ON FITTING CURVES TO OBSERVATIONAL SERIES
BY THE METHOD OF DIFFERENCES

Ry

Hagrry S. WLt

I. PRELIMINARY STATEMENT

Curve fitting may be technically described as the representation
of a series of observations by a mathematical function. Given the
observations and the function to be fitted, the problem is to determine
the constants of the equation in such a way as to secure a valid repre-
sentation. The method to be employed in the determination of these
constants must take into account the object which the fitting process
is intended to serve. If the object is to interpolate for undetermined
items between specified ordinates of the series, any method which will
give the constants of the equation will suffice, since the representation
of the given ordinates is exact. In this case, questions of method will
hinge on considerations of convenience. If, however, the object is to
secure the representation of all the items of the series by means of a
single function, questions of method will hinge on the validity of the
representation, which, in this case, can only be approximate.

Functions used as approximate representations of observational
series fall into two general classes: first, those which have *he force
of a law descriptive of a necessary sequence of events; and, second,
those which depict a norm as a characteristic trend in growth. These
two types of representation merit separate methodological considera-
tion; and, in what is to follow, we shall make an analysis of the prob-
lemis involved and develop a method, which, it is believed, will place in
the hands of the statistician a new afid serviceable instrument.

I1I. FuNDAMENTAL TyYreEs oF OBSERVATIONAL SERIES

For the purpose of fixing attention on certain characteristics of
observational data, let us consider two distinctly different sorts of
scries. Let us suppose that the first series consists of a set of observa-
tions on a comet moving through space, and that the second consists
of the record of gold production in the United States.
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160 ON FITTING CURI'ES TO OBSERV ATIONAL SERIES

For the sake of simplicity, let us further suppose that the move-
ment of both series is properly represented by the function y=f£(z) .
The two sets of observations may then be represented by an equation
of the form

(nH Ytdxe = f(x)=Y*v

~In this equation, the term & represents an error of observation
due to factors such as faulty judgment, clerical inaccuracies, and lack
of precision in the use of instruments. The term d represents the
deviation of the fitted function from the true magnitude of the phe-
nomenon undergoing examination, after the series has been corrected
for the errors ¢ . Taken together, d and ¢ make up the residuals

v= f(x)-Y

Now it is quite evident that, in the case of the first series, owing to
the regularity of the path of the moving body, the deviations d will
be negligibly small in comparison with the errors ¢ , and that, in the
case of the second series, owing to the irregularity of production, the
deviations d will be large in comparison with the errors ¢ . In fitting
a curve to the first series, we assume that a true value exists and that
the observational errors may te defined by the fitting process; while
in fitting to the second, we assume a normal value merely, and seek to
define the deviations of the observations from this norm.

These considerations suggest that the procedure which is appli-
.able to the determination of constants in the one case may not be
applicable in the other. Let us therefore inquire as to the solutions
best suited to each case.

III. TuE CrassicAL SOLUTION

It was in 1806 that Legendre formulated his test of the validity
attaching to the functional representation of an observational series.
This formulatton has become known as the principle of least squares
and may be stated thus: Where the constants of a mathematical func-
tion are to be determined from a set of empirical observations, that
solution is best which makes the sum of the squares of the residual
crrors a minimmn.

So far as its mere statement is concerned, this principle is a rule
of thumb which may be adopted or discarded at the discretion of the
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individual. The principal has, however, been placed on a definite logical
basis by Gauss and later writers, who have derived it from the normal
law of error p(x)=m [0 *'dz Under the assumptions
of this law, deviations from the most- probable value are fortuitous in
character, the term fortuitous implying that individual deviations are
unanalytic in the sense that the forces operating to bring them about
cannot be resolved into more elemental components. All that we can
clam to know @ priori about the values of such deviations is that they
are as likely to be positive as negative and that they must remain
within the bounds £ @ . The function p(z) gives the probability
for the occurrence of a deviation of magnitude z=x/0 .

Statisticians generally have accepted the principle of least squares
as providing a sufficient theoretical basis for the fitting of curves to all
sorts of series. Because of this, it becomes all the more important
that certain limitations of the principle and its application to the analysis
of statistical series should be carefully noted.

Considering again the case where the observations are made on
a body moving through space, we see that the errors of observation
committed may properly be regarded as fortuitous in character, for, on
the basis of our assumption of precise motion in the path y=f(z),
the most probable value of the résiduals is clearly defined as zero, so
that the errors committed are as likely to be positive as negative; no
finite bound can be set as to the possible magnitude of such random
errors, and the forces determining their magnitudes cannot be resolved
into their components. 1f our assumption as to the path of the moving
body is valid, these errors conform to the normal law in the frequency
of their occurrence, and their magnitudes may be accurately ascertained
by a least squares determination of constants.

Returning now to the case where the observations consist of a
record of gold production, can we claim to have the same basis for an
application of least squares to the determination of our line of best
fit? Two important considerations would lead us to think otherwise.
The first of these is that the magnitude of deviations from trend is
definitely restricted: for production'is limited both by the capacity of
the extractive industries and by the consumers’ demand. The second
is found in the highly analytic character of these deviations; for it is
significant that whenever it becomes possible to resolve the forces de-
termining the values of given deviations of a set into their elemental
components, the prediction of the sign and magnitude of specified devia-
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tions becomes in some measure possible: and when this occurs, such
deviations are removed from the category of the fortuitous and unpre-
dictable and placed in that of the analytic and predictable.

The arguments are supported by the use made of weighted devia-
tions from trend in the forecasting of economic events. A rise in
price or fall in production is not explained, in comparison with the
normal trend, as a circumstance which is to be expected a certain
number of times in a thousand, but rather because analysis shows the
rise or fall to be the necessary result of known events. Obviously, a
forceast based on unanalytic and purely fortuitous deviations could
have no real significance whatever.

