim inf

t→0
2t log�µ�K��

+ lim inf
t→0

2t log
(

1
µ�K�

∫
K
Qx�Xt ∈ C�µ�dx�

)

≥ lim inf
t→0

1
µ�K�

∫
K
2t logQx�Xt ∈ C�µ�dx�

≥ 1
µ�K�

∫
K
lim inf
t→0

2t logQx�Xt ∈ C�µ�dx�

≥ −�λ+ ε�2 1
µ�K�

∫
K
µ�dx� = −�λ+ ε�2�

where we have used (4.11) for the last inequality. Since ε is arbitrary, the
theorem is proved. ✷
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5. The perturbed Ornstein–Uhlenbeck processes. In this section, we
study the small time asymptotics of perturbed Ornstein–Uhlenbeck processes,

dXt = dwt − 1
2AXt dt+ b�Xt�dt�(5.1)

where b is a drift of gradient type, but can be very singular and unbounded.
This case cannot be covered by Section 4. We have to adopt a different

approach. The main tool is the Girsanov theorem. First we give the con-
struction of the perturbed process. Let ϕ > 0� ϕ ∈ D�� �, Define m�dx� =
ϕ2�x�µ�dx�. Consider the quadratic form

� 0
ϕ �u� v� = 1

2

∫
E

∇u�∇v�H0

ϕ2�x�dµ� u� v ∈ � C∞
b �(5.2)

It is known (see [19] and [20]) that the form �� 0
ϕ �u� v��� C∞

b � is closable on
L2�E�m�. Its closure ��ϕ�D��ϕ�� is a Dirichlet form. The associated diffusion
��Xt�t≥0��t� Q̂x� x ∈ E� solves (5.1) with b = ∇φ/φ in the weak sense.

The intrinsic metric d�x�y� associated with the Dirichlet form ��ϕ�D��ϕ��
can be exactly defined as in Section 3 with / there replaced by /�u� v��z� =

∇u�z��∇v�z��H0

here. Let B be a Borel subset of E; we define d�x�B� =
inf�d�x�y�� y ∈ B�. For two Borel subsets B�C with µ�B� > 0 and µ�C� > 0,
let

d�B�C� = sup
(
ess inf

z∈B
d�z�C�� ess inf

z∈C
d�z�B�

)
�(5.3)

Define

Q̂�·� =
∫
E
Q̂x�·�Q2�x�dµ�

We first recall some known results.

Theorem 5.1 [11]. Let B, C be two Borel subsets with µ�B� > 0, µ�C� > 0.
If B or C is open, then

lim inf
t→0

2t logP�X0 ∈ B� Xt ∈ C� ≥ −d2�B�C��(5.4)

where P is the probability measure corresponding to the Ornstein–Uhlenbeck
process defined in Section 2.

Remark 5.2. The above theorem is now also contained in Theorem 4.4.

Theorem 5.3 [4]. The diffusion ��Xt�t≥0��t� Q̂x� x ∈ E� is given by

dQ̂x��t
= exp

{
M

lnϕ
t − 1

2
Mlnϕ�t
}
dPx��t

�(5.5)

where Mlnϕ stands for the martingale part of Fukushima’s decomposition of
the additive functional lnϕ�Xt� − lnϕ�X0� (see [12]) and


Mlnϕ�t =
∫ t

0

∣∣∣∣∇ϕϕ
∣∣∣∣
2

H0

�Xs�ds(5.6)

is the bracket.
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We now prepare some preliminary results.

Lemma 5.4. Let b�x� be a nonnegative measurable function on E. Assume
that there exists a δ > 0 such that

∫
E exp�δb�x��du <∞. Then for any M> 0,

lim
t→0

E

[
exp

(
M

∫ t

0
b�Xs�ds

)]
= 1�(5.7)

where E stands for the expectation with respect to P.

