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INTRODUCTION

An important portion of algebraic invariant theory has been that devoted to a
certain class of invariants called seminvariants, semi-invariants, or more rarely,
half-invariants. Of these terms, ‘‘seminvariant’’ seems to be the one now
commonly accepted. The same three terms have been applied at various times
and by various writers to a system of moment functions of importance in sta-
tistical theory. The statistician using these terms has frequently done so with
an apology for appropriating a term of the algebraist. As a portion of this
paper we shall show that the moment functions of this system are actually
algebraic seminvariants, and that there are other systems of moment functions
which are equally entitled to the name seminvariant.
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34 PAUL L. DRESSEL

The study of the statistical seminvariants of a population leads naturally to
consideration of the problem of obtaining from a sample unbiased estimates of
the value of these seminvariants. Estimates of this kind have been defined
and computed by previous authors, but no simple method of obtaining the
estimates has been given. In this paper a simple procedure for calculation is
given and it is furthermore demonstrated that these estimates form an important
phase of statistical seminvariant theory.

The system of notation used for moment functions is that of R. A. Fisher,
although the actual letters used in representing particular moment functions are
not altogether the same as those used by Fisher. In general, a moment function
of the population has been indicated by a Greek letter, the corresponding sample
moment function by the corresponding English letter and the estimate by the
corresponding capital English letter.

A list of references appears at the end of the paper. Each reference has been
assigned a number and this number placed in square brackets is used in the body
of the paper to indicate the reference. Pages of the reference are indicated by
additional numbers inserted in the parentheses and separated from the reference
number by a semicolon.

I. THE RELATION OF THE ALGEBRAIC SEMINVARIANT THEORY TO THE MOMENT
FUNCTIONS OF STATISTICS

The purposes of this chapter are: (1) to review briefly and give adequate
references to certain important phases of algebraic seminvariant theory, (2) to
apply this material to the moment functions of statistics.

1. Definitions. Any function of the coefficients of the binary form

(1) f= Z (?) X" Y‘, ap # 0,
=0
which is invariant under the transformation
Y Y2
61 82

is called an invariant of the form f. See Dickson [1; 31-36].

Any function of the coefficients of f which is invariant under the trans-
formation
@ X=¢t+vyn, Y =n,

is called a seminvariant of f.
The two operators

2 X = m1i& + vam, Y = 6:1& + 62m, A= # 0,

n

) Q= da2 O =2 (—i+Da

i=1 da;’

9

0ai—y’

are of fundamental importance in the theory of algebraic invariants and semin-
variants and, indeed, invariants and seminvariants may be defined by means
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of these operators. A necessary and sufficient condition that an homogeneous
isobaric function of the coefficients of f be an invariant is that it be annihilated
by both @ and O. See Elliott [2; 113, 124]. The necessary and sufficient
condition that an homogeneous isobaric function of the coefficients of f be a
seminvariant is that it be annihilated by ©. See Elliott [2; 127].

It should be noted that there is nothing in the definitions above which requires
that invariants or seminvariants be integral, although usually only this type is
discussed. In what follows we shall find it more profitable to discuss homoge-
neous isobaric fractional seminvariants, the fractional quality resulting from
the appearance of ao in the denominator.

2. Complete Systems of Seminvariants. By direct application of the trans-
formation (3) to f the system of seminvariants [1; 47]

5) 4,= (T)(—‘i‘)i i <o,

i=0 \? Qo Qay

is obtained. This system is a complete system, [2; 44, 205, 206], in the sense
that all other seminvariants fractional in ay and of degree 0 are expressible
rationally and integrally in terms of this system.

Other such systems can be defined. The system of minimum degree semin-
variants, the seminvariants of even weight being of degree 2 and those of odd
weight being of degree 3, has played an important role in the algebraic seminvari-
ant theory. Elliott [2; 207-209] discusses this system and gives the general
formula for the even weight seminvariants of the system. So far as the present
writer has been able to discover the general formula for the odd weight semin-
variants has never been published, although Hammond [3] may have obtained it.
After some lengthy but not difficult computation the result has been obtained,
so that the last mentioned system of seminvariants is completely defined by

1 if2 i Qor—i
O = 5 32 (-1 (%) et

)

i=0 ay
- ; 2r 20+ 1 GriQriin
— _lﬂ-r . —i Wrti4
(6) Conr ,Z;( ) <z+r>i+r+1 .
2r
i1 21\ a10; 00—
_1t+l<‘> 1:27‘—1-
+ 2 (=D 2

It is easily demonstrated that for each of the above seminvariants, and in
fact for any seminvariant, the sum of the nymerical coefficients is zero. Dickson
[1; 55] gives a suggestion leading to a very simple proof.