Granting that residuals may sometimes be obtained by least
squares operations which may be regarded as a random sample of an
approximately normal distribution, it must be clearly borne in mind
that these residuals are brought into being by the creative act of curve
fitting: and the mere marking off of a deviation does not justify our
regarding it as being due to the working of forces distinct and different
from those effective in producing the remaining part of the ordinate.
In the case of the celestial observations which we have assumed, the
act of fitting defines, but does not create; the errors.

The argument may be advanced at this point that it is not neces-
sary to regard the principle of least squares as resting on the law of
error; for we may obtain the normal equations from which our least
squares determindtion is made by treating the solution as a simple
problem in maxima and minima. But if we do, we cannot claim to
have determined the most probabdle values of our constants; for this
claim must rest on the derivation of the normal equations from the
law of error.

The justification for the arbitrary use of the lcast squares tech-
nique that is most likely to be made is that it minimizes extreme devia-
tions frem the fitted line.  This is unquestionably true; but it appears
as a weakness of the methad in the present connection rather than as
an clement of strength: for, in a least squares deduction of normal
equations, we may regard each absolute deviation as being weighted
with its own magmitude, deviations less than the mean deviation receiv-
ing weights less than the mean weight, and vice versa; and why, the
query obtrudes, should we, in our determination of constants, over-
weight the observations most remote from what we term the norm



H. S WILL 163

and underweight those which lie closest?

The argument that the least squares fit will avoid the commission
of extreme errors in the projection of the curve beyond the limits of
observation, or at least tend in that direction, is fallacious; for the
fitting of a line to a given set of observations to secure the minimum
sum of the squared residuals is unlikely to effect the same end when
new observations are added. At least, we have no logical basis for the
expectation of such a result unless we fall back on the position that
the fitted curve describes a necessary sequence of events and that the
residuals are fortuitous in character; and this is the very assumption
we have found to be untenable for most economic and social series.

We may, then, say that fortuitous deviations are properly to be
regarded as functions of the observations; while analytic deviations
are 1o be regarded as functions of the hypothesis we set up with refer-
ence to the type of curve which is most appropriate to the data. In
brief, our reasoning supplies a definite basis for the contention that,
for data in which the errors of observation are small in comparison
with the analytic deviations from trend, the least squares definitions
do not lead to results which are to be regarded as necessarily best for
all purposes.

IV. THE METHOD OoF DIFFERENCES

The method of curve fitting which is now to be presented was
originated by the writer in the spring of 1925. Since that time, it has
been put to a wide variety of practical tests and has been found to yield
highly satisfactory results. The designation method of differences has
been given to it because of the extensive and essential use made of the
calculus of finite differences.

Before undertaking the task of deriving the formulas for the de-
termination of constants, let us state the assumptions on which the
method is based, as follows:

(a) The function to be fitted is logically appropriate to the data.
(b) The data are free of constant and systematic errors,

(¢) Accidental errors of observation are relatively small and
unimportant.

(d) Where a set of secular values is irregular and without sig-
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nificant trend, the arithmetic mean is the best representation
of the set.

The first of these assumptions is, in a general way, implied in any
method of fitting. The effect of the second and third is to qualify the
fitted deviations as analytic. The fourth is made use of constantly in
the writing of formulas for the determination of parameters.

In the derivation of formulas, the essential steps are as follows:
(1) equations defining each constant of the function fitted are devel-
oped by a process of differencing; (2) equations are formed from
which approximations to the value of the given constant may be ob-
tained; (3) the mean of the several approximations to the value of
the given constant is taken as the most plausible value of the constant.

V. NoraTioN

To avoid the possibility of misunderstanding, we shall explicitly
define certain symbols made use of in this memoir.

The original observations are denoted by the symbol Y; ,
i= 0, 1,2, . .. n-1;nd other capitals are used to designate em-
pirical functions of the original observations; e. g., U;=Y, - Y,
The symbol w, denotes values of mathematical functions correspond-
ing to the observations ¥ The argument is denoted by the symbol

X, X=iA,

Summations within the definite bounds & and b is indicated by
the symbol e g, 4 Yi=Yo* Mgt ¥V nvs o

Finite differences of order r and rank k are defined by the
symbolA | ; e g., A :y,=A';'y,"—A':' Vi s where the
difference of zero order is taken as the quantity undiffereiced. In
particular, we have A:, Yi= Y ALY =Yiew =V ;

A:.yx =View “CYie *Yi ) AL YYo= 3Yis2e ¥3Y i Va-

In these relations, the values of & and r are integral. The value of
Yien Isprecisely the value of the function y=f(x)when xsx +AAx.
In the difference operations of the following sections, the asage
Az=(Ax )z # Alx?) is adhered to. Note that A, log y; =

108 Yi. —10g y; , and also that logA, y; =108 (Yisx ~Yi) -
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Since, on taking logarithms, ratios resolve themselves into differ-
ences between logarithms, we have, analagous to the differences A, y;,
the ratios py y; =Pl 'Visx:Pr’ ¥yi , where the ratio of order
r =0 denotes the specified quantity. In particular, we have p{ y; = y;

Pe)i=Yiee Y1 3 PeYiz=View Vi ‘Yies PoYi=

(yiﬁ.,x ¢ yl"ﬁk) : (yi’-vzn ‘Yi )-

In forming the first difterences &,  y, , where k is the increment
in the y subscript corresponding to the increment kAx in x,, it
will be noted that the first 4 values of y; are excluded as minuend;
hence we can form but n - k first differences of rank &, that is,
when the increment in the y subscript is k. Similarly, in forming
the second differences A} y;=A, ¥;,~AL Yi , the first k
values of A, y; are excluded from appearance as minuend; hence
we can formbut hn - k- k= n-2k second differences from n values
of y when the rank of differences is 4. In general, when the rank
of differences is A&, we may form pn - rk differences of order »
from a set of values of y. Evidently, the number of ratios which
may be formed from a given number of observations follows the same
rule as that which applies to differences.