Proof. By Jensen’s inequality,

1 ≤ E

[
exp

(
M

∫ t

0
b�Xs�ds

)]
≤ E

[
1
t

∫ t

0
exp�Mtb�Xs��ds

]

= 1
t

∫ t

0
E
[
exp�Mtb�Xs��

]
ds =

∫
E
exp�Mtb�x��dµ�

where we have used the fact that µ is an invariant measure of the Ornstein–
Uhlenbeck process.

The assertion now follows by the dominated convergence theorem.

Lemma 5.5. Let B, C be two Borel subsets with µ�B� > 0, µ�C� > 0. Let
Bn� n ≥ 1 be a sequence of subsets such that Bn ↑ B. Then

lim
n→∞d�Bn�C� = d�B�C��(5.8)

Proof. Let L = limn→∞ d�Bn�C�. Clearly, L ≥ d�B�C�. Suppose L >
d�B�C�. Then ess inf z∈B d�z�C� < L and ess inf z∈C d�z�B� < L. This implies
that there exists a subset K ⊂ B such that µ�K� > 0 and d�x�C� < L for
all x ∈ K. Since µ�K ∩ Bn� > 0 for big enough n, it follows that ess inf z∈Bn

d�z�C� < L for big enough n. To show d�Bn�C� < L, we need also to prove
ess inf z∈C d�z�Bn� < L. Since ess inf z∈C d�z�B� < L, it holds that µ�C ∩
�x�d�x�B� < L�� > 0.

On the other hand,

C ∩ �x�d�x�B� < L� =⋃
n

C ∩ �x�d�x�Bn� < L��

Hence, if n is big enough, µ�C∩ �x�d�x�Bn� < L�� > 0 which gives ess inf z∈C
d�z�Bn� < L. Thus we have proved that d�Bn�C� < L for big enough n, which
is a contradiction. The proof is complete. ✷

Let B be a Borel subset. Define the function u�x� = d�x�B� and set un�x� =
u�x� ∧ n.

Lemma 5.6. For any n ≥ 1, we have un ∈ D�� � and /�un�un��z� ≤ 1.
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Proof. Fix any x ∈ E and h ∈H0; we have

�un�x+ h� − un�x�� ≤ d�x+ h�x� = �th�H0
�(5.9)

This implies that as a function on the real line, un�x+h� is absolutely contin-
uous and �dun�x + th�/dt� ≤ �h�H0

which already gives us the desired result
according to the uniqueness result for D�� � given in [19].

Theorem 5.7. Let B, C be two Borel subsets with µ�B� > 0� µ�C� > 0.
Then

lim sup
t→0

2t log Q̂�X0 ∈ B� Xt ∈ C� ≤ −d2�B�C��(5.10)

The proof is the same as that of Theorem 4.2; therefore, we omit it.

Theorem 5.8. Assume
∫
E exp�δ�∇ϕ/ϕ�2H0

�x��dµ <∞ for some small δ > 0.
Let B, C be two Borel subsets with µ�B� > 0� µ�C� > 0. If B or C is open, then

lim inf
t→0

2t log Q̂�X0 ∈ B� Xt ∈ C� ≥ −d2�B�C��(5.11)

Proof. Let us say, for example, that C is open. Set

Zt = exp
{
M

lnϕ
t − 1

2

〈
Mlnϕ〉

t

}
(5.12)

Then, according to Theorem 5.3, dQ̂x��t
= Zt dPx��t

. Choose a sequence
�δn� n ≥ 1� of positive numbers satisfying δn ↓ 0. Define Bn = B ∩ �x�
ϕ2�x� > δn�.