3. The MacMahon Non-Unitary Symmetric Function Principle. Denoting
the roots of . (?) a: X" =0 by o, 0, - an, the r-th power sum of

=0

these roots is defined by
(7 Sy = Z al.

=1
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The form f may be written ]| (X — aY).

=1
By a result due to MacMahon [4; 131] the seminvariants of the form f are
identical, except for numerical factors, with those symmetric functions of the
roots of

o B i
®) g=2=X"=0

i=0 ¢!
which when expressed in terms of sums of powers of these roots do not con-
tain s; . MacMahon called such symmetric functions ‘‘non-unitary.”

As a result of this theorem, MacMahon was able to discuss the seminvariants

of a binary form of infinite order by discussing the non-unitary symmetric
functions of the roots of E%’ Yi=0.

=0 1.

4. A Third Complete System of Seminvariants. By application of the result
stated in the previous section, a third complete system of seminvariants can be
immediately obtained. Obviously the power sums s,, r > 1, are independent
of 8. By the Waring formula, Burnside and Panton [5; 91-92], if

Seavi=all(—ay)

=0 i=0
then
(=1 r(p — D! <01)" <02)" (c,.)"'
9 r = > < = L= s PR
( ) $ ﬂ']_!ﬂ'g! cee ﬂ'”! Co Co Co ’
wherein
P=Z7"i, 7'=2iw,'.
i=1 i=1
Then for
n
a; n—i
g = Z - X s
= 7!
<—1rﬂrup—-nx(@)"(%)”...é&)"
(10) —(r—=1Dls, =3 a0 ) a/
mlme! oo ! (2Dl ()™
Placing B, = —(r — 1)!s, the B’s form a complete system of seminvariants.

This result has some interesting statistical connections which will be men-
tioned later.

5. Linearly Independent Seminvariants. It follows from the MacMahon non-
unitary symmetric function principle, or it can be proved easily in other ways,
that the number of linearly independent seminvariants of a given weight r is
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equal to the number of partitions of r which contain no unit part. Furthermore
we have at our disposal a simple method for obtaining a set of linearly inde-
pendent seminvariants of any given weight.

For many purposes the power product defined by Dwyer [6; 13] is more
useful than the customary monomial symmetric function. The power product
is defined by the right hand member and indicated by the left hand member of

11) (@--g)= 2 aflafl...of,

LRttt SR S
where, for convenience, ¢; > g2 > --- > ¢,. The monomial symmetric func-
tion which will be denoted by M(q; - - - ¢-) is related to the power product by
the identity

(12) mloom!M(gl'ee’ - ¢') = (ei'ge” -+ i),

so that a distinction occurs only when there are repeated exponents in the
summation of (11).

If we desire a system of linearly independent seminvariants of weight 6, by
the MacMahon principle we need only to compute the values of the power
products (6), (42), (33), (222) in terms of the a’s. In a somewhat different
form these will be presented later.

6. The Roberts Theorem. Roberts, see [2; 231] and [5; 108], demonstrated
the existence of a duality relationship between power sums, s’s, and coefficients,
a’s such that corresponding to any seminvariant in terms of a’s there exists
a seminvariant in terms of §’s obtained by replacing a; by s;. The proof con-
sists of showing that the annihilator for seminvariants in terms of power sums
is identical in form with @, a; being replaced by s; .

As a result of this duality, each of the systems of seminvariants which have
been obtained yields, upon replacement of a; by s;, another system of semin-
variants. In particular cases it may happen that the systems are identical
when the identities connecting the a; and s; are taken into consideration.

We next wish to show that the systems of power sum seminvariants thus
obtained either are identical with certain well known statistical moment func-
tions or lead to new ones.

7. Statistical Distributions Represented by Binary Forms. The fact that
statistical distributions may be represented by polynomials has long been
recognized by statisticians, see Thiele [7; 24-26] and Bertilsen [8]. Indeed it
was this fact which led Thiele to the definition of the seminvariants now called
by his name. If we have given n observations a; , as, - - - @, , form the poly-
nomial.