VI. LINEAR SERIES
I.etus write the equation of the linear series in the form
(1) Yi= a+ bz,
Giving to x the increment AAx , we get
(2) Yieu=a+b (x,+kAx)
Subtracting (1) from (2), we get
(3) A .y, =bkAx

3y making the substitution A,Y; for A, y; in equation (3),
we may form n - & approximations to the value of &, as follows:
o A Y :kAx
, A,Y kAx

o O
non

4)

. . . . . .

bn-k—i=An¢ Yn—k - kA x
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Similarly, when b is determined, by substituting ¥; for y; in
equation (1), we are able to form n approximations to the value of
8 , as follows;

a,= K_b“zo
a-=Yy
(5)

a,,= Yn-f-b‘xn—t

By taking mean values of the approximations specified in equa-
tions (4) and (5), we arrive at the following formulas for determining
the value of the parameters b and & :

b= [377A Y] :[k(n-k) Ax).

“o
ien- 1

a= [ -5 =] i
(6)

Zk=ntj j=0 or /.

This arbitrary determination of & will be justified in a later
section.

VII. PARABOLIC SERIES ‘
The equation of the quadratic parabola is
(1) Yi=a+bx,;,+cx? .
Giving to x the increment & Ax, we have
(2) Yise=8+b (x,+ kAZ)+c(x;+kAx) 2.

Subtracting (1) from (2), we have

(3) A, y; =bkAx+cklx (2x,+kAx) .
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Giving to x a second increment AA.x, we have
(4) A, Vi, =bkAx+ckAx (2x;+3kDx)
Subtracting (3) from (4), we obtain
(5 Ay, =R2ck*Ax*

From equations (5), (3), and (1), we deduce the following ap-
proximations to parameters:

ci=ALY, : (2k*Ax?) i=0,/, - - n-2k-/.
(6) b=[a, Y,-ckAx (22,+kA)) - [kAx], i=0, I,+n-k-/.
a,=Y, -bx,~cx}, i=0,/,--+ n-|I

Taking mean values of the approximations indicated in equations
(6), we have the following formulas for the determination of
parameters:

Len-2

c=[£T A Y] [k -Zk)A.r‘].
b4 fkm; lezekag]): [k (n-gnd

ltn—l irn-s

a= [{: -bZ | .z"—ci.o-.’rf] in.

FR

(7)
Jk=ntj, j=0,/,0r2

We shall next write the equation of the cubic parabola, which is
(8) yiz=a+bx;+cxl+dx/
Giving to x the increment kAx , we have
) Yiew=0+b (=, +I<A.w.)'+c(z,+kAz)‘+d(.zi+kAx) .
Subtracting (8) from (9), we get

(10) A,y =bkAx+ckAz (2z+kAx)+d kAT (3 x[+3x, kAx +kAxd.
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TABLE 1

Production of Gold in the United States
(in units of $100,000)
Y =(95.75453.89 x-281x?

Year| Y y v Year Y y v
1900 792 696 96 1911 969 949 20
1901 787 747 40 1912 935 938 -3
1902 800 792 8 1913 883 921 -38
1903 736 832 -96 1914 945 899 46
1904 805 866 -61 1915 | 1010 872 138
1905 882 &95 -13 1916 926 ]39 87
1906 944 918 26 1917 838 800 38
1907 904 935 =31 1918 686 755 -69
1908 946 947 -1 1919 603 705 | -102
1909 997 953 44 1920 512 650 | -138
1910 963 954 9

B> 17863 [17863 | 0

Mean error of estimate 52.6

Again giving to x the increment kA=x , we have

Ax Veou =bKAT +ckAx (2x,+3kax)+IkAz (3 (koD

(h +3kAx (x;+ kAT)+k*Ax2)

Subtracting (10) from (11), we obtain

(12) Aly;=R2ck*Ax*+6dk’Ax?(x; +kAx).
Once more increasing & by kA x, we have

(13) A%y, =2Ck’Ax*+6dk*Ax?( x, +2kAZ) .
Subtracting (12) from (13), we obtain finally

(14) A% y,=6dk’Ax’

From cequations (14), (12), (10), and (8), we deduce the follow-
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ing parametric approximations:

d;=AYY, : (6k°Azx?®), i=0,/,---- n-3k-/.
c; ALY, -6dkBx (x,+kDz)):[2k D=, i=0, /- n-2k-.
(15) b, =[A.Y;-ckx( 2x,+kAD)-dkAx( 3x ]+ 3z, kAx+k'Ax)]
: [kAZ) , i=0, /.- - n-k-/.

- Vi-b;-cx{-dz}, i=0, /. on-l.

TaRing mean values of the approximations indicated in equations
(15), we have the following formulas for the determination of

parameters:
Len-3k

d=[% A'Y] [6k* (n-3RAx"].

c= [ , A 'sd’fﬁx‘{' "(z-kAx)] :[2 K (n-2KAz ] .
I n~k=1! ‘ -k v
b= ALY, -ckAxE (2 x+kidx)
(16) [5.. e, 1=¢ { 1

-dIcAzZ (.5.: +3x; —kAx+k‘A.z“'ﬂ [k (n- k)Ax].

Jemet

a[£” Y~b§ z-efx3-af 2] in.
4k=ntj , J =012 or 3.
VIII. HyprerRBOLIC SERIES
Let us write the hyperbolic series
(1) y=a+bx +c :(x,+/)
Giving the increment kAx to x, we have
(2) Vi a+b(xi+kAx)+c: (2 +! +kAx)

By subtraction, we have

(3) A.y,=bkAz-ckAx : (x,+/)(z,.+/+mx))
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Giving a second increment A x to x, we obtain

(4)  Ayyis =bkBz-ckAx : (z,+/+kAx) (x;+1 +2kAx).

By subtraction, we obtain

(5) ALy;=2ck*Ax? (lx+1) (x;+1+2kAx))

Making the substitutions xj= (x;+/) (x;+)+kAx) , and

xin(x+/+25Ax) » we have, from equations (5), (3), and (1),
the following parametric approximations :

¢;=(x; ALY, ): (2k*Ax?), i=0,/,+ -+ n-2k-1.

(6)  bi=(AY,+ckdz :2}): (kAx), i=0,1,- - n-k-1

a;=Y-bx;—c:(xs+!), i=0,/,- - - n-1 .

