ON A METHOD OF TESTING THE HYPOTHESIS THAT AN OBSERVED
SAMPLE OF n VARIABLES AND OF SIZE N HAS BEEN
DRAWN FROM A SPECIFIED POPULATION OF THE
SAME NUMBER OF VARIABLES

By Jorn W. FERTIG

WirH THE TECHNICAL AssISTANCE OF MARGARET V. LEARY*

The problem of determining whether or not a given observation may be
regarded as randomly drawn from a certain population completely specified with
respect to its parameters is readily solved if the probability integral of that
population be known. In particular if the population specified be a normal
population, one may calculate the relative deviate (x — @)/o, where @ and o
are the population mean and standard deviation respectively, and refer to tables
of the normal probability integral. The hypothesis that  was drawn from
this population may be rejected if P is less than an arbitrarily fixed value,
say < .01. Generalizations of this problem may be made in two directions:
1) May a single observation simultaneously made on n variables be considered
as randomly drawn from a specified population of n variables? 2) May a
sample of one variable and of*size N be regarded in its entirety as randomly
drawn from a specified univariate population?

The solution to the first problem for the case of sampling from a normal
population of n variables was given by Karl Pearson in 1908! as the ‘“‘General-
ized Probable Error.” Let

1) 5 ) (z: — a5)(z; — a;)
o= {4, p[ e

where a; and ¢; are the population mean and standard deviation respectively
of the ¢th variable, and P;; is the usual cofactor of the element in the 7** row
and j*t column of the determinant P of population correlation coefficients.

That is,

P=|psl;47=1,23 - ,n

The probability of an observation yielding a smaller discrepancy than that
represented by the value of x?2, i.e., lying between 0 and x? may then be
calculated from Tables of the Incomplete Normal Moment Functions?. The
tables are entered in terms of (x2)! and (n — 1), and the tabled value multi-
plied by (2 7)* or 2 depending upon whether n be even or odd respectively.

* From the Memorial Foundation for Neuro-Endocrine Research and the Research
Service of the Worcester State Hospital, Worcester, Massachusetts.
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114 JOHN W. FERTIG

The probability of an observation giving a greater discrepancy is then the
complement of this value. Obviously, this latter probability may be obtained
directly by eritering tables of the X? distribution such as Elderton’s® with n
degrees of freedom, or through the use of Tables of the Incomplete I'-Function?.

The second problem, limited to the case of sampling from a normal popula-
tion, was investigated by J. Neyman and E. S. Pearson in 19285, The observed
sample may be regarded as a point in N-dimensional space, where N is the sample
size. Criteria for the acceptance or rejection of the hypothesis may be asso-
ciated with contour surfaces in this space, so that in moving out from contour
to contour the hypothesis becomes less and less reasonable. Frequently; con-
tour surfaces on which the mean or standard deviation is constant are used for
the testing of this hypothesis. Such surfaces are deficient inasmuch as they
are not ‘“‘closed” contours. Another contour system which appears more satis-
factory is that of equiprobable pairs of m and s. The latter system in fact
encloses roughly the same region as do the separate contours for the means and
standard deviations. These systems are of course dependent on the particular
statistics chosen to describe the sample and are further limited in that they do
not take into account the probability of alternative hypotheses concerning the
origin of the sample.

Using the principle of maximum likelihood Neyman and Pearson have devel-
oped a system of contours which is free of the above limitations. The system
so derived is in fact quite similar to that of equiprobable pairs m and s. In a
later paper®, these same investigators have shown that this method of maximum
likelihood does enable one to select the most efficient criteria for the testing of
an hypothesis. The criterion selected on this basis is defined as

_ Likelihood that sample came from specified population
" Maximum likelihood that sample came from some other population

= (st/g?)rrg-n [S_—-_2 t@—ar_ 1]

where a and o are the population mean and standard deviation respectively,
and Z and s the sample mean and standard deviation.