(13) F=llX-a)=3 (")Z_OXM

t=1 =0 \?
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F is not a binary form, but the seminvariant theory of binary forms is applicable
since seminvariants are functions of the differences of the roots and are inde-
pendent of the X and Y, which appear merely as convenient symbols to indicate
the various terms of the algebraic form.

For distributions containing an infinite number of items the form F is of
infinite order, but discussion of its seminvariants may be carried on by use of
the MacMahon principle given in section 3.

8. Three Systems of Statistical Seminvariants. Before exhibiting some sys-
tems of statistical seminvariants it may be well to consider the meaning of
“statistical seminvariant,” for this phrase has been undefined. In fact the use
of the phrase is merely a matter of convenience in that it emphasizes the fact
that seminvariant moment functions have not previously been regarded as
algebraic seminvariants. As used here a statistical seminvariant is an algebraic
seminvariant which has some application in statistical theory.

The system of seminvariants (5) yields by application of the Roberts’ Theorem
the well known system of statistical seminvariants usually called central mo-

ments. If y = j—: = ‘si’, the general formula may be written
0

(14) Y = i (:) pr—i( — 1)’

g=

The system of seminvariants (6) likewise leads to

1 2r : 2
K =5 > (=1) ( r>#§nér—;,

=0 )

_T_H,, 2r 2i+1 roor
(15) K2ry1 = f?&( 1) <i+r)m#r—4#r+z+1

2r
s 2r
+ Z_; (=™ < ; )ﬂ;#:#;r—i,
a system which seems never to have been used by statisticians.

The system (10) leads to the well known Thiele seminvariants

_ 5 (D = DI )™ - )
mylmg! oo w1 @D L (P

From sections 3 and 4 it is apparent that the general formula for the Thiele
seminvariants is a special case of the Waring formula for power sums in terms
of coefficients. It does not seem that this fact has been previously recognized.
An equivalent way of stating this idea is to say that the Thiele seminvariant
A, is, except for the factor — (r — 1)!, the sum of the r-th powers of the roots of
the equations obtained by setting the moment generating function,

00 , Yi

]”::(Y) = et Hi ';:T:

(16) Ar

equal to zero.
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It is of historical interest to note that MacMahon published his non-unitary
function principle and the resulting set of seminvariants in 1884. Cayley [8]
published an article in 1885 dealing with this same system. Roberts’ Theorem
having been known for some time (probably about 20 years), it seems probable
that MacMahon and Cayley were aware of the Thiele seminvariants four to
five years before Thiele’s definition [9] by an entirely different method.

9. Linearly Independent Statistical Seminvariants. At the end of section 5
a method was indicated whereby a complete set of linearly independent semin-
variants of a given weight r could be obtained. It has been noted previously
that the one part symmetric function s, or (r) leads to the Thiele seminvariant A, .
As a further illustration consider the power product (22). From a table of
symmetric functions we find that

2a, 2a3ql ag
4lay  3lad 212142

- E(% _Ama 3—‘23)

2
P \Qo ao Qg

(22) =

and by the Roberts’ Theorem the statistical seminvariant

2

1!
is obtained. In similar fashion a system of linearly independent seminvariants
of weight =< 8 have been computed and are given in Table I. For the sake of
brevity they are expressed in terms of central moments. Hence the degree, by
which is meant the maximum degree in the u”’s, is not apparent in the table.
This definition of degree associates with the statistical seminvariant the degree
(in the usual sense) of the corresponding homogeneous integral seminvariant.

(us — 4pspt + 3ps’)

10. Statistical Invariants. If the transformation
17) z=E+mkn, y=my
is applied to the binary form f and, if, in particular
one system of invariants of f under this transformation is found to be
(18) D, = A/AY, r<n,

where A, is defined in (5). By the Roberts Theorem we obtain the fact that
the standard moment y,/y%' is an invariant of f under this transformation.
Thus the standard moments, or standard seminvariants in general, have also
an algebraic connection. The effect of the transformation (17) on the roots of f
is indicated by

z — oy = &+ mhky — mam = £ — m(os — k).
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If m and k are defined as above, the result is the equivalent of measuring in
!

standard units denoted by i

Vb

The system (18) is not a system of algebraic invariants, for algebraic invariants
must be invariant under rotation, translation and change of scale, or stretching.
The component parts of the above system are invariant only under the last two