By taking mean values of the approximations indicated in equa-
tions (6), we have the following formulas for determining parameters:

c=[;:.i_‘:-.::;': % Y,] [Zk * (n-2K)Ax ’] .

b:[.i_':.z;:YﬁcIAz(“‘:‘::‘kl-/lx;)] : [k (n—k)A.r] .
(7)

a= g_? Y, -b;‘;.:-'.ti—cg;n(.:;:ﬁ I)'ﬂ R
3k=n4j , j=0,/,0r 2.
If the coefficient of x in (1) is zero, we have simply
(8)  yi=a+b :(x+l).

Formulas (7) now reduce to

b={£7" A Y] [k (n-w02]) .

(9) a= [é‘:i}i -b%'.o(:r‘-l)"]:n .

2k= n*j j=Ocr/ .
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It is evident that a term in x*or x” could be added to equation
(1) and a solution be obtained by a direct extension of the general
method of analysis applied to equation (1).

IX. LOGARITHMIC SERIES

Let us write the logarithmic equation
(1) Yi=a+bx+c-log (x;+/).

Giving x the increment k Ax, we have
(2) Yiex=a+b (x+kAx)+c - log (x;+/+kAx) .

Subtracting (1) from (2), we get
(3) A y;=bkAx+cA, log (x+1).

Giving to x a second increment kAx , we get

(€)) Ay Y= bkAx+cA Jog(x;+ 1 +kAx) .

TABLE II

Deaths from Typhoid Fever in Greater City of New York
(Number of deaths per 1,000,000 inhabitants)
y —143.8994+8.695 x — 206.652 /=

Year| Y y v Year Y y v
1911 | 111.7 | 1526 |409 1919 218 256 |- 38
1912 | 100.5 99.3 1.2 1920 242 248 |- 06
1913 720 71.7 0.3 1921 21.3 25.1 |- 38
1914 65.0 54.7 10.3 1922 22.1 260 |- 39
1915 63.5 43.4 20.1 4 1923 23.6 274 |- 38
1916 40.6 35.8 4.8 1924 30.0 29.6 04
1917 42.4 30.7 11.7 1925 319 32.1 |{-0.2
1918 35.6 27.4 8.2

2 706.2 | 706.2 0.0

Mean error of estimate 7.6
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Subtracting (3) from (4), we obtain
(5) Alyi=cAllog (x;+1).

From equations (5), (3), and (1), we have the following
approximations to parameters:

ci=ALY; : Ay log(x+l), i=0,1, -+ n-2k-1.
(6) b4= ALY, -cA Jog(x;+l), i=0,/,:++n-k-/.

a,=Y,-bx,~c-log(x+!), i=0,1, - n-1.

Taking mean values of the approximations indicated in equations
(6), we have the following formulas for the determination of para-
meters:

i-n-2k-/

c=[£..(A’Y; 1AL 1og (x4 1)]: [n-24].

jzn-k-l 1sn-& -1

b= [Z‘:“ fa ¥y Y,--cizw A, log (.r,+/)]: [k (n-/c)A:c].
(7)

ien-t

isn-1t fen-1t
8= 4‘.0 Yi—b}:-o x,-c ?_’ log, ( ::‘-o-l)}. n.
3k=ntj, j=0,/, or 2

If the coefficient of x in equation (1) is zero, we have
(8) Yyi=a+b- log(x;+/).

Formulas (7) then reduce to

b= [%30 "(ALY, A, log z41) K] -
) ”[}é:::-i'}‘b?::-iog(xﬁl)]:n.

2k=nrdj, j=0or |
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X. GENERAL PoLYNOMIAL SERIES

The solutions of polynomials presented in the preceding sections,
while best for the series considered, are too specialized in mode of
analysis for application to polynomials generally. We shall now de-
velop a solution which is applicable to any polynomial in z=/(x) ,
f(=) being a function of x whose value is known, as for example,
x ', log x, tan x , etc.

We write
(1) yy =d+cz +bzlvaz].

Giving to z, the increment A, z; , we have
(2) Yiea= d+cz,,, + bz:os“' 62:,‘ .

Subtracting (1) from (2), we get
(3) A yi=cA z,+bAGeA 2] .

This is the i **equationA,. y . We write the i+k® equation as
4) AuYion=CArZ 00 + bAL 25, taA 2] -

Multiplying (3) by A. z,,. and (4) by A, z; and then sub-
tracting (4) from (3), we obtain

(5) Aly= bAlzl+al, z!

where ALy, =AY Acti su~BeYiswDeZy + ALz =Bzl - Buzyon
-A: ZhuDem 3
and A 2: =A, Z“,'Atz‘ " A,‘Z:“ : Auz.( .

In (5), we have the i¢hequation ALy . We write the iek®
equation as

(6) A:'z Xu:"bA;z:‘u""A;z"n .

Multiplying (5) by Axz%, and (6) byA,z } and subtract-
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ing the latter result from the former, we obtain

" L)
(7) Ak)’a':anzi’

” ' ’ ’ 4
where A, ¥i= AYi Dz 30Dy Yivw D2} 3

~N ! ’ ’
and Aezl=D2} Dzl - Az ALZE.

From equations (7), (5), (3), and (1), we are now able to writé
the following parametric approximations:

a,=[A:Y,] :[A';z:], i=0, 1, -+ - n-8k-/.

bi=[AY,-aALz2)[AL 2], i=0. 1, - - n-2k-1.

(8)
ci=[A~Y;—bA~z:"‘CA“Z:J:[AZ‘]’ i:o,/.o-n_k_/.
0,=Y,-cz,~bz}-8z}, i-0, 1, --- n-/
When 2=%@ , i takes the values 1,2, . . . .n-rk-/, r

being the number of reductions essential to the approximation.

The mean values of equations (8) give the following determina-
tions:

o= Ea,+a,+ .- »+a,,,u_‘,] : [n-dk].

b= [b+by+ - - +b,,_,,,_,] :[n-—.?k].