M is constant upon certain contour surfaces in N-dimensional space, and dimin-
ishes on passing outward. The form of the surfaces is independent of N. It
is evident that A must lie between zero and unity. When it is close to unity
we know that it is reasonable to assume that our hypothesis is true, when
small we know that it is unreasonable. But we must know the probability of
A less than a certain value occurring when the hypothesis tested is true, so that
we may control another source of error, namely, that of rejecting the hypothesis
when it is true. In other words, we must know the sampling distribution of A,
so that we will reject the hypothesis only when the probability of obtaining a
smaller value is negligible, say P, < .01. Neyman and Pearson were not able
to evaluate this distribution but they were able to integrate the original density
function of the population appropriate to N-dimensional space outside of the
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various \ contours. This they were able to do by effecting a transformation
of the density function and contours to the plane of m and s. These values
of P, have been tabled by them?, the tables being entered in terms of N and
k, where

k = log [sl(fz“_“)z] — log (s*/a?)

The generalization of either of the above problems requires a criterion to
test an hypothesis which’ may be formulated as follows: Given a sample = of n
variables and of size N with means %, %, ... , ., standard deviations
81 82, - - - , Sn, and correlation coefficients r12, 713, - <« , T15y 723, * ~ 5 T2ny * = * 5 T(n—Dyny
may we regard this sample as randomly drawn from a population = of n varia-
bles and completely specified with respect to all its parameters? We shall
restrict our inquiries to the case where = is a normal population. In this case
the distribution law is

1
(2r)*2¢109 - - - 0, P}

1 o (z; — a))(x; — a;)
¢$= —2?{",'?'1 Pii[ 0;0; ]}

where a; and ¢; are the population mean and standard deviation respectively
of the ¢t variable, and P and P;; are as previously defined.

Thus the probability that = has been drawn from = with its N values of
Zig (1 = 1,2, ..., n) lying in the interval z;, &+ 3dzin; (0 = 1,2, ..., N) is
given by

—¢

f(xly Loy « - - ,xn) =

where

¢ = [ 1 ]Ne-‘* ix
(21,-)nl2 G102 On Pt

oL {.'.}g- P, 8 [(x.a — ) (%2 — a,)]}

where

2 1 a=1 0;0;
= iv__ n | sisirii + (T: — a:))(F; — aj):l}
- 2P{""l's:‘l P”I: 0:0;
n N
dX = H H dxl'a
i=1 a=1

The likelihood that = has been drawn from any other normal population,
such as =’, is given by

1 N o o
¢= [(21)"'20{04 d;P'*] o X
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where

o’ i{ § P‘{i [s;sfri, + (z;, — af)(:i:,- — a;-):l}

= 7 77
2P i,7=1 0;0;

The population from which it is most likely that = has been drawn is that
for which C’ is a maximum. The values of the parameters of this population
may be obtained by putting

! aC’ .
Lo, L_o; G=12-,n
6a,~ do i
’
0 Gi=12-,n)
9p;;
These conditions are fulfilled when
a,f = 1-3,-;0‘,{ =8 @@= 1,2 ... ;n)
Ps{i = Tij; (7':.7 = 112’ ’n)
So that

C, = l: 1 ]N e ™2
max. (2m)™28,8; « - - 8o R}

where
R=|1‘,','l; i;j=1:2:"‘:n

The appropriate criterion to select in order to test our hypothesis is thus
A= Y — [8182 s shR‘]Ne—w

Cx:lu 0109 *°° a',,Pi

where

w =

N{ g P [S.'Sﬂ‘ii + (& — a) (@ — ai)] _ n}
2 li,j=1 P 0i0;

The equations A = constant represent a series of contours in N-dimensional
space. As we move outward from contour to contour our hypothesis becomes
less and less acceptable. Although we may be confident that the use of this
criterion will minimize the chance of accepting the hypothesis when it is false
we must know the frequency with which samples occur outside of a given A
contour when the hypothesis is true. In other words, we must know the inte-
gral of C outside of various contours, or else we must know the sampling distribu-
tion of \. The former is an exceedingly difficult method for n greater than
unity. Thus for the case of n = 2 we should have to integrate some such
expression as

N;d,
ksY2s8267°(1 — r},) * di,di,ds,dsydry,



TESTS OF SIGNIFICANCE FOR MULTIVARIATE SAMPLES 117

outside of the various contours. Nor have we so far been able to evaluate the
sampling distribution. We can however give an expression for the moments
of N and thus reach an approximate distribution.

