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Given two Polish spaces AX and AY, let ρ � AX × AY → �d be a
bounded measurable function. Let X = �Xn � n ≥ 1� and Y = �Yn � n ≥ 1�
be two independent stationary processes on A∞

X and A∞
Y , respectively. The

article studies the large deviation principle (LDP) for n−1∑n
k=1 ρ
Xk�Yk�,

conditional on X. Based on a stochastic version of approximate sub-
additivity, it is shown that if Y satisfies certain mixing condition, then
for almost all random realization x of X, the laws of n−1∑n

k=1 ρ
xk�Yk�
satisfy the conditional LDP with a non-random convex rate function. Con-
ditions for the rate function to be non-trivial (that is, not 0/∞ function)
are also given.

1. Introduction. This article aims to establish the conditional large de-
viation principle (LDP) for the partial sums of �d–valued functions of general
processes. Given two Polish spaces AX and AY, that is, metrizable complete
separable topological spaces, suppose X = �Xn�n ∈ �� and Y = �Yn�n ∈
�� are two independent stationary processes taking values in 
A�

X��X� and

A�

Y��Y�, respectively. Let P = dist
X� and Q = dist
Y�. For the process X,
denote by σ
Xj

i � the σ–field generated by Xj
i = 
Xi� � � � �Xj� and likewise for

Y. Given a bounded measurable function ρ � AX×AY → �d, we are interested
in the LDP of

ρn
xn1 �Yn
1� = 1

n

n∑
k=1

ρ
xk�Yk��(1.1)

given a random realization x = �xn�n ∈ �� of X. Because x is fixed in the
partial sum once it is chosen randomly, the conditional LDP of the partial sum
sometimes is referred to as the “quenched” LDP.

Our interest in the quenched LDP for ρn
Xn
1 �Y

n
1� largely comes from the

asymptotics of waiting times between stationary processes, which are impor-
tant to data compression based on string matching [10, 9, 8, 11]. When ρ is a
bounded real valued non-negative function, ρn
xn1 � yn1� is termed the distortion
between xn1 ∈ An

X and yn1 ∈ An
Y. In lossy data compression, y = �yn�n ≥ 1� is

taken as a randomly generated code book, and xn1 is encoded as the smallest k
such that the distortion between xn1 and yn+k−1

k is no more than a given value.
It was established in several places [7, 11, 4] that if the distortion is restricted
to be less than D, then using a code book randomly generated from Y, the
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compression rate for the initial segment of length n of a random realization
of X is asymptotically equal to the P-a.s. limit of

1
n

logQ�Y � ρn
Xn
1 �Y

n
1� ≤ D��(1.2)

The P-a.s. limit of (1.2) was first studied in [11, 8], with AX and AY finite, and
Y either an i.i.d. process or an irreducible Markov chain. The large deviations
approach to (1.2) was initiated by Dembo and Kontoyiannis [4]. Assuming AX

and AY to be general Polish spaces and Y an i.i.d. process, they proved the P–
almost sure convergence of (1.2) to a limit in terms of D. The main gradient
in their proof was the standard change of measure combined with the cen-
tral limit theorem. With different methods, similar results were established
in [12]. In [3], the P–almost sure convergence of (1.2) was generalized to the
case where Y is ψ–mixing. The method there was to divide X into disjoint
blocks, and, by ψ–mixing, treat the blocks as vector-valued independent ran-
dom variables, making it possible to apply change of measure and the central
limit theorem to establish the limit.

We will study the conditional LDP of ρn
Xn
1 �Y

n
1� under a more general mix-

ing condition for Y, namely condition 
S� (see Definition 1). The implication
of condition 
S� to LDP was first studied in [2]. We combine the asymptotic
value method of Bryc (1990) and Gärtner-Ellis theorem to approach the LDP.
Specifically, the asymptotic value method is used for the lower bound of the
LDP, while Gärtner-Ellis theorem is used for the upper bound.

The key to the conditional LDP for ρn
Xn
1 �Y

n
1� by the above combined meth-

ods is a stochastic version of Hammersley’s approximate sub-additivity [6]. The
following result on “stochastic approximate sub-additivity” is the basis for the
other results in this article.

Theorem 1. Let T be an ergodic measure-preserving transformation on a
probability space 
��� �P�. Let hn � � → �, n ≥ 1 be a sequence of measurable
functions satisfying two conditions:

(i) There exists a non-decreasing sequence �
n� ≥ 0 with
∞∑
k=1

�
k�
k
k+ 1� < ∞�(1.3)

such that

hn+m
ω� ≤ hn
ω� + hm
Tnω� + �
n+m�� P-a.s.(1.4)

(ii) hn ∈ L1
P�, n ≥ 1 and

lim
n→∞

hn
ω� − hn
Tω�
n

= 0� P-a.s.(1.5)

Then limn→∞E�hn
ω�/n� exists and

lim sup
n→∞

hn
ω�
n

= lim
n→∞E

[
hn
ω�
n

]
� P-a.s.(1.6)

where E is expectation under P.
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Most part of the conditional LDP can be proved without assuming inde-
pendence between processes. To see this, let 
��� � ν� = 
A�

X × A�
Y��X ×

�Y�P × Q�. Denoting by ω a generic element of �, then ω = 
x�y�, with
x = �xn � n ∈ �� ∈ A�

X and y = �yn � n ∈ �� ∈ A�
Y. Regard ρ as a function

� → �d, such that ρ
ω� = ρ
x1� y1�. Denote by T the shift operator, which
maps ω to ω′ = 
x′� y′�, with x′

n = xn+1, y′
n = yn+1, n ∈ �. T is not only

measure-preserving, but also one-to-one, and T−1 is measurable as well. Also,
regarding X as a measurable function � → A�

X such that X
ω� = x, the
σ-algebra generated by X, denoted σ
X�, is a sub-algebra of � and is closed
under T and T−1. Finally, T is ergodic on 
��σ
X�� ν�.

To take into account the randomness involved in the conditional LDP, con-
dition 
S� used here is modified from the original one in [2] (see Definition
2). It still consists of two parts, one is condition 
S−�, the other one condi-
tion 
S+�. Using Theorem 1, we can prove the following statement which only
needs 
S−�.

Theorem 2. Let T be a one-to-one measure-preserving transformation on
a probability space 
��� �P�, and assume T−1 is measurable. Given � ⊂ � ,
suppose for any B ∈ �, T
B��T−1
B� ∈ � and T is ergodic on �. Let ρ � � →
�d be a bounded measurable function. Denote

ρn
ω� = 1
n

n∑
k=1

ρ
Tkω��

If the process �ρ ◦ Tn � n ∈ �� satisfies condition 
S−� uniformly, conditional
on �, then for any continuous, bounded above, concave function f � �d → �,

!f = lim
n→∞E

[
1
n

logE
[
enf
ρn
·����

]]
(1.7)

exists and

lim inf
n→∞

1
n

logE
[
enf
ρn
·����

]
= !f� P-a.s.(1.8)

Consequently, for λ ∈ �d,

!
λ� = lim
n→∞E

[
1
n

logE
[
en�λ�ρn
·����

]]
(1.9)

exists.

By Bryc’s inverse Varadhan lemma, Theorem 2 suggests that if the laws of
ρn conditional on � satisfy a conditional LDP, then the associated rate function
should be I
u� = supf∈C
'��f
u� − !f�. This however can not be proved by
directly applying the asymptotic value method, because (1.8) only asserts the
existence of lim inf of n−1 logE�enf
ρn
·�����. Despite this, we can first establish
a weaker result. Denote by Cb
�d� the space of bounded continuous functions
on �d.
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Theorem 3. Let µn
du�ω� �= µn
du ���
ω� be the regular version of the
conditional probability measure on �d induced by ρn. If for any continuous,
bounded above, concave function f � �d → �, the following limits exist:

!f = lim
n→∞E

[
1
n

log
{∫

enf
u�µn
du�ω�
}]

(1.10)

and

lim inf
n→∞

1
n

log
{∫

enf
u�µn
du�ω�
}
= !f� P-a.s.�(1.11)

then there exists a sequence ni and Z ⊂ � with P
Z� = 0, such that for ω �∈ Z
and f ∈ Cb
�d�,

!f = lim
i→∞

1
ni

log
{∫

enif
u�µniE
du�ω�
}

(1.12)

exists, directly leading to

!f = lim
i→∞

E

[
1
ni

log
{∫

enif
u�µni
du�ω�
}]
�(1.13)

Finally,

lim inf
n→∞

1
n

log
{∫

enf
u�µn
du�ω�
}
≥ !f� f ∈ Cb
�d�� ω �∈ Z�(1.14)

Remark. Regular versions of the conditional probability measures
µn
du�ω� always exist if µn are defined on the Borel σ-algebra of �d ([1],
pages 77–80). Also, because ρ is bounded, the support of µn, n ≥ 1, is uni-
formly bounded.