TABLE 1
Linearly Independent Seminvariants of Weight < 8
- [ - ]
.E" §o Seminvariants E" go vi‘i?;:‘t's
6 | me— 16ums — 1042 + 30w 0 | 1|
4 ue +  Suauz — 10us® — 30u® 2 2 2
6 3 ue — 15pape + 20ps? + 30ue® 3 3 K3
2 pe + 16uape — 10us? . 4 B —  3pg?
7 py — 2lpsue — 3bpipus +  56uaus’ 2 e+ 3ug?
. 5 w1+ Ouine — 3bpaus —  O0uguo? 5 5 s — 10ugue
4 w1 — 2lpsue + 26pms +  30uaus? 3 us +  2uguz
3 w1+ Opsue — Spaps
8 ps — 28ueps — 56usus — TOue? + 210pus® + 280us?u; — 105p0¢
6 ps + 14peps — 56usus — 35u? — 210u4ue? + 140us?uy + 630u2t
5 s — 28ucus + 49usus — 35us + 420uue® — 490us?u; — 630ust
8 4 us — 28usus — 56usus + 106p? — 420p4us® + 560us’uz + 630u,*
4 us + ldueus — 56psus + 35u — 210uus? 4+ 140us?u,
3 us — Tueuz + 49usus — - 35u? + 106uau? — TOus’ue
2 us + 28ueus — 56psus +  35ud

types of transformation. In statistics translation and change of scale ordinarily
constitute the only desired transformations so that the standard seminvariants
"Tr,, 2\{—,, 5{—,, ... might well be called statistical invariants.
Mz Az kg .

11. Seminvariants and Invariants of Samples. Consideration of the defini-
tion of seminvariants and invariants shows that:

1. A seminvariant is a seminvariant not because it is a function of deviations
from the mean, but because it is a function of the differences of the observations;

2. An invariant is an invariant not because it is a seminvariant divided by
the standard deviation raised to the proper power, but because it is a ratio of
two seminvariants which are of the same order in powers of the observations.
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These facts are important from the statistics viewpoint because they show
that seminvariants and invariants of samples are also seminvariants and invari-
ants of the population from which the samples are drawn.

II. ESTIMATES

1. Power Product Seminvariants. The Roberts Theorem set up a duality
relationship between seminvariants expressed in terms of coefficients and semin-
variants in terms of power sums. It can be shown that corresponding to each
pair thus determined there exists a third seminvariant expressed in terms of
power products. This leads to what may be called a triple system of semin-
variants, the interrelationships being most apparent when all three seminvariants
are expressed in terms of the notation defined by (11). The seminvariant

% _ 3a2a1 + 2&1 becomes in this notation

/] ao ao

(111) _ 3(11)(1)

2(1)°
n® n@n + :

nd

The corresponding power sum seminvariant is

3) _ 300 , 20

n n? nd

3

while the power product seminvariant just mentioned is

(3) _ 3(21) + 2(111)
n n® n®

The value of the power product notation lies in the fact that the numerical
coefficients of the three seminvariants are then identical, while this is not the
case when monomial and elementary symmetric functions are used.

Perhaps a few remarks are in order in regard to the proof of the relationship
above expressed. The annihilator, corresponding to 2, for seminvariants in
terms of roots is, see [2; 230-31],

i=1 Oag
It is easy to see that
(Tl 2% .- :’) i L3 L
D[E’B‘WJ— = n<ﬂ>21np1(p1 pit - pI T pi— 1, .o pl),

and also that,

(pips* --- p1'0) _ (n —p+ D(p* --- pi") _ (pi* -+ p7 )
n(p) n(p) n(p—l)

Since

@ [(pl)n (Pz)np' - (pa)n] - -'r%’ ...21 mpi(p) ™ ()™ - )™ i = 1) oo+ (P,

n
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and

@)™ (@™ -+ @)™ 7(0) _ n(p)" (@)™ -+ (o)™ _ ()™ -+ ()™
ne ne ne-1

’

it becomes evident that corresponding to any power sum seminvariant there
exists a power product seminvariant with the same numerical coefficients. The
converse is also true.

2. Unbiased Estimates of Rational Integral Moment Functions. If 7 repre-
sents a population parameter, and if ¢ represents such a function of n observa-
tions that the expected value of ¢ is equal to 7; then ¢ is said to be an unbiased
estimate of 7. See Tschuprow [11; 74-75], Bertilsen [8; 144], and Fisher [12].