Wilks® has derived expressions for the moment coefficients about zero for
the maximum likelihood criterion that k& samples of n variables and of- N,
observations each have been drawn from the same unspecified normal popula-
tion of n variables. Thus,

cpr e, [p(MAAR) -4
o AT 1| ey )
2

k
) r‘[,§1 N - ’]
p)

) )
i=1 I‘[(1+h) S Nt—'l:]
t=1
2

t=1

N,

from which we can write expressions giving the moment. coefficients about zero
for the M\ criterion for two samples

nh (N1+Ns)
, N1+ Ny °
m(A) - ”LJ) (Y37
N:® Ny ?
ﬂ P[Nl(]- +2h) - ’&:| P[Nz(l +2h) — 1:] I,I:Nl + grz - ?']
i=1 N, — 1 [Ny — 1 (N1+N2)(1+h)—'l::|
P( 3 )P( ) )F[ 2

The limit of this latter expression as N2 — « will be the moment coeflicient
about zero for the \ criterion that one sample has been drawn from a specified
population. Thus

" F[Nl(l + h) - 7'] nhNy —nNi(1+h)
2 2
Lim. 1,0 = [ ] 2 : (39> (1 +h)

Na—o0 i=1 F(le_ 1») Nl

Various roots of A are distributed to a good degree of approximation according
to a function of the form

_ Tlmi4my) o
7O = Ty Tmy & 4 — O™
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where
1, 7 ’ ’ ,? ’
my = py(uy — Ilz)/(llz — k1) ; my = (1 — l";)ml/l‘l

and the value of g, for roots of A may be obtained by replacing % in the original
expression by h times the desired root. Measures of the skewness and kurtosis
of this distribution are given by

Bl = 4(m1 _ mg)z(ml + mae -|— 1)/m1m2(m1 + me + 2)2
By = 3Bi(my 4+ me + 2) + 6(mi + me 4 1)/2(’"1 + mz 4 3)

A comparison with the true measures of skewness and kurtosis for various roots
of \ as given by

By = u3/uj; By = pa/uj

will afford a measure of the goodness of the approximation and the range of
values of N for which any particular root will be distributed as assumed.

Investigating the moments for n from one to four and N from three to fifty
we note that in the case of samples of two and three variables, A/¥ follows the
assumed distribution for N from 3 to 15; A2¥ from 15 to 30; A¥* from 30 to 50.
In the case of four variables, \/2¥ follows the distribution for N from 5 to 10;
AV¥ from 10 to 20; A*/¥ from 20 to 40; A¥¥ from 40 to 50. It appears likely that
for higher values of n, for N small, some such root as A\/2¥ or \'/*¥ will follow the
assumed distribution, while as N increases smaller roots will follow it. For
any value of n, the smallest permissible value of N is (n + 1).

The probability that a smaller value of X will be obtained when the sample
has actually been drawn from =, i.e., P», may thus be obtained by reference to
Tables of the Incomplete B-Function® with p = mi, ¢ = m,, * = value of the
particular root of the observed A. We may also get the 19, and 5%, levels of
significance directly from Fisher’s? tables of ‘2"’ or Snedecor’s'! tables of ‘“F”
(= e%), by taking

nm = 2ms ; ny = 2my ; L = ny/(ny + mF) ,
where L is the desired root of \. Linear interpolation will generally suffice

except for very small values of N.
For the case of N — «, we have

-8 i/2

Lim. g;(\) = (1 + k) =2

N—o0
Thus the quantity (—2 log \) will be distributed in the x? distribution with

S 7 degrees of freedom.

t=2
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A table of the 1% and 5%, levels of significance for n equal one to four, and
values of N from five to « is given below