By Theorem 3, we can get a constant lower bound for the P–almost sure
first order asymptotic of µn
G�ω�, with G open, hence proving the lower bound
of the conditional LDP for ρn.

Corollary 1. Let

I
u� = sup
f∈Cb
�d�

�f
u� − !f��(1.15)

If (1.14) holds, then

lim inf
n→∞

1
n

logµn
G�ω� ≥ −I
u�� ω �∈ Z� G ⊂ �d open� u ∈ G�(1.16)

Turning to the upper bound for the conditional LDP of ρn, because of the
absence of a limit for (1.11), it is not clear how to modify the argument of
the asymptotic value method to get a constant upper bound in terms of I. To
get around this difficulty, we adopt the convexity argument of Gärtner-Ellis
theorem, which requires condition 
S+�.



STOCHASTIC SUB-ADDITIVITY AND CONDITIONAL LDP 1307

Theorem 4. Fix T, � and ρ as in Theorem 2. Assume the process �ρ◦Tn �
n ∈ �� satisfies condition 
S+� uniformly, conditional on �. Then !
λ� defined
by (1.9) exists for all λ ∈ �d. In addition, there is a set Z ⊂ � with P
Z� = 0,
such that

lim sup
n→∞

1
n

logE
[
en�λ�ρn
·����

]

ω� = !
λ�� ω �∈ Z� λ ∈ �d�(1.17)

The proof for Theorem 4 follows closely the one for Theorem 2 and also uses
the stochastic approximate sub-additivity. By the argument of Gärtner-Ellis
theorem we have:

Corollary 2. With µn
du�ω� defined as in Corollary 1, suppose there is
Z ⊂ � with P
Z� = 0, such that

lim sup
n→∞

1
n

log
{∫

en�λ�u�µn
du�ω�
}
= !
λ�� λ ∈ �d� ω �∈ Z�

Then for any compact set F ⊂ �d,

lim sup
n→∞

1
n

logµn
F�ω� ≤ − inf
u∈F

�!∗
u�� � ω �∈ Z�(1.18)

where !∗
u� = supλ∈�d��λ�u� − !
λ�� is the Fenchel-Legendre transform of
!
λ�.

Returning back to the original problem, that is, the quenched LDP for
ρn
Xn

1 �Y
n
1�, we see that since ρ is bounded, given random realization x of

X, the laws for ρn
xn1 �Yn
1�, n ≥ 1, are exponentially tight. Therefore, (1.18)

holds for arbitrary closed set F. To complete the proof of the quenched LDP
for ρn, we finally need to demonstrate !∗ = I. By Varadhan’s integral lemma,
it is enough to show that I is convex. Because the convexity of I requires some
extra work than the non-stochastic case, we present it as a theorem.

Theorem 5. Let µn
du�x�, x ∈ A�
X, be the conditional probability mea-

sures induced by ρn
xn1 �Yn
1� on �d. If Y satisfies condition 
S−�, then I defined

by (1.15) is a convex good rate function, and hence I = !∗.

Combining the above results, we get:

Proposition 1. Suppose X and Y are two independent stationary pro-
cesses on A�

X and A�
Y, respectively. Let X be ergodic and Y satisfy condition


S�. Then given bounded measurable function ρ � AX ×AY → �d, for almost
all random realization x ∈ A�

X of X, ρn
xn1 �Yn
1� given by (1.1) satisfies the

LDP with good rate function I = !∗ with

!
λ� = lim
n→∞

1
n
EX

[
logEY

[
eλρn
X

n
1 �Y

n
1 �
]]
�(1.19)
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The following diagram summarizes the steps to prove the quenched LDP
for ρn
xn1 �Yn

1�, for Y satisfying condition 
S�. Main ingredients of the proof
are indicated by numbers in boxes.


S−�
lim inf
n→∞

1
n

logQ�Y � ρn
Xn
1 �Y

n
1� ∈ G�

≥ −I
u� ∀u ∈ G open� P-a.s.

I = !∗


S+� lim sup
n→∞

1
n

logQ�Y � ρn
Xn
1 �Y

n
1� ∈ F�

≤ − inf
u∈F

!∗
u�� F compact � P-a.s.

Quenched
LDP for
the Laws of
ρn
Xn

1 �Y
n
1�

✲
1 2 3

◗
◗

◗
◗◗�

1

✲
1 4

◗
◗

◗
◗◗�✲

✑
✑

✑
✑✑✸

5

1. Stochastic approximate sub-additivity; 2. Bryc’s asymptotic value method;
3. Separability of C
'�, for any compact ' ⊂ �d; 4. Gärtner-Ellis theorem;
5. Boundedness of ρ ⇒ exponential tightness.

The rate function !∗ in Proposition 1 can also be given in terms of relative
entropy (Corollary 4, [7]; Proposition 1, [4]; Property 1, [12]). Also, follow-
ing the argument in [2], the conditional LDP for the empirical measures of
�ρ
Xn�Yn� � n ∈ �� could be proved without much difficulty.

Next we consider the functional property of the convex rate function I.
As mentioned earlier, I is a good rate function. In order to see whether the
quenched LDP gives any interesting information, we would like to investigate
whether I is non-trivial, that is, not a 0/∞ function. When Y is i.i.d. and X
is an arbitrary stationary process, it is easy to demonstrate that under some
minimal conditions, I is non-trivial. To get such rate function when Y only
satisfies condition 
S−�, we shall consider the case where X be is an i.i.d.
process. For simplicity, let ρ be �–valued. It is not hard to see that if either

!′
0+� < !′
∞� �= limλ→∞!′
λ+� or !′
0−� > !′
−∞� �= limλ→−∞!′
λ−�,
then I = !∗ is non-trivial.

To get the local property of ! at 0, consider the “mean” process �ρ̄
Yn��n ≥
1�, where ρ̄
y� = EX�ρ
X1� y��, y ∈ AY. Because Y satisfies condition 
S−�,
so does �ρ̄
Yn��n ≥ 1�, implying it satisfies the LDP with good rate function

!̄
λ� = lim
n→∞

1
n

logEY

[
exp

{
λ

n∑
i=1

ρ̄
Yi�
}]

(1.20)

It turns out that !̄ ≤ ! and the two functions have the same local property at
0 (Proposition 2). This leads to the following:
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Theorem 6. Fix X, Y and ρ as in Proposition 1� Let X be an i.i.d. process
and ρ be an �–valued function. Denote P1 = dist
X1� and Q1 = dist
Y1�.
Suppose that Q1–almost surely, the P1–measure of the set of discontinuity

points of fY1

x� �= ρ
x�Y1� is 0� Define !̄ by 
1�20� and ! by (1.19). If !̄∗ is

non-trivial, then !∗ is also non-trivial.