(9)
c=[e,+e,+ - +Ch k-] z[n-k]-

FEx 2X] janm-t ap-~! ien=

d=|¥ Y-ck z,-b}, 2-af z%]|:n.

If equation (1) is simplified to

(‘0) Yi= c+bzi+az: 1)
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the parametric appraximations become the following :
a‘.=[A; }"] :[A;z:]’ i=0, /, -+« n-2k-1.

(11) be[A Yi-o0A, 29):[A 2], 0.1, -+ pok-1.
C;= Y.i"sz"az: y 120, ), - n-1.

The mean values of these approximations give the parameters
sought.

XI. EXPONENTIAL SERIES
We shall now write the equation of the exponential series
02‘
(1) yi=d+cx;+ be .
Giving to x the increment £Azx , we have
a(x, + kdx)
(2) Yie=d+c (x; +kAzx)+ be !
Subtracting (1) from (2), we get

x

3) Ay, =ckpAx+bhe’ i,
where h=e "% .
Giving to x a second increment kAx, we obtain
) A Yion=CckDx+bhe *F10 14,
Subtracting (3) from (4), we obtain
(5) Aly=bhe"™
Taking logarithms, we have
(6) logAly; =log (bh3+ex;

Again giving x the increment kAx , we have

(7) 108 AL ¥ivu =10 (bh ¥+ (x4 kAx) .
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Subtracting (6) from (7), we obtain
(8) A, lopAly,-akAx

From equations (8), (5), (3), and (1), we form the following
parametric approximations:

3,=(A, log A2Y,) : (kax), i=0, I,--- n-3k-I.
b,(A2Y,): (h'e™™), i=0,1,- - - n-2k-I.

(9) ox, .
c;=(A,Y,-bhe" ¢): (kAx), i=0,/,- - n-k-/.

dlei-C-rj_be‘x" i=00 /n - n-/.

Taking mean values of the approximations indicated in equations
(9), we have the following formulas for determining parameters:

a-[$ 4, 1ogaty] : [k(n-3Ka =]

b:[‘go- (atY, : e : [ *(n-24) .

(10) ke o
C‘[‘-’:., kA,‘Y‘.—bh‘:.'_o "c""f] : [k (n-0A z].
[Ex n IY £i-n-: bzx-n-l.:‘]
d= o —ci.o x; - i-oc n

If, in equation (1), the coefficient of x is zero, we have
(11) y,=c+be %

and the formulas for determining parameters become

a-[£7 "4, 10ga, Y] : [k (n-204 5] .
(12) 5[5 (A, 1™ [h(n-k].

ien-1 ien-1t

c=[§.° Yi-b‘:..‘-oc “in.
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XI1I. LocisTiC SERIES
Let us write the equation of the logistic series
(1) y,=[dvcx;] : [1+be *74].

Multiplying by the denominator on the right and transposing, we
get

Ty

(2) y=d+cx;-by,e’

Giving to x the increment kAx . we have

2k

(3) Yisu=d+cx,, -by;,. e

Subtracting (2) from (3), we get

;i

(4)  A,y,=ckAx-by,,, é° Tirniby e *Ti,

Again giving to x the increment kAx , we obtain

X vk

ax .
(5 A,‘y“kackA.t—byj,u e t"“‘+by‘.“‘e‘

Subtracting (4) from (5), we have

LT 1

2 L2 TP [
Ak.\/f‘byuz.‘ ! +2by;, . -by, e ®

(6)
=-be .:‘(yuxu e*ra= 2ya‘¢n e .‘A""‘.Vi)'

If, in (6), we give to x the increment kAx , we get

ox

1 ax 2 .
7 A,‘y“,‘-—byi,,,‘c ““"'2b-yi+2ke ""'by“ke 1ok
_ *x A
=-be 1(.)’:4“3’” 2Yi42e € .u‘Ar"ﬁVuu e* 4x)

On dividing (7) by (6) and mul'tipl_ving the quotient on the right
by the parenthetical expression of (3), we have
[ a2kAx
PAAKYi.(.Ynzx. e _z-yl.ﬂge
(8) _ 33kAx a2kbx akAx
*Yiia @ —zyiozne *Yiw € .

A
ok z.Yj)
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TABLE III

Population of Ohio
U. S. Census Count Interpolated to January 1; Unit, 1.000 persons
y= 9/.8 (/+c bo2660y+ 2p/o26y Jog Sin x )

Yeor Y y v Year Y y. v

1800 41.2 91.8 |+ 50.6 1870 | 2651.8 | 2751.3 |+ 99.5
1810 | 219.7 | 319.8 [+100.1 1880 | 3175.9 | 3237.2 |+ 61.3
1820 | 560.3 | 639.3 |+ 79.0 1890 | 3652.7 | 3738.1 |+ 85.4
1830 | 9229 [1005.6 |+ 82.7 1900 | 4137.4 | 4252.5 [+115.1
1840 | 1495.3 {1405.6 |- 89.7 1910 | 4749.3 | 47789 [+ 29.6
1850 | 1961.3 |1832.8 }128.5 1920 5759.4 | 5316.0 |-443.4
1860 | 2324.5 | 2282.3 |- 42.2

z 31651.7 |31651.2 - 0.5

Mean ervor of estimate 108.2

Predicted Population

Year 1930 1940 1950 1960 1970 1980

Population | 6306 6862 7425 7996 8573 9156

Simplifying (8), we have

a3kAx

Yrene (24 DALY, 205y, (I+2pAly)e 4"
-Y.PAYi=0

Yisan €
9

Equation (9) is evidently cubic in €**“** | and its roots are to
be found by conventional methods, care being taken to select the root
which will give the parametric approximation most consistent with the
hypotheses under v hich the function is being hitted.

From equations (9), (6), (4), and (1), we are able to form the
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following approximations to parameters:
as[log e*®%): [kax] , i=0, 1/, - - n-3k-I.

biz[A:Yi] :[—Yi uke‘t“""'zyiuc.:“k—yt c‘-";]’ 0,4, n-Lk-l.
(10)
A, Kby, e by e ") [kaz], i=0, 1, - n-k-l.

d‘=yl+b}$e‘z!-cx" i=0’ Il ceen-1,

The mean values of the indicated approximations give the best
values of the parameters sought.