5% and 1%, Levels of Significance of ‘N

—N—
n 5 10 15 20 30 40 50 o
. 5% 025 .037 .041 .043 045 046  .047  .050
1% .003 .006 .008 .008 .009 .009 .009 .00
5% X 1072 .046 .173  .234 .269 308 330 .343  .392
: 1% X 10~ .026 .168 .260 .305 .372 409 .428 .525
5% X 107 .001 036 .072 .097 .125 .143. .155 .211
’ 1% X 10~¢  .000* >.019 .047  .076 .10l 17 128 .194
5% X 10~% .026 .106 .174 .295 .356 .418 ..710
! 1% X 10-¢ . 007 .040 .075 .1456 .18 .221 .466

A check on the accuracy of the method of approximation used may be obtained
by comparing the values of P, for the case of n = 1 with the exact values given
by Neyman and Pearson. For n = 10, AV is distributed as assumed with

= 9.0562, ms = 0.9987. For the case of (£ — a)/s = 0.2,8/0 = 1.2, we
find k¥ = 0.48439, \¥¥ = .94395. From the Tables of the Incomplete B-Func-
tion we find P, = .5936, from Neyman and Pearson’s tables, .5935.

No studies have been made on the extent of deviation from normality per-
missible for the application of the test. There is no reason to doubt, however,
that as much deviation is permissible as in the case of the univariate \. From
theoretical considerations and from sampling studies Neyman and Pearson con-
clude that the univariate A technique holds for deviation from normality to
the extent of +0.5 for B; and 2.5 to 4.2 for B,.

We are confident that this generalized A technique will be found useful in
biological research. If the n variables were uncorrelated we would be able’to
test whether the sample had been drawn from the population of n variables by
successive applications of the univariate A technique and then combining the
resulting probabilities. In general, however, there will be some correlation
between the variables, however slight. The method here proposed will take
account of all possible intercorrelations, and consequently all multiple and
partial correlations.

Now, if Py is less than some arbitrarily fixed value, say < .01, we may decide
which variable or variables contributes most to this result, by performing
simpler \ tests. It may be due to one or more of the means, standard deviations,
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or correlation coefficients. As may often be the case, it is not due to any one
factor but to contributions from all of them. That is, all possible factors
tested separately might show a fairly reasonable value of P, but if all the
separate values are combined somehow, as by means of this A method, the
resultant P may be too small. It is in such problems that this technique should
provide valuable information.

In case k samples of n variables are available it should be possible to deter-
mine whether all of them have come from the same specified population of n
variables by performing % M\ tests and combining the separate values of P,.
Such a hypothesis may best be tested, however, by a further extension of the A
theory which the writers are at present investigating.

The following problem is chosen to illustrate the computations involved in
the application of the test. Many of the investigations pursued at the Wor-
cester State Hospital attempt to differentiate between schizophrenic patients
and normal controls. In one such type of investigation various blood constit-
uents were determined, namely, Urea N; (mg./100 cc.), Uric Acid N,
(mg./100 cc.), Creatine N, (mg./100 cc.) for a sample of twenty-five schizo-
phrenic patients. Previous investigations on these same variables for a large
series of normal controls yielded constants which for the purpose of the
example may be considered as the population parameters. Past studies on
these variables have not shown any marked degree of non-normality for the
various distributions.

These variables are designated as

1 = Urea N;; 2 = Uric Acid N2; 3 = Creatine N,
The parameters of the population are given by
a = 16.03 ; a; = 1.40; as = 1.25
o} = 20268 ; o3 = 0.029 ; o3 = 0.025
piz = .3075; o1z = .1232; p2s = .3853
The statistics for the sample of twenty-five are
1 = 15.56 ; o = 1.42; s = 1.25
82 = 10.486 ; 82 = 0.043 ; st =.0.025
rg = —.0161; rs = .0925; To3 = .2174
None of these statistics differs significantly from the corresponding parameters.
R=09443; P = 0.7710;
Py2/P = —0.3373;  Py;3/P = —0.0061;  Pg/P = —0.4506 ;
Pu/P = 11045; Pu/P = 12773; Pyu/P = 11744
w = 12.5 (0.3802) = 4.7531
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(s} 2 82 R/o} o3 o3 P) = 0.9001
log A = 12.5 log (0.9001) — 4.7531 log ¢ = 3.3641
A = .0023

Since the 5%, level of significance is about .0001, we thus conclude that the

patients are not differentiated from the control population with respect to these
variables.
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