When !̄∗ is trivial, we need to further exploit the assumption that X is
i.i.d. Consider the case where the mean process �ρ̄
Yn��n ≥ 1� is zero. Then
!′
0� = 0 and it is enough to check whether !′
∞� > 0 or !′
−∞� < 0. It can
be shown that given n ≥ 1 and J ⊂ �1�2� � � � � n�,

EX

[
logEY

[
exp

{
n∑
i=1

ρ
Xi�Yi�
}]]

≥ EX

[
logEY

[
exp

{∑
i∈J

ρ
Xi�Yi�
}]]

�

The right hand side suggests that one may remove dependence structure from
Y and uncover some of its independence structure. Indeed, if there is J ⊂ �
with non-zero asymptotic density, that is, lim �J ∩ �1�2� � � � � n��/n > 0, such
that Yi� i ∈ J are only weakly dependent, then by the above inequality, it
is possible to get non-trivial rate function for ρn
Xn

1 �Y
n
1�. The existence of

such J will be formulated as condition (A) (Definition 3). Since the condition
does not require weak dependence for blocks of elements of Y it is not too
restrictive. In particular, if Y satisfies condition 
S−� and AY is finite, then
Y satisfies Condition (A). We thus can show:

Theorem 7. Given X, Y and ρ as in Theorem 6� suppose ρ̄
y� =
EX�ρ
X1� y��, y ∈ AY, is a constant a. Assume AY is finite and, without
loss of generality, Pr�Y1 = y� > 0, y ∈ AY. If Y satisfies condition 
S−� and

EX

[
max
Y

ρ
X1�Y1� − min
Y

ρ
X1�Y1�
]
> 0�(1.21)

then !∗
x�, with !
λ� given by (1.18), is non-trivial.

Besides Theorem 7, the case where ρ̄ is not constant will also be considered
in Section 7.

The remaining part of the article proceeds as follows. In Section 2 we prove
Theorem 1. In Section 3 we prove Theorem 2, Theorem 3 and their implications
on the lower bound of the LDP for ρn. In Section 4, we prove Theorem 4 and
its implications on the upper bound of the quenched LDP for ρn. Convexity of
the rate function of the LDP is proved in Section 5. Theorem 6 is proved in
Section 6. In Section 7, we discuss condition (A) and prove Theorem 7.

2. Stochastic approximate sub-additivity. In this section, we prove
Theorem 1. First note a simple property of �
n� satisfying (1.3):

lim
n→∞

�
n�
n

= 0�(2.1)
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Indeed, for any n ≥ 1, since �
k� is non-decreasing and non-negative, by (1.3)
of Theorem 1,

0 ≤ �
n�
n

=
∞∑
k=n

�
n�
k
k+ 1� ≤

∞∑
k=n

�
k�
k
k+ 1� → 0�

Proof of Theorem 1. Since hn ∈ L1
P� and T is measure-preserving,
from (1.4),

E�hn+m� ≤ E�hn� +E�hm� + �
n+m�� m� n ∈ ��

Then Hammersley’s approximate sub-additivity lemma implies that E�hn/n�
converges [2].

To show (1.6), there is Z ⊂ � with P
Z� = 0, such that (1.4) is satisfied by
ω �∈ Z and all m�n ≥ 1. Enlarge Z to ∪∞

k=0T
−kZ′, with Z′ = Z∪��hk� = ∞, for

some k ≥ 1�, so that if ω �∈ Z, then Tnω �∈ Z and �hn
ω�� < ∞, n ≥ 1. Given
k ≥ N, define a sequence D
n� by

{
D
1� = 0� D
2s� = 2D
2s−1� + �
2sk�� s ≥ 1�

D
2l + r� = D
2s� +D
r� + �

2l + r�k�� r = 1� � � � �2l − 1�

We show by induction

hnk
ω� ≤
n−1∑
j=0

hk
Tjkω� +D
n�� P-a.s.(2.2)

When n = 1, (2.2) is obvious. Suppose (2.2) holds for 2l, l ≤ m−1. Let n = 2m.
By the induction hypothesis, for ω �∈ Z,

hnk
ω� ≤ hnk/2
ω� + hnk/2
Tnk/2ω� + �
nk�

≤
2m−1−1∑
j=0

hk
Tjkω� +D
2m−1�

+
2m−1−1∑
j=0

hk
T
n/2+j�kω� +D
2m−1� + �
2mk�

=
2m−1∑
j=0

hk
Tjkω� +D
2m��

So (2.2) is proved when n is a dyadic integer.
On the other hand, assume (2.2) holds for all n < 2m. If 2m < n < 2m+1,

then n = 2m + r, with 1 ≤ r ≤ 2m − 1. By the induction hypothesis and what
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has been proved for dyadic integers,

hnk
ω� ≤ hrk
ω� + h2mk
Trkω� + �
nk�

≤
r−1∑
j=0

hk
Tjkω� +D
r� +
2m−1∑
j=0

hk
T
r+j�kω� +D
2m� + �
nk�

=
n−1∑
j=0

hk
Tjkω� +D
n��

proving (2.2).
Given ω �∈ Z and s = 0� � � � � k− 1, by (2.2), hnk
Tsω� ≤ ∑n−1

j=0 hk
Tjk+sω� +
D
n� and hence

1
k

1
nk

k−1∑
s=0

hnk
Tsω� ≤ 1
k

1
nk

n−1∑
j=0

k−1∑
s=0

hk
Tjk+sω� + D
n�
nk

= 1
k

1
nk

nk−1∑
j=0

hk
Tjω� + D
n�
nk

�

(2.3)

Let n → ∞. Because hk ∈ L1
P�, by (1.5) and the assumption that T is
ergodic,

lim sup
n→∞

hnk
nk

≤ E�hk�
k

+ lim sup
n→∞

D
n�
nk

� P-a.s.(2.4)

For r = 1� � � � � k− 1,

hnk+r
ω� ≤ hr
ω� + hnk
Trω� + �
nk+ r��
Divide both sides by nk+r and let n → ∞. By (2.1), 
nk+r�−1�
nk+r� → 0.
By (2.4) and the assumption that T is measure-preserving, it is easy to get

lim sup
n→∞

hnk+r
nk+ r

≤ E�hk
Trω��
k

+ lim sup
n→∞

D
n�
nk

= E�hk�
k

+ lim sup
n→∞

D
n�
nk

�

Thus

lim sup
n→∞

hn
n

≤ lim
k→∞

E�hk�
k

+ lim inf
k→∞

lim sup
n→∞

D
n�
nk

� P-a.s.

We next show

lim
k→∞

lim sup
n→∞

D
n�
nk

= 0�

By the assumption, �
n� is non-decreasing and non-negative, then

D
2n�
2nk

=
n−1∑
j=0

�
2jk�
2jk

= 2
n−1∑
j=0

�
2jk�
2j+1k−1∑
i=2jk

1
i
i+ 1�

≤ 2
n−1∑
j=0

2j+1k−1∑
i=2jk

�
i�
i
i+ 1� ≤ 2

∞∑
i=k

�
i�
i
i+ 1� �
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It is easy to see that D
r� is increasing. Then for 1 ≤ r ≤ 2n − 1, 
2n +
r�−1D
2n+r� ≤ 2−nD
2n+1�. It then follows that �D
n�/nk� ≤ 4

∑∞
l=k��
l�/l
l+

1��. Let n�k → ∞ to complete the proof.
Thus we have

lim sup
n→∞

hn
n

≤ lim
k→∞

E�hk�
k

� P-a.s.(2.5)

Integrate both sides of (2.5). By Fatou’s lemma,

lim
k→∞

E�hk�
k

≤ E

[
lim sup
n→∞

hn
n

]
≤ lim

k→∞
E�hk�
k

�

which implies equality holds P–almost surely in (2.5), hence completing the
proof. ✷

Corollary 3. Let hn satisfy all the conditions in Theorem 1� except (1.5)
being replaced by

lim
n→∞ sup

ω∈�

∣∣∣∣hn
ω� − hn
Tω�
n

∣∣∣∣ = 0�(2.6)

Then for any r > 0,

lim sup
n→∞

hn
T nr!ω�
n

≤ lim
n→∞E

[
hn
ω�
n

]
� P-a.s.(2.7)

where  t! is the largest integer ≤ t.

Proof. Apply (2.3) to T rn!ω to get

1
k

1
nk

k+ rn!−1∑
s= rn!

hnk
Tsω� ≤ 1
k

1
nk

nk−1+ rn!∑
j= rn!

hk
Tjω� + D
n�
nk

�

By the same argument for Theorem 1 and (2.6),

lim sup
n→∞

�hn
T rn!ω�/n� ≤ �Ehk
ω�/k� + lim sup
n→∞

�D
n�/nk�� P-a.s.