If, in equation (1), the coefficient of x is zero, we have the Ver-
hulst logistic,

(11) y=c:(1+be *™).

The solution of this equation by the method of analysis applied
to equation (1) leads eventually to the following:

(12) yi. :ke‘“A"“yug (/"‘PAA:: Yi ) e ‘kd:")ﬁ PALy:i=0.

which is evidently quadratic in e **4*.

The parametric approximations take the form

s,= [log e**2*]:[kaz], =0, 1, - - n-2k-l.
(13) b=-{aY] : [v,, ™ Y, e®), i-0, 1, - n-k-t.

*3

c=Yi+bY,e*™, i=0, 1, - - n-t.

The mean values of these approximations give the values of
parameters.

The Verhulst logistic may also be solved by applying formulas
(12), section XI, to the ordinates ’/y‘ , the solution being for /7, ,
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b . . . .
/C, and & . Similarly, a solution for the serial equation
(14)  y;-d:[1vex,+be ™

may be had by applying formulas (10), section XI, to the ordinates
! /Yy the solution giving the values of l/d R c/d ,2/y,and 6.

To solve for certain other series which are of interest, we write

(15)  y;=me®e

The solution is obtained by applying formulas (12), sestion XI,
to the ordinates log Y.

We have also

biaz;

(16) Yi=Yo(1+e ") =y, eBe °%

where B=y, ¢® , and the argument z=«f (x) is chosen so that
8z,=— This condition is met when f (x) takes the form
l/:r' log x ., cot x, log sin =, etc., the sign of @ being sometimes
plus and sometimes minus.

From (16), by forming the function u,=y, -y, , we get
(17) log u;=B+sz; .

On taking a first difference of rank k , this becomes

(18) A, log u=al, z;.

From equations (18), (17), and (16), we deduce the following
parametric approximations:
a;=QJog U, :&,z,, i=l, 2, +++ n—k-I .
(19) log B,;=1og U;~0z; , ‘ i=l, 2, «+ - n—l.

Y,,=Y,—Be "%, i=0,1/, «+ + n-l.



. s. WiILL 181

The mean values of a;, B;, and y, give the values of the para-
meters sought.

If a term in x is added to the exponent of equation (16), we have

s
erbx, »02; )

(20)  y,=y. (1+e

The solution for these is obtained by carrying the analysis applied
to equation (16) to second order differences and applying formulas (7),
section IX, to the ordinates log Y -

If equation (20) is rewritten as

1) vey. (/4-6 cobl,0!1{)'

The solution is obtained by applying formulas (11), section X, to
the ordinates log U, . This solution holds, it will be noted, only when
the signs of b and a are such that bz,=822=-

XIII, DETERMINATION OF THE RANK OF DIFFERENCES

In the writing of formulas for the determination of parameters,
the rank of differences has been fixed in a purely arbitrary manner.
We shall now give a rational justification for the rank assigned.

In what follows, we shall speak of the process by which one of
the parameters is eliminated from the equation of the function y=f(x)
as a reduction; and the definition shall be understood to hold whether
the reduction takes place through a simnple difference Ay , a logar-
ithmic difference & lcg y , a product difference A’y , or a ratio py,
the rank of the reduction being the same as the rank of the difference
or ratio involved. In this, we interpret A § log A’y and A: p: Yy
as determining reductions of order s+r

The process by which a first parameter is eliminated we shall
call a first reduction; that by which a second is eliminated, a second
reduction; and so on to the p th reduction. The process by which
the last but one of the parameters of the original function is elimin-
ated we shall term the wltimate reduction; and the parameter definied
by the ultimate reduction we shall term the ultimate parameter.

Now, a little thought or experimentation will quickly reveal that,
for any ultimate parametric approximation, the value of the approx-
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imation will vary with the rank of the reduction from which it results;
for, regarding a parameter as a statistical characteristic of a series
of observations, when the rank of a parametric approximation is at a
minium, or when k& =1, the given approximation, viewed as a single
instance of a number of possible approximations, is least character-
istic of the complete series; and when the rank of the given approx-
imation is at a maximum, or when k=n-r |, the approximation, again
viewed as a single instance of a number of possible approximations,
is most characteristic of the complete series.

All this, of course, assumes, as we have always done in writing
the equations of parametric approximations, that approximations are
written in terms of the observational ordinates Y; ; for, if approx-
imations are written in terms of the functional ordinates y; , the value
of the parameter is independent of the rank of the reduction, a fact
which follows from the manner of deriving the equation defining the
ultimate parameter.

Since, then, the value and representative character of an ultimate
parameter varies with the rank of the reduction by which it is defined,
we may, when the ultimate reduction is of the first order, express the
weight of an approximation by the relation

(l) L (P)‘k

Here v, p, is used as the arbitrary symbol for the weight of a
parametric approximation defined of first order and rank k .

Suppose, now, that the given ultimate parameter is arrived at by
two reductions, the first of rank 4 and thc second of rank A . Clearly,
the valve of the approximation will, in this case, vary with A as well
as k. Under these conditions, the weight of the approximation is
expressed by the relation

2
(2) vkoh(p‘gzk.h
Here. the symbol w:’,, (p ) denotes the weight of a parametric
approximation involving a second reduction and the ranks & and A .

Similarly, we have

M) Veoue(P)=k-h-f.
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Evidently, by a direct extension of our method of induction, we arrive
at the general relation

(4) Vﬂ'l'k""'k' (p‘)== k‘ 'k” .'.k".

In the derivation of all formulas, it has been assumed that k is
constant for all reductions; hence, equations (2), (3), and (4) become

(5)  wilp)= k-k=k*
(6) vi(p)- k- k- k=k*
(7) Ve (p)=k"

Giving verbal expression to the relation (7), we say that the
weight of a parametric approximation involving a reduction of the
r th order and k th rank is equal to the r th power of &.