Now, for any n ≥ 1,

Q̂�X0 ∈ B� Xt ∈ C� =
∫
E
Q̂x�X0 ∈ B�Xt ∈ C�ϕ2�x�dµ

=
∫
E
Q̂x�X0 ∈ B� Xt ∈ C� ϕ2�X0��dµ

=
∫
E
Px�Ztϕ

2�X0�� X0 ∈ B� Xt ∈ C�dµ(5.13)

≥ δn

∫
E
Px�Zt� ϕ2�X0� > δn� X0 ∈ B� Xt ∈ C�dµ

= δn

∫
E
Px�Zt� X0 ∈ Bn� Xt ∈ C�dµ�

Hence,

lim inf
t→0

2t log Q̂�X0 ∈ B� Xt ∈ C�

≥ lim inf
t→0

2t
[
log δn + logP�Zt� X0 ∈ Bn� Xt ∈ C�

]
(5.14)

= lim inf
t→0

2t logP�Zt� X0 ∈ Bn� Xt ∈ C��
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Since Bn ↑ B, applying Lemma 5.5 we see that the theorem follows if we have
proved

lim inf
t→0

2t logP�Zt� X0 ∈ Bn� Xt ∈ C� ≥ −d2�Bn�C� for any n ≥ 1�(5.15)

Let us now prove (5.15). Drop the index n for simplicity. We may assume
λ = d2�B�C� <∞. For any ε1 > 0, it follows that

P�Zt� X0 ∈ B� Xt ∈ C�

≥ exp
(
− ε1

2t

)
P

(
Zt > exp

(
− ε1

2t

)
� X0 ∈ B� Xt ∈ C

)

≥ exp
(
− ε1

2t

)[
P�X0 ∈ B� Xt ∈ C� −P

(
Zt < exp

(
− ε1

2t

))]
�

(5.16)

where P�Zt < exp�−ε1/2t�� can be further estimated as follows: let a > 0,

P

(
Zt < exp

(
− ε1

2t

))
(5.17)

= P

(
Z−1
t > exp

(
ε1
2t

))

= P

(
exp

(
− aM

lnϕ
t + a

2

∫ t

0

∣∣∣∣∇ϕϕ
∣∣∣∣
2

H0

�Xs�ds
)
> exp

(
aε1
2t

))

≤ exp
(
− aε1

2t

)
E

[
exp

(
− 2aMlnϕ

t − 2a2
∫ t

0

∣∣∣∣∇ϕϕ
∣∣∣∣
2

H0

�Xs�ds
)]1/2

(5.18)

×E

[
exp

(
�2a2 + a�

∫ t

0

∣∣∣∣∇ϕϕ
∣∣∣∣
2

H0

�Xs�ds
)]1/2

≤ exp
(
− aε1

2t

)
Da�t��(5.19)

where

Da�t� = E

[
exp

(
�2a2 + a�

∫ t

0

∣∣∣∣∇ϕϕ
∣∣∣∣
2

H0

�Xs�ds
)]1/2

(5.20)

and from (5.18) to (5.19) we used that exp�−2aMlnϕ
t −2a2

∫ t
0 �∇ϕ/ϕ�2H0

�Xs�ds�
is a super-martingale.

On the other hand, for any ε2 > 0, by Theorem 5.1 there is t1 > 0 such that
if t ≤ t1,

P�X0 ∈ B� Xt ∈ C� ≥ exp
(
− λ+ ε2

2t

)
�(5.21)
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Take a0 = �λ+ 2ε2�/ε1. It follows from (5.16), (5.19) and (5.21) that if t ≤ t1,

P�Zt�X0 ∈ B� Xt ∈ C�

≥ exp
(
− ε1

2t

)[
exp

(
− λ+ ε2

2t

)
−Da0

�t� exp
(
− λ+ 2ε2

2t

)]

= exp
(
− ε1

2t

)
exp

(
− λ+ ε2

2t

)[
1− exp

(
− ε2

2t

)
Da0

�t�
]
�

(5.22)

By Lemma 5.4, we have that

lim
t→0

[
1− exp

(
− ε2

2t

)
Da0

�t�
]
= 1�(5.23)

Hence, (5.22) and (5.23) imply that

lim inf
t→0

2t logP�Zt� X0 ∈ Bn� Xt ∈ C� ≥ −ε1 − λ− ε2�

Since ε1� ε2 are arbitrary, (5.15) follows; hence the theorem. ✷
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