The remaining part of the proof is identical to Theorem 1. ✷

3. Condition (S) and the lower bound of the conditional LDP. In
this section, we apply Bryc’s asymptotic value method to get a constant lower
bound for the LDP of ρn
Xn

1 �Y
n
1� conditional on X, given that Y satisfies

condition 
S�.

Definition 1. Let Y be a stationary stochastic process defined on

A∞

Y ��Y�Q�. The process is said to satisfy condition 
S� if for every C > 0,
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there is a non-decreasing sequence 5
k� ∈ � satisfying (1.3), such that


S−� � sup
{
Q
A�Q
B� − e5
n�Q
A ∩B� �

A ∈ σ
Yk
1��B ∈ σ

(
Y
k+h+5
n�
k+5
n�

)
� k� h ∈ �

}
≤ e−Cn�


S+� � sup
{
Q
A ∩B� − e5
n�Q
A�Q
B� �

A ∈ σ
Yk
1��B ∈ σ

(
Y
k+h+5
n�
k+5
n�

)
� k� h ∈ �

}
≤ e−Cn�

To get the conditional LDP without assuming independence between X and
Y, we introduce the following version of condition 
S�.

Definition 2. Let U = �Un�n ∈ �� be an �d–valued stationary process
defined on probability space 
��� �P�. Given σ–algebra � ⊂ � , U is said to
satisfy condition 
S−� [respectively, 
S+�, 
S�] uniformly, conditional on �, if
for every C > 0, there is a non-decreasing sequence 5
k� ∈ � satisfying (1.3),
such that condition 
S−� [respcetively, 
S+�, 
S�] in Definition 1 is satisfied
P–almost surely, with Q replaced by P
 · ���.

We shall need several inequalities from [2]. They are quoted below for com-
pleteness.

Lemma 1. Fix two σ–fields � and � . If sup�P
A�P
B� − aP
A ∩ B� �
A ∈ � � B ∈ �� ≤ b, then for non-negative random variables W ∈ L∞
� �,
Z ∈ L∞
� �,

E
W�E
Z� − aE
WZ� ≤ b"W"∞"Z"∞�
If sup�P
A ∩ B� − aP
A�P
B� � A ∈ � � B ∈ �� ≤ b, then for non-negative
random variables W ∈ L∞
� �, Z ∈ L∞
� �,

E
WZ� − aE
W�E
Z� ≤ b"W"∞"Z"∞�

Proof of Theorem 2. We follow the proof for Theorem 6.4.4 in [5]. Be-
cause ρ is bounded, we can assume for some D > 0, ρ
ω� ∈ BD, ω ∈ �, where
BD is the ball with center 0 and radius D. Given a continuous, bounded above,
concave function f, there is K > 0, such that

�f
u� − f
v�� ≤ K�u− v�� −K ≤ f
u� ≤ K� u� v ∈ BD�

Fix C = 2K+ 2 and a sequence 5
n� satisfying condition 
S−� corresponding
to C. For brevity, in the remaining part of the proof, denote

N = n+m� 5 = 5
N�� S
i� j�ω� =
j∑
k=i

ρ
Tkω��
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Then ∣∣S
1�N�ω� − �S
1� n�ω� +S
n+ 1 + 5�N+ 5�ω��∣∣
≤

n+5∑
k=n+1

�ρ
Tkω�� +
N+5∑

k=N+1

�ρ
Tkω�� ≤ 2D5�

Let u = N−1S
1�N�ω� and v = N−1�S
1� n�ω� + S
n + 1 + 5�N + 5�ω��. By
�f
u� − f
v�� ≤ K�u− v� and the concavity of f,

Nf

(
1
N
S
1�N�ω�

)
≥ Nf

(
1
N

�S
1�n�ω�+S
n+1+5�N+5�ω��
)
−2KD5

≥ nf

(
1
n
S
1�n�ω�

)
+mf

(
1
m
S
n+1+5�N+5�ω�

)
−2KD5�

Take exponential, then expectation conditional on � of both ends of the
above formula. Since P
·��� satisfies 
S−� almost surely, applying Lemma 1
to Z = nf
n−1S
1� n� ·�� and W = mf
m−1S
n+ 1 + 5�N+ 5� ·�� yields

E�eNf
 1
NS
1�N�·�����

≥e−
2KD+1�5
{
E�enf
 1

nS
1�n�·�����E�emf
 1
mS
n+5+1�N+5�·�����−e−CN

}
� P-a.s.

(3.1)

Similarly, by

mf

(
1
m
S
n+ 5+ 1�N+ 5�ω�

)
≥ mf

(
1
m
S
n+ 1�N�ω�

)
− 2KD5�

we get

E�emf
 1
mS
n+5+1�N+5�·����� ≥ e−2KD5E�emf
 1

mS
n+1�N�·������ P-a.s.(3.2)

Combining (3.1) and (3.2) then gives

E�eNf
 1
NS
1�N�·�����

≥e−
4KD+1�5
{
E�enf
 1

nS
1�n�·�����E�emf
 1
mS
n+1�N�·�����−e−CN+2KD5

}
� P-a.s.

Write M = 4KD + 1. Because �f
u�� ≤ K, the product of the two conditional
expectations on the right hand side is larger than e−KN. Whereas by 5/N → 0,
e−CN+2KD5 = e−
2K+2�N+2KD5 = o
e−2KN�. Therefore, for N large enough,

E
[
eNf
 1

NS
1�N�·����
]
≥ 1

2 e
−M5E

[
enf


1
nS
1�n�·����

]
×E

[
emf


1
mS
n+1�N�·����

]
� P-a.s.

(3.3)

Given g ∈ L1
��P�, B ∈ �, since T
B� ∈ � and T and T−1 are measure-
preserving,∫

B
E�g ◦T��� =

∫
B
g ◦T =

∫
T
B�

g =
∫
T
B�

E�g��� =
∫
B
E�g��� ◦T�
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leading to E�g◦T���
ω� = E�g���
Tω�, P-a.s. Therefore by S
n+1�N�ω� =
S
1�m�Tnω�, (3.3) yields

E
[
eNf
 1

NS
1�N�·����
]

ω� ≥ 1

2 e
−M5E

[
enf


1
nS
1�n�·����

]

ω�

×E
[
emf


1
mS
1�m�·����

]

Tnω�� P-a.s.

Take a = log 2 and

hn
ω� = − logE�enf
 1
nS
1�n�·�����
ω��(3.4)

Then it is easy to see hn satisfies (1.5) and, letting �
n� = M5
n� + a, for N
large enough,

hN
ω� ≤ hn
ω� + hm
Tnω� + �
N�� P-a.s.

Applying Theorem 1 to hn then proves (1.8). ✷

We now turn to Theorem 3. For convenience, in the remaining part of
this section as well as the following sections, we will use the following semi-
standard notation,

!
f�ω�n� = 1
n

log
{∫

enf
u�µn
du�ω�
}
�

We need the following simple result.

Lemma 2. Let �fn� be a sequence of bounded measurable functions with
�fn� ≤ M, n ≥ 1, for some constant. If for some constant a, EP�fn� → a and

lim infn→∞ fn = a, P-a.s., then fn
P−→ a, as n → ∞.