We have already shown, section V, that the number of differences
of order r and rank k which can be formed from n observations
is n - rk ;likewise, the number of parametric approximations which
can be formed when reductions are of the = th order, is n—rk
and, since the reliability of a parameter as determined from a formula
must vary with the number as well as the weight of the several ap-
proximations, we may write the following equation, conditioning the
reliability of the nltimate parameter p:

(8) ¢(p)= k"(n-rk).

Regarding 4 as a continuous variable, we may obtain the con-
dition for ¢(p)= @ maximum by differentiating ¢ with respect
to k, thus:

(9) D, ¢(p=nrk™'—r (r+l)k".
Setting (9) equal to zero and solving, we have

(10) k=n:(r-/),

Tl.mt ¢ (p) is a maximum and not a minimum when A is deter-
mined {rom equation (10) is shown by taking the sccond derivative
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of ¢ and substituting for & . thus:

D: @lp)=r(r-Nnk™ *-r?(r/)k""'=
(1)
rk "2((r—/)n—r (r+/)n:tr+l)=-rnk r-2 .

which is negative, since », n, and k are positive.

" Equation (10) may give fractional values of & ; but, in practice,
k is always integral; hence, we write (10) in the form

(12)  k=(ntj):(r+1) .

This is the relation from which we have determined the value of
k in the writing of formulas.

We may now formulate the Tollowing rule for the determination
of the rank of differences: 1 hen the equation defining an ultimate
parameier involves a reduction of order r and rank k. the valuc of
k is to be obtained from the reiation  k=(ntj) :(r+l) )
being assigned the smallest integral walue that will make n +j an
cxact multiple of k. Incase n+j= n-j . that value of k ix taken
which gives the highest value for ¢ (p) when & is substituted in
equation (8).

NIV, NuaserteaL CoMPUTATIONS

In carrying through the numerical computations prescribed by
formulas developed in this memoir, the following abridgments are use-
ful in the summation of differences:

ien-k-! ivn-k-/

da)Z aY, =2 (YY)
isn-k-yt lem-k-!
(1b) =5 YL Y
ien-t iep-m-1
(1) =X Y- Y,
ik =0
izm~y ok~
(1d) =X Yre Y.
isn-k o
5. i-n-zh-li j:n-xh-lY _ Y +
() ;_o A“Y‘. =§,° ( id2 z itk Yx)
itn-2k-/ jrn-2k-1 n-2h-t
(2h) =§‘° Yiozn‘z‘lt,a Yi¢.+)1‘.° Y,
denm-1 izn-k=~! isn-2k-!
(2c) =X Y,-2X YaZ Y;

™ 1k 130 i
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ism- 1t je 2k~? vkt
(20) SN 2 i
I.n-sh'l’ iip-Ik-1 .
(3a) ;-o AkY‘ '—';_o ):( ik Jym.*J.'m*Y;)
isn-3IKk-1 ien-3k-i Jon-3k-1
(3b) 32. Yu:k —5; Yon'h’z Yieu
ieo 0 FEX) is@-Sk=s
L&l 24k~ Y‘
J'OINI n- isne ’ Jln-j.-l
(3C) =12. 3k -J; 2k Y +J; Y‘ ‘;
ivm-t isk-/
(3d) =en-a ‘—J{n uy‘ -52.“4 {o Y.

These relations evidently apply quite generally to the summation
of differences. They may also be used to check the accuracy of dif-
ferences formed. When Jj is positive in the relation (#+/) k= ntj
equations (c¢) are most convenient; when j is negative, equations (d)
are most convenient.

A useful check on the product difference A’ employed in section
X is obtained as follows:

(4) AY*D, 2,40, z2]+A,2%-

(5) AYutBuzisct BuZio AL 250 Siun -

.. and (5) by Ayz, .wehave
(6) AYrD 2,,200702; 30, 2] D2, 30, 250,22 583,
(7)) AY0a Doz Oz AT AT} BaZB 24,0 B T= 8108 OnYj

Multiplying (4) by A, z;

Subtracting (6) from (7). we get

(R) A/Y,+*A,z4Alz]=A.S; .

Evidently, similar relations hold for the product differences A",
ctc.

Another check that is constantly useful in the computations is the
well known relation Zaef;= off; .
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TABLE 1V

Auxiliary Functions Computed in Fitting to the
Ohio Population

U log U |z |Jogsinx|algsinx| D, Bi'™*
0.0 -® 0 - ® ke
178.5 | 2.25164 | 1|~ 1.75814| - 2.22212| 29769 228.0
519.1 | 271525 | 2|~ 145718 | - 1.84173 | 36056 547.5
881.7 | 294532 | 3 |- 1.28120 | - 1.61931 | 36697 913.8
1454.1 | 3.16259 | 4 |- 1.15642 | - 1.46160 | 42091 | 1313.8
1920.1 | 3.28332} 5|~ 105970 | - 1.33935 | 4194 | 17410
2283.3 | 3.35856 | 6|~ 098077 | - 1.23960 | 39642 | 2190.5
26106 | 3.41674 | 7 |- 091411 | - 115334 | 37332 | 2659.5
3134.7 | 3.49620 | 8 |- 0.85644 | — 1.08246 | 37902 | 3145.4
3611.5 | 3.55769 | 9| - 0.80567 | — 1.01829 | 37669 | 3646.3
4096.2 | 3.61238 | 10 | — 0.76033 | - 0.96097 | 37441 | 4160.7
4708.1 | 3.67285 | 11 | - 0.71940 | - 0.90924 | 3R202 | 4687.1
57182 | 3.75726 | 12 | — 0.68212 | - 0.86212 | 41627 | 3224.2
31116.1 | 39.22980 ~12.43148 | =15.71213 | 456372 | 30457.8

A log U |A, Jogsinx|  a;

1.16510 0.84403 1.3803
0.78095 0.60074 1.3000
0.61237 0.47533 1.2R77
0.44979 0.39609 1.1356
0.38953 0.34030 1.1447
0.39870 0.29865 1.3350

3.79044 2953534 7.3835

a: VeLa; = 1.2639 ; 8= ’/,225‘, = 38031 ;
%< Y (EY-EDP=)=018;  belgB-legy, = 26173,
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In computing the ordinates
(9) y;=a+ b;r,.+c.z;‘
the following formulas are useful:
(10 Ay,=(b+cAx)Ax .
(11) Ay,,FAy; +2cAx.
(12) Yo=a.
(13) Yio=Yyi+t Ay, .