Proof. Letting gn = inf�fk � k ≥ n�, it is seen �gn� ≤ M and limn→∞ gn =
a, P-a.s. Then EP�fn−gn� → 0. Since fn−gn ≥ 0� this implies fn−gn

P−→ 0,

and hence fn
P−→ a. ✷

Proof of Theorem 3. Because ρ is bounded, the support of µn, n ≥ 1, is
uniformly bounded as well. Suppose supp
µn� ⊂ ' for some convex compact
set '. Then Cb
�d� can be replaced by C
'�. Fix δk ↓ 0, n
0� = �n
0�

k � ⊂ �
increasing, and f ∈ C
'�. By Lemmas 4.4.8 and 4.4.9 of [5], the set of all con-
tinuous, bounded above, concave functions on �d is well-separating and there
is a finite set �1 of such functions, such that supu∈' �f
u�−maxg∈�1

g
u�� ≤ δ1,
supu∈�d g
u� ≤ supu∈' f
u�, g ∈ �1. Let h
u� = max�g
u� � g ∈ �1�. Then

max
g∈�1

�!
g�ω�n�� ≤ !
h�ω�n� ≤ 1
n

log

{ ∑
g∈�1

∫
eng
u�µn
du���
ω�

}
�

For each g ∈ �1, it is easy to see that !
g� ·� n� are uniformly bounded func-
tions on �. Then combining Lemma 2 and formulae (1.10) and (1.11), it is seen
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that there is n
1� = �n
1�
k � ⊂ n
0�, such that limk→∞!
g�ω�n
1�

k � = !g, P-a.s.,
for g ∈ �1. Therefore,

!h = lim
i→∞

!
h�ω�n
1�
i � = max

g∈�1

�!g�� P-a.s.(3.5)

It is easy to check that

�!
f�ω�n� − !
g�ω�n�� ≤ "f− g" �= max
x∈'

�f
x� − g
x��� f� g ∈ C
'��(3.6)

Because "f− h" ≤ δ,

lim sup
k→∞

!
f�ω�n
1�
k � ≤ δ1 + lim

k→∞
!
h�ω�n
1�

k �

≤ 2δ1 + lim inf
k→∞

!
f�ω�n
1�
k �� P-a.s.

Repeating the above argument, we obtain nested sequences n
0� ⊃ n
1� ⊃ · · ·,
n
j� = �n
j�

k �, such that lim supi→∞ !
f�ω�n
j�
i � ≤ 2δj+lim inf i→∞ !
f�ω�n
j�

i �,
P-a.s. Then by the diagonal argument, (1.12) holds for the sequence nk = n


k�
k .

To show that P–almost surely, (1.12)–(1.14) hold simultaneous for all f ∈
C
'�, note that by (3.6), �!
·�ω�n� � ω ∈ ��n ∈ �� as a family of functions on
C
'� is equi-continuous under the norm "·". In addition, what has been shown
is that given any sequence �nk� ⊂ �, for f ∈ C
'�, there is a subsequence
�n′

k� ⊂ �nk� such that (1.12) holds. Because C
'� is separable, by the diagonal
argument, there is a sequence �nk� such that with probability 1, (1.12) holds
for all f ∈ C
'�.

To prove (1.14), given f ∈ C
'� and δ > 0, find a finite set � in the same
way as to find �1 given δ1. Let h
u� = max�g
u� � g ∈ ��. Given ω, from

max �!
g�ω�n� � g ∈ �1� ≤ !
h�ω�n�
and

max
{
lim inf
n→∞ a


i�
n � 1 ≤ i ≤ K

}
≤ lim inf

n→∞ max�a
i�
n � 1 ≤ i ≤ K�� a
i�

n ∈ ��

it is not hard to show that

max
g∈�

{
!g
} = max

g∈�

{
lim inf
n→∞ !
g�ω�n�

}
≤ lim inf

n→∞ !
h�ω�n�� P-a.s.

On the other hand, by (3.5), !h = max�!g�g ∈ ��. Therefore, lim infn→∞!
h�
ω�n� ≥ !h. By "f−h" ≤ δ, !
h�ω�n� ≤ !
f�ω�n�+δ and !h ≥ !f−δ, giving

!f ≤ 2δ+ lim inf
n→∞ !
f�ω�n�� P-a.s.

Because δ is arbitrary, (1.14) is proved for each fixed f. Now use the separa-
bility of C
'�, continuity of the map f → !f on C
'�, and the equi-continuity
of �!
·�ω�n� � ω ∈ ��n ∈ �� as a family of functions defined on C
'�, to
complete the proof of (1.14). ✷
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Now we can prove the lower bound for the quenched LDP in terms of I for
ρn
Xn

1 �Y
n
1�.

Proof of Corollary 1. This again follows the proof of Lemma 4.4.6 in
[5]. First of all, I is lower semi-continuous, because it is the supremum of
continuous functions. In addition, since the support of µn is in ', I is a good
rate function. Given open set G and u0 ∈ G, let f � �d → �0�1� be continuous,
such that f
u0� = 1 and f
u� = 0, for all u �∈ G. Given m > 0, define fm
u� =
m
f
u� − 1�. Then for all ω �∈ Z,∫

�d
enfm
u�µn
du�ω� ≤ e−nmµn
Gc�ω� + µn
G�ω� ≤ e−mn + µn
G�ω��

By fm ∈ Cb
�d� and fm
u0� = 0,

max
{
lim inf
n→∞

1
n

logµn
G�ω��−m
}

≥ lim inf
n→∞

1
n

log
{∫

�d
enfm
u�µn
du�ω�

}

≥ !fm = −�fm
u0� − !fm�
≥ − sup

f∈Cb
�d�

{
f
u0� − !f

} = −I
u0��

Finally, let m → ∞ to complete the proof. ✷

From the proofs of Theorems 2 and 3, we can demonstrate the following two
corollaries, which will be used in proving the convexity of the rate function I.

Corollary 4. Under the same conditions as in Theorem 2� there is a
sequence ni and Z ⊂ �, with P
Z� = 0, such that for ω �∈ Z, f ∈ Cb
�d� and
r ∈ �0�1�,

lim
i→∞

1

1 − r�ni

logE
[
exp

{
1 − r�nif
ρni− rni!
·��
} ��] 
T rni!ω� = !f�(3.7)

In addition, for any f ∈ Cb
�d�,

lim inf
n→∞

1

1 − r�n logE

[
exp

{
1 − r�nf
ρn− rn!
·��
} ��] 
T rn!ω� ≥ !f�(3.8)

Proof. Given r > 0, and continuous, bounded above, concave function
f, because (2.6) is satisfied by hn defined by (3.4), applying Corollary 3 to
hn
T rn!ω� gives

lim inf
n→∞

1

1 − r�n logE

[
exp

{
1 − r�nf
ρn− rn!
·��
} ��] 
T rn!ω� = !f� P-a.s.

Because the set of rational numbers is dense in �0�1�, and Cb
�d� is separable,
by the same argument for Theorem 3 we can find a sequence ni and a null
set Z, such that for ω �∈ Z, (3.7) holds for any f ∈ Cb
�d� and r ∈ �0�1�.
Inequality (3.8) follows from (3.7) and the argument for (1.14). ✷
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Corollary 5. Under the same conditions as in Theorem 2� there is a set
Z ⊂ � with P
Z� = 0, such that

lim inf
n→∞

1

1 − r�nPr

{
ρn− rn!
·� ∈ G�ω}

≥ −I
u�� r ∈ �0�1�� u ∈ G ⊂ �d open, ω �∈ Z

This corollary can be proved in the same way as Theorem 3, and we omit the
detail.

4. The upper bound of the conditional LDP.

Proof of Theorem 4. The proof is almost identical to that of Theorem 2.
Given λ ∈ �d, let f
u� = �λ�u�. Then f is a continuous, convex function. Set
constants K�D, C and functions S
i� j�ω� as in Theorem 2, and fix sequence
5 correspondingly. Because �ρ ◦Tn � n ∈ �� satisfies condition 
S+� uniformly,
conditional on �, by S
1�N�ω� ≤ S
1� n�ω� +S
n+ 1 + 5�N+ 5�ω� + 2KD5,

E�eS
1�N�·��ω� ≤ e
2KD+1�5
{
E�eS
1�n�·��ω� +E�eS
n+5+1�N+5�·��ω� + e−CN

}
and by S
n+ 5+ 1�N+ 5�ω� ≤ S
n+ 1�N�ω� + 2KD5,

E�eS
n+5+1�N+5�·��ω� ≤ e2KD5E�eS
n+1�N�·��ω��
Then

E�eS
1�N�·��ω� ≤ e
4KD+1�5
{
E�eS
1�n�·��ω�E�eS
n+1�N�·����
ω� + e−CN+2KD5

}
�

which gives

E�eS
1�N�·��ω� ≤ e
4KD+1�5
{
E�eS
1�n�·��ω�E�eS
1�m�·��Tnω� + e−CN+2KD5

}
�

Letting M = 4KD+ 1, for N large enough,

E�eS
1�N�·��ω� ≤ 2eM5E�eS
1�n�·��ω�E�eS
1�m�·��Tnω��
Let hn
ω� = logE�eS
1�n�·��ω� and �
n� = M5
n� + log 2. Applying Theorem 1
shows that (1.17) holds for each λ ∈ �d, P–almost surely. Finally because �d

is separable, the same argument for Theorem 3 completes the proof. ✷

Proof of Corollary 2. For simplicity, given λ ∈ �d, x ∈ �d and n ≥ 1,

write !
λ�ω�n� �= !
fλ�ω�n�, with fλ
u� = �λ�u�. Given ω �∈ Z, choose ni
such that

lim
i→∞

1
ni

logµni
F�ω� = lim sup
n→∞

1
n

logµn
F�ω��(4.1)

By the equi-continuity of !
λ�ω�n� in λ, the separability of �d and Lemma 2,
there is a subsequence mi of ni such that !
λ�ω�mi� converges for all λ. Let
the limit be !̂
λ�. By (1.18), !̂
λ� ≤ !
λ�. Since �!
λ�ω�n� � ω ∈ ��n ∈ �� is
an equi-continuous family of functions in λ, !̂
λ� is continuous.
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Given a compact set F, apply Gärtner-Ellis theorem to µmi

·�ω� and !̂
λ�

to get

lim
i→∞

1
mi

logµmi

F�ω� ≤ − inf

u∈F
�!̂∗
u���

where !̂∗
u� is the Fenchel-Legendre transform of !̂
λ�. Since !̂
λ� ≤ !
λ�,
then !̂∗
u� ≥ !∗
λ�, which combined with (4.1) implies (1.18). ✷

5. Convexity of the rate function I.

Proof of Theorem 5. By Corollary 4, for some sequence �ni � i ≥ 1� and
Z ⊂ � with P
Z� = 0, such that for any ω �∈ Z and f ∈ Cb
�d�� (3.7) holds
for r = 0� 1

2 � Still denoting by µn be the probability measure on �d induced
by ρn, Bryc’s inverse Varadhan lemma implies that for ω �∈ Z, µni
·�ω� and
µ&ni/2'
·�T ni/2!ω� satisfy the LDP with a good rate function I
u�. Applying
Varadhan’s integral lemma to µni then yields !
λ� = supu∈�d 
�λ�u� − I
u��.
By the duality between a lower semi-continuous convex function and its
Fenchel-Legendre transform, in order to have I
u� = !∗
u�, it is enough that
I
u� be convex. Because ρ is bounded, (3.7) also holds for ni + 1, and hence
µni+1 also satisfy the conditional LDP with the rate function I. Therefore,
without loss of generality, assume all ni are even numbers.

Since the collection of all balls B
u� δ� form a base for the topology of �d,
for ω �∈ Z�u ∈ �d

−I
u� = inf
δ>0�v∈B
u�δ�

lim inf
i→∞

1
ni

logµni
B
v� δ��ω�

= inf
δ>0�v∈B
u�δ�

lim sup
i→∞

1
ni

logµni
B
v� δ��ω��
(5.1)

Since v ∈ B
u� δ� implies B
u� ε� ⊂ B
v� δ� for all ε > 0 small enough, (5.1)
can be rewritten as

−I
u�= inf
δ>0

liminf
i→∞

1
ni

logµni
B
u�δ��ω�= inf
δ>0

limsup
i→∞

1
ni

logµni
B
u�δ��ω��(5.2)

Similarly, for mi = ni/2, by µmi

B
u� δ��Tmiω� = Pr�ρmi

∈ B
u� δ��Tmiω�,

−I
u� = inf
δ>0

lim inf
i→∞

1
mi

logµmi

B
u� δ��Tmiω��(5.3)

On the other hand, Corollary 1 implies

−I
u� ≤ inf
δ>0

lim inf
i→∞

1
mi

logµmi

B
u� δ��ω��(5.4)

Given u1 and u2 with I
u1�� I
u2� < ∞, fix M > max�I
ui� � i = 1�2� large
enough. Then given δ > 0, for mi large enough,

µmi

B
u1� δ/2��ω�µmi


B
u2� δ/2��Tmiω� ≥ e−Mmi�
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Fix a sequence 5
n� corresponding to C = 2M for condition 
S−�. Since ρ is
bounded, as m is large enough,

1
m
S
m+ 5
m��2m+ 5
m� − 1�ω� ∈ B
u2�3δ/4�

⇒ 1
m
S
m+ 1�2m�ω� ∈ B
u2� δ��

1
m
S
m+ 1�2m�ω� ∈ B
u2� δ/2�

⇒ 1
m
S
m+ 5
m��2m+ 5
m� − 1�ω� ∈ B
u2�3δ/4�

and, letting ū = 
u1 + u2�/2,

1
m
S
1�m�ω� ∈ B
u1� δ��

1
m
S
m+ 1�2m�ω� ∈ B
u2� δ�

⇒ 1
2m

S
1�2m�ω� ∈ B
ū� δ��

Then by condition 
S−�, for ni large enough,

µni
B
ū� δ��ω� ≥ e−5
ni�
[
µmi


B
u1� δ/2��ω�µmi

B
u2� δ/2��Tmiω� − e−2Mmi

]
≥ 1

2 e
−5
ni�µmi


B
u1� δ/2��ω�µmi

B
u2� δ/2��Tmiω��

Therefore, by approximate sub-additivity, for ω �∈ Z, we get

lim sup
i→∞

1
ni

logµni
B
ū� δ��ω�

≥ 1
2

[
lim inf
i→∞

1
mi

µmi

B
u1� δ/2��ω� + lim inf

i→∞
1
mi

µmi

B
u2� δ/2��Tmiω�

]
�

Take inf δ>0 on both sides and apply (5.2), (5.3) and (5.4) to get −I
ū� ≥
−
I
u1� + I
u2��/2. The lower continuity of I then implies I is convex. ✷

6. More on the rate function for the quenched LDP. In this section
and the next one, we shall establish some conditions for the rate function I
of the LDP of n−1∑n

k=1 ρ
Xk�Yk� conditional on X to be non-trivial. We will
consider the case where Y satisfies condition 
S�, and X is i.i.d. From now on
we assume ρ is a �–valued bounded measurable function such that Q–almost
surely, the P–measure of the set of discontinuity points of ρ
x�Y1� is 0, where
P = dist
X�, Q = dist
Y� and the continuity is with respect to a metric on
AX. The following result will play an important role.

Lemma 3. Let AX be a Polish space with metric dX, and AY a measure
space. Fix f � AX ×AY → � a bounded measurable function. Given random
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variablesX andY onAX andAY, with probability measures P andQ, respec-
tively, suppose that Q–almost surely, the P–measure of the set of discontinuity
points of f
x�Y� is 0. Then

EX

[
logEY

[
ef
X�Y�

]]
≥ logEY

[
eEX�f
X�Y��

]
�(6.1)

Proof. Suppose �f� ≤ D. Given ε > 0, fix compact subset K ⊂ AX, such
that P
K� > 1 − ε. Given δ > 0, let � 
δ� = �I1� � � � � In� be a partition of
K, such that (1) dX
x� x′� < δ, x� x′ ∈ Ik, k = 1� � � � � n and (2) if δ′ < δ and
� 
δ′� = �J1� � � � � Jm�, then for each k, Jk ⊂ Ii for some i. LettingPk = P
Ik�,
hk
y� = inf�f
x�y� � x ∈ Ik�� y ∈ AY, k = 1� � � � � n, then

EX

[
logEY

[
ef
X�Y�

]]
≥ −Dε+

n∑
k=1

Pk logEY

[
ehk
Y�

]

= −Dε+ log
n∏

k=1

(
EY

[
ehk
Y�

])Pk

(6.2)

≥ −Dε+ log
(
EY

[
e
∑n

k=1 Pkhk
Y�
])

where the last inequality is due to Hölder’s inequality. We have

n∑
k=1

Pkhk
Y� = EX

[
n∑

k=1

hk
Y�1Ik
x�
]