The formulas for £z, £x* and £ x*are to be found in any
standard reference work on statistical computations.

As illustrations of the quantities to be obtained in actual computa-
tions, we give, in Table TV, the auxiliaries computed in fitting the
curve y=y, (/+e%*? ‘8 on =) to the population of Ohio.

XV. CriticaL REVIEW

We have now presented, at some length, the technique of ftting
curves by the method of differences. The term, “method of differences”
is doubtless sufficiently descriptive [or general purposes; but the des-
ignation mcthod of mean difference functions would better convey an
idea of the chief features of the technique elaborated, namely, the
dependence on functions of finite differences in the derivation of equa-
tions defining parameters and the determination of the best value of a
given parameter by taking the mean of the several approxiniations.

The fundamental requirement of this method is that, under the
procedure followed. the reliability of the parameters determined shall
be a maximum. This requirement results in a sum of absolute resid-
uals which is less than that to be obtained by the Gaussian methed of
least squares or the Pearsonian method of moments. Rigorous ad-
herence to the Edgeworthian requirement that the sum of the absolute
residuals shall be a minimum is, it will be observed. not a demand €
the present method. Tt can be shown that Lipka’s method of average:
will give the same residuals for a linear series as the method of differ-
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ences ; but it does not, however, give the same results in general.

The following claims to merit may be advanced for the methol
of differences:
(1) The computations involved in the determination of parameters
are simple and easily checked.

(2) The method permits of fitting to a wide variety of functions by
the direct application of its fundamental principles.

(3) The general technique developed may be adapted to special solu-
tions in particular cases; e. g., the solutions of parabolic series
given in section VII are special cases of the solution for the
general polynomial series given in section X.

(4) The parametric approximations or some function involved in
their determination give a convenient test of fit. If these approx-
imations are nearly constant or fluctuate irregularly about a
central value, the implication is that the test function is approp-
riate to the data; i the approximations show a systematic change
or trend in their values, the implication is that the test function
is inappropriate.

(5) The method vields satisfactory results in practice.

That the residuals do register our failure to predict the values of
the observations is undeniable: but it does not follow that the least
squares definition of residuals leads to the equation of greatest value
for predictive purposes; for we can scarcely hope to establish that a
set of residuals determined from a small number of observations con-
stitutes a system of normally distributed variates.

et us now consider the logistic series

(2a) y=mc"’""

(3a) y=Y, (1+e®**%) |
and

(4a) y=m:[/+be™*"].
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This last is the Verhulst logistic.

The origin, maximum, and point of inflection of these three func-
tions are determined by the following relations:

-6
y=me —,

(2b) dy=abme *¢ e gz,

diy=a‘bme "% (be "***¢ *%)dx*.

.y =yo (I+8b -D) ?
(3b) dy=aBe ¥dz,
d?y=0'De**dz*rabe* d*z.

Y,=m: [/ +b],
(4b) dy=abm[e *%: (/+be “**) ] o,
d?*y=2a’h*me ~*** (/+be "**)dx?
-2a'bme "% (1+be "**)*dx?-(I+be **)*dx 2.

With the origin at f (.z:,) and the maximum at f(x,), these
curves show essentially the same properties and, therefore, negate the
claim of Professors Pearl and Reed to have discovered in the Verhulst
type logistic the unique mathematical expression for the growth of
populations. This assertion, of course, makes no statement as to the
type of population which is best represented by each curve.

In fitting type (2) to the population of Ohio, we have obtained,
while not an.ideal ft, certainly one much better than can be obtained
by fitting type (3). These results, however, serve to enhance rather
than diminish the general usefulness of the logistic hypothesis as an
cempirical generalization of the growth of populations.

As the writer conceives it, this hypothesis may be stated as follows:
IFhen the growth of a population is nat known to be corrclated with
cvents whose scquence is definitely known, it is best represented by a
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curve which proceeds from one horigontal straight line as asymptotic
origin. passcs through a point of inflection, and approaches a second
horizontal straight linc as asymptotic terminus. The rate of growth
of such a curve may be characterized as proceeding from a minimum
to a maximum and then decreasing toward zero as limit, a character-
ization which is in full accord with our decrease in knowledge concern-
ing the rate of growth as time goes on. It will be noted, in our state-
ment of the logistic hypothesis, that it is not necessary to place any
restriction on the chronological direction of growth, interpretation of
growth as proceeding forward or backward being equally permissible.

It is, of course, true that the particular function fitted to the Ohio
population does not conform rigorously to the logistic type; for at
x =90, the ordinates begin to decline in value. But this is no detri-
ment in the application of the function in the particular case, since no
one would place any reliance on a forecast of such date when projected
several centuries into the future. The use of such a function as we
have employed seems far preferable to fitting the Verhulst function
to subpopulations on the ground that the sum of logistics cannot be
executed itself to be a logistic, a procedure which is strictly valid only
when the growth changes of the subpopulations are mutually
independent.’

When the growth of a population is known to be definitely cor-
related with an observed sequence of events, the logistic hypothesis must
be modified accordingly. In a region where the population could not
be recruited from without, an abrupt increase in the death rate, a de-
crease in the birth rate, or an emigration to regions outside would
necessitate a modification of the growth formula.

Note :—In presenting this memoir to the public. the writer desires to make grateful

acknowledgement of the invaluable as-istance given by his wife. Hazel J. Will,

in the preparation of the manuscript.

1. cf. Pearl and Reed: "The Population of an Area .\round Chicago and the
lLogistic Curve.” J. A, AL S., March, 1929,