= EX�fn
X�Y���

Given y ∈ AY, if x ∈ AX is a point where f
x�y� is continuous, then fn
x�y� ↑
f
x�y� as δ ↓ 0. Therefore, for y such that the P–measure of the set of dis-
continuity points of f
x�y� is 0, by dominated convergence theorem, as δ ↓ 0,
E�fn
X�y�� ↑ E�f
X�y�1K
X��. Because Q–almost surely, the set of dis-
continuity points of f
x�Y� is 0, therefore, again by dominated convergence
theorem,

lim
δ→0

log
(
EY

[
e
∑n

k=1 Pkhk
Y�
])

= lim
δ→0

log
(
EY

[
EX�efn
X�Y��

])
= log

(
EY

[
eEX�f
X�Y�1K
X��

])
≥ log

(
EY

[
eEX�f
X�Y��−DP
AX\K�

])
≥ log

(
EY

[
eEX�f
X�Y��

])
−Dε�

We thus get from (6.1) and the above limit

EX�logEY�ef
X�Y��� ≥ −2Dε+ log
EY�eEX�f
X�Y�����
Letting ε → 0 thus completes the proof. ✷

The following consequence of Lemma 3 will be useful.
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Corollary 6. Under the same condition of Lemma 3� given n ≥ 1, sup-
pose X = 
X1� � � � �Xn�, with Xi independent of each other. Then for any
S ⊂ �1� � � � � n�,

EX

[
logEY

[
exp

{
n∑
i=1

f
Xi�Yi�
}]]

≥ EX

[
logEY

[
exp

{∑
i∈S

EX�f
Xi�Yi�� +
∑
i�∈S

f
Xi�Yi�
}]]

�

Proposition 2. Let X = �Xn�n ≥ 1� and Y = �Yn�n ≥ 1� be two in-
dependent stationary processes on the Polish spaces 
A∞

X��X� and 
A∞
Y ��Y�,

respectively. SupposeX is an i.i.d. process. Given ρ � AX×AY → � measurable
and bounded, define

ρ̄
y� = EX�ρ
X1� y���(6.3)

Define !̄ by (1.20) and

!̂
λ� = lim sup
n→∞

1
n

logE
X�Y�

[
exp

{
λ

n∑
i=1

ρ
Xi�Yi�
}]

�(6.4)

where E
X�Y� is the expectation with respect to the joint distribution of X and
Y. Then

!̄′
0−� = !̂′
0−�� !̄′
0+� = !̂′
0+��(6.5)

Proof. It is easy to see that both !̄ and !̂ are convex, and therefore their
right and left derivatives at 0 exist. Define

ρ̂
λ�y� = logEX

[
eλρ
X1�y�

]
�

Then because X and Y are independent, and X is an i.i.d. process,

logE
X�Y�

[
exp

{
λ

n∑
i=1

ρ
Xi�Yi�
}]

= logEY

[
n∏
i=1

EX �exp �λρ
Xi�Yi���
]

= logEY

[
exp

{
n∑
i=1

ρ̂
λ�Yi�
}]

�

(6.6)

Suppose �ρ� ≤ D. Then for any y ∈ AY, it is seen

0 ≤ ρ̂′′
λ�y� = EX�ρ2
X1� y�eλρ
X1�y��
EX�eλρ
X1�y�� −

(
EX�ρ
X1� y�eλρ
X1�y��

EX�eλρ
X1�y��

)2

≤ D2�
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By the Taylor expansion,

ρ̂
λ�y� = ρ̂
0�y� + λρ̂′
0�y� + λ2

2

∫ 1

0

1 − t�2ρ̂′′
tλ�y�dt�

Then, from ρ̂
0�y� = 0 and ρ̂′
0�y� = ρ̄
y�, it follows ρ̂
λ�y� ≤ ρ̄
y�λ +D2λ2.
Then by (6.6),

1
n

logE
X�Y�

[
exp

{
λ

n∑
i=1

ρ
Xi�Yi�
}]

≤ 1
n

logEY

[
exp

{
λ

n∑
i=1

ρ̄
Yi� + nD2λ2

}]

= D2λ2 + 1
n

logEY

[
exp

{
λ

n∑
i=1

ρ̄
Yi�
}]

�

Letting n → ∞, we get !̂
λ� ≤ !̄
λ� +Dλ2. Since !̂
0� = !̄
0� = 0, this leads
to !̂′
0+� ≤ !̄′
0+� and !̂′
0−� ≥ !̄′
0−�. On the other hand, as ex is a convex
function of x, Jensen’s inequality gives

E
X�Y�

[
exp

{
λ

n∑
i=1

ρ
Xi�Yi�
}]

= EY

[
EX

[
exp

{
λ

n∑
i=1

ρ
Xi�Yi�
}]]

≥ EY

[
exp

{
λ

n∑
i=1

EX�ρ
Xi�Yi��
}]

= EY

[
exp

{
λ

n∑
i=1

ρ̄
Yi�
}]

�

leading to !̂
λ� ≥ !̄
λ�, and hence !̂′
0+� ≥ !̄′
0+� and !̂′
0−� ≤ !̄′
0−�. ✷

Proof of Theorem 6. By the assumption on ρ, we can apply Lemma 3 to
get

EX

[
1
n

logEY �exp �nλρn
Xn
1 �Y

n
1���

]
≥ 1
n

logEY

[
exp

{
nλ

n∑
i=1

ρ̄
Yi�
}]

Since Y satisfies condition 
S−�, when n → ∞, both sides converge. Thus
!
λ� ≥ !̄
λ�. Since !
0� = !̄
0�, then,

!′
0−�≤ !̄′
0−��
!′
0+�≥ !̄′
0+��

(6.7)

On the other hand, Jensen’s inequality yields

EX

[
1
n

logEY �exp �nλρn
Xn
1 �Y

n
1���

]
≤ 1
n

logE
X�Y�

[
exp

{
nλ

n∑
i=1

ρ
Xi�Yi�
}]

Since X and Y are independent, and each one satisfies condition 
S−�, the
process 
X�Y� also satisfies condition 
S−�. Therefore, when n → ∞, the
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right hand side converges. Then, by (6.4), !
λ� ≤ !̂
λ� and similar to (6.7),
!′
0−� ≥ !̂′
0−� and !′
0+� ≤ !̂′
0+�. By Proposition 2, we get

!′
0−� = !̄′
0−�� !′
0+� = !̄′
0+��(6.8)

Because ! and !̄ are convex, !
0� = !̄
0� = 0 and !
λ� ≥ !̄
λ�, it is seen
!′
∞� ≥ !̄′
∞� and !′
−∞� ≤ !̄′
−∞�. Because !̄∗ is non-trivial, either
!̄′
−∞� < !̄′
0−� or !̄′
∞� > !̄
0�. By (6.8), this implies that either !′
−∞� <
!′
0−� or !′
∞� > !
0�. Thus !∗ is non-trivial. ✷

Corollary 7. Suppose AX = AY = �0�1�, and let ρ be the Hamming
distance ρ
x�y� = 1�x=y�. If the rate function for the LDP of n−1∑n

j=1Yj is
non-trivial, then for any Bernouli process X with Pr�X1 = 0� = 1 − Pr�X1 =
1� = p �= 1/2, !∗ is non-trivial.

Proof. Let !∗
0 be the rate function for the LDP of n−1∑n

j=1Yj. Letting
q = 1 − p, it is seen

!̄
λ� = qλ+ lim
n→∞

1
n

logEY

[
exp

{
λ
p− q�

n∑
j=1

Yj

}]
�

giving !̄
λ� = qλ+ !0

p− q�λ�, leading to the conclusion. ✷

7. Condition (A) and non-triviality of the rate function. Next we
consider the case where ρ̄
y� is a constant, in which case !̄
λ� can not be
convex. Suppose Sn, n = 1�2� � � � are finite subsets of �. We say Sn have
asymptotic density L if �Sn� → ∞ and

L = lim
n→∞� �Sn�/diam 
Sn� �(7.1)

exists, where �Sn� is the cardinality of Sn, and diam
Sn� = max�x � x ∈
Sn� − min�x � x ∈ Sn� + 1.

Definition 3. Given Y = �Yn�n ≥ 1� with Q = dist
Y�, denote by (A) the
following condition.

(A) There are finite Sn ⊂ �, n = 1�2� � � �, with asymptotic density L > 0, and
a function 5
n� ≥ 0, satisfying

lim sup
n→∞

�5
n�/n� < ∞

such that

Q

( ⋂
i∈Sn

Ai

)
≥ e−5
diam 
Sn�� ∏

i∈Sn

Q
Ai�� Ai ∈ σ
Yi�� i ∈ Sn� n = 1�2� � � �

✷
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Lemma 4. Given processes X and Y and function ρ as in Proposition 2�
let ρ̄
y� = EX�ρ
X�y�� and ! given by (1.19) 
assuming the limit exists�. If Y
satisfies condition 
A�� then

!
λ� + !̄
−λ� ≥ −2 lim sup
n→∞

5
n�
n

+ 2LEX

[
logEY

[
e
λ
2 
ρ
X1�Y1�−ρ̄
Y1��

]]
�(7.2)

Proof. Suppose Sn are sets meeting condition (A). Without loss of gener-
ality, assume min�x � x ∈ Sn� = 1. Letting Nn = diam 
Sn�, Sn ⊂ �1�Nn�.
Then

1
Nn

EX

[
logEY

[
exp

{
λ
Nn∑
i=1

ρ
Xi�Yi�
}]]

≥ 1
Nn

EX

[
logEY

[
exp

{
λ

∑
i∈�1�Nn�\Sn

ρ̄
Yi� + λ
∑
i∈Sn

ρ
Xi�Yi�
}]]

(7.3)

≥ − 1
Nn

EX

[
logEY

[
exp

{
−λ

Nn∑
i=1

ρ̄
Yi�
}]]

(7.4)

+ 2
Nn

EX

[
logEY

[
exp

{
λ

2

∑
i∈Sn


ρ
Xi�Yi� − ρ̄
Yi�
}]]

≥ − 1
Nn

EX

[
logEY

[
exp

{
λ
Nn∑
i=1

ρ̄
Yi�
}]]

(7.5)

+ 2
Nn

EX

[
log
{
exp

{−5
Nn�
}

× ∏
j∈Sn

EY

[
exp

{
λ

2

ρ
Xi�Yi� − ρ̄
Yi��

}]}]

= − 1
Nn

EX

[
logEY

[
exp

{
λ
Nn∑
i=1

ρ̄
Yi�
}]]

−25
Nn�
Nn

+ 2
Nn

∑
j∈Sn

EX

[
logEY

[
exp

{
λ

2

ρ
Xi�Yi� − ρ̄
Yi��

}]]

where (7.3) is due to Corollary 6, (7.5) to Hölder inequality and (7.6) to condi-
tion (A). Let n → ∞ to complete the proof. ✷

Proposition 3. Given processesX and Y and function ρ as in Proposition
2� suppose !̄∗ is trivial. Then !∗
x� is non-trivial if one of the following two
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inequalities holds:

!̄′
0+� − !̄′
0−� < LEX

[
ess sup

Y


ρ
X1�Y1� − ρ̄
Y1��
]
�(7.6)

!̄′
0+� − !̄′
0−� < LEX

[
ess sup

Y


ρ̄
Y1� − ρ
X1�Y1��
]
�(7.7)

Proof. From (7.2),

!′
∞� − !̄′
−∞� ≥ a
�= LEX

[
ess sup

Y


ρ
X1�Y1� − ρ̄
Y1��
]
�

−!′
−∞� + !̄′
∞� ≥ b
�= LEX

[
ess sup

Y


ρ̄
Y1� − ρ
X1�Y1��
]
�

Because !̄∗ is trivial, !̄′
−∞� = !̄′
0−� and !̄′
∞� = !̄′
0+�. If !∗ is also
trivial, then by (6.8), !∗ = !̄∗, leading to !̄′
0+� − !̄′
0−� ≥ a and −!̄′
0−� +
!̄′
0+� ≥ b, contradicting either (7.6) or (7.7). ✷

Proof of Theorem 7. Because ρ̄
y� is constant, !̄′
0+� = !̄′
0−� = 0.
Therefore, condition (1.21) implies that either (7.6) or (7.7) is satisfied as long
as L is positive. It is then enough to show Y satisfies condition (A).

Fix C such that

eC ≥ e3q−2
0 � q0 = min�Q
y� � y ∈ AY��

Condition 
S−� implies that there is a non-decreasing sequence 5
n� ≥ 0 with∑∞
n=1 5
n�/�n
n+ 1�� < ∞, such that

Q
A ∩B� ≥ 2e−5
n�Q
A�Q
B� − e−Cn�

A ∈ σ
Yj�j ≤ h�� B ∈ σ
Yj�j ≥ h+ 5
n��� n� h ≥ 1�

By (2.1), 5
n�/n → 0. Fix k, such that for all n ≥ k, 5
n� ≤ n. For S = �s� and
n ∈ �, denote S+n = �s+n�. Define a sequence in � and a sequence of finite
subsets of � as follows:

L1 = 2 + k� Ln = 2Ln−1 + 5
Ln−1��
S1 = �1�2 + k�� S′

n−1 = Sn−1 +Ln−1 + 5
Ln−1�� Sn = Sn−1 ∪S′
n−1�

It is easy to check the following:

diam 
Sn� = Ln ≥ 2n� Sn ∩S′
n = ∅� dist 
Sn�S

′
n� = 5
Ln�� �Sn� = 2n�

where d
A�B�, A�B ⊂ �, denotes min��t − s� � t ∈ A� s ∈ B�. We prove by
induction

Q

( ⋂
j∈Sn

Aj

)
≥ e−Ln

∏
j∈Sn

Q
Aj�� Aj ∈ σ
Yj��(7.8)
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Once we show (7.8), we can complete the proof by choosing 5
n� = n in 
A�.
When n = 1, since e−5
k�Q
A1�Q
Ak+2� ≥ e−5
k�q2

0 and e−Ck ≤ e−3kq2k
0 ≤

e−3kq2
0 ≤ e−5
k�q2

0,

LHS = Q
A1 ∩Ak+2� ≥ 2e−5
k�Q
A1�Q
Ak+1� − e−Ck ≥ e−5
k�Q
A1�Q
Ak+1��

and thus by 5
k� ≤ 5
k+ 2� ≤ k+ 2 = L1, (7.8) holds.
Suppose (7.8) holds for j < n. Then because d
Sn−1� S

′
n−1� = 5
Ln−1�,

Q

( ⋂
j∈Sn

Aj

)
≥ 2e−5
Ln−1�Q

( ⋂
j∈Sn−1

Aj

)
Q


 ⋂
j∈S′

n−1

Aj


− e−CLn−1 �

By the induction hypothesis,

e−5
Ln−1�Q

( ⋂
j∈Sn−1

Aj

)
Q


 ⋂
j∈S′

n−1

Aj


 ≥ e−5
Ln−1�e−2Ln−1

∏
j∈Sn

Q
Aj�

≥ e−5
Ln−1�e−2Ln−1q2n
0 ≥ e−3Ln−1q

2Ln−1
0

= e−CLn−1 �

Therefore,

Q

( ⋂
j∈Sn

Aj

)
≥ e−5
Ln−1�e−2Ln−1

∏
j∈Sn

Q
Aj� = e−Ln
∏
j∈Sn

Q
Aj��

completing the induction for (7.8). To complete the proof, we need to show

lim
n→∞

�Sn�
diam 
Sn�

> 0

exists. From

diam 
Sn�
�Sn�

= Ln

2n
= 2Ln−1 + 5
Ln−1�

2n
= Ln−1

2n−1
+ 5
Ln−1�

2n

it follows

diam 
Sn−1�
�Sn−1�

≤ diam 
Sn�
�Sn�

≤ diam 
Sn−1�
�Sn−1�

(
1 + 5
Ln−1�

2Ln−1

)
�

yielding the convergence of diam 
Sn�/�Sn� and, since

∞∑
n=1

5
Ln�
2Ln

≤
∞∑
n=1

5
Ln�
Ln+1−1∑
i=Ln

1
i
i+ 1� ≤

∞∑
n=1

Ln+1−1∑
i=Ln

5
i�
i
i+ 1� =

∞∑
n=1

5
n�
n
n+ 1� < ∞�

there is limn→∞�diam 
Sn�/�Sn� � < ∞, which completes the proof. ✷
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