Let (p1p: - - - ps) denote a power product computed from a sample, the sample
being from an infinite population. Then it is well known that

E[(Pll’a D)

o ’
n® = HpiMpy o MBp,,

n being the number of items in the sample. If E be interpreted as ‘‘unbiased
estimate of,” the above relation may also be written

(19) E_I[l"';ll‘,pz o P';u] = S’%"E—.);

and it is seen at once that the power product seminvariants defined in section 1,
if computed from a sample of n observations, are the unbiased estimates of the
corresponding power sum seminvariants of the infinite population from which
the sample is drawn.

This provides an algebraic interpretation as well as a different approach to a
topic which has already aroused considerable interest among statisticians. In
1927 Bertilsen [8; 144] gave the estimates of the first four Thiele seminvariants
of the population in terms of Thiele seminvariants of the sample. In 1929
R. A. Fisher [12] also obtained these results and gave in addition the estimates
of the fifth and sixth Thiele seminvariants. His results are in terms of sample
moments. In 1937, P. S. Dwyer [13; 26] gave the estimates of the first five
population central moments and indicated also means for obtaining the estimate
of any rational integral isobaric moment function.

In the remainder of this chapter
(1) Dwyer’s method will be extended and perhaps somewhat simplified,

(2) certain properties of this type of estimate will be pointed out,
(3) estimates of all seminvariants of weight < 8 will be made available.

3. Computation of Estimates. From the relationship (19) it is possible to
write down immediately in a simple, although not immediately useful, form the
estimate of any rational integral moment function. Thus the fourth Thiele
seminvariant A, is given by

M= pe — dpspt — 3Bps® + 12uu1° — 6y’
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so that the estimate of A4 is
_ @ _ 4(31) _ 3(22) + 12(211) _ 6(1111)

Ly n n® n® n@® n®

Since power products are difficult to compute directly, it is necessary to
express the estimates in terms of power sums. Dwyer [6; 30-33] gave a com-
plete discussion of the problem of expanding power products in terms of power
sums and also gave tables of power products in terms of power sums for
weights < 6. By use of (12) it is also possible to use tables giving monomial
symmetric ‘functions in terms of power sums. One table by J. R. Roe [14;
plate 18] includes all cases of weight < 10.

By use of such a table we find

(31) = — (@) + @),

22) = —(4) + @),

211) = 2(4) — 23)(1) — () + )",

(1111) = —6(4) + 8(3)(1) + 3(2)(2) — 6(2)(1)* + (1)".

If these results are substituted in L, above and like terms are collected, it is
found that

n®Ls = n*(n + 1)(4) — 4n(n + 1)(3)(1) — 3n(n — 1)(2)* + 12n(2)(1)* — 6(1)",
a result which agrees with that given by R. A. Fisher [12].
4. The Dwyer Double Expansion Theorem. The Dwyer double expansion

theorem, [6; 34] and [11; 37-39], states that if any isobaric sum of power products
of weight r indicated by

3 r! b
(@)™ v (@D m! e m! k!

be expanded in terms of power sums in a form indicated by

(20) 1-‘-11::((1{1 ceeqit)

rl
2 - T
(Pl!) 1., (p,!) L L B N |

then the coefficient a, of the power sum (r) is given by

(e = Dirt burs oo b
P LA

and that the coefficient a,,...,, of (r)(r2) - -+ (rm) is

(21) ap:l-.-p:o(pl)‘n e (pl)h)

(22) ar = (=11

(23) Qryeeiry = QryQpy >0 Oy

The barred product indicates a symbolic multiplication by suffixing of sub-
scripts which is exemplified by

(;1; = (bs — 3ba + 2bur) (bs — bu) = bsz — bsu — 3bam + 5ban — 2biun = ass.




44 PAUL L. DRESSEL

The application of this theorem to the present problem eliminates the use of
tables and permits the independent computation of the coefficient of any particu-
lar products of power sums in the expansion in terms of power sums of any given
estimate. The illustration given by Dwyer [13; 39, 40] exemplifies both of
these points very well.

5. Estimates of all Seminvariants of Weight < 8 I the estimates of any
complete system of seminvariants and all products of these seminvariants up
to and including weight r are known, then the estimates of all seminvariants
of weight < r are obtainable as a linear combination of these known estimates.
For example, suppose that we know the estimates of all Thiele seminvariants
of weight < 5 and wish to find the estimate of us. Since us = As + 107\,

Eus] = My = E*[Ns] + 10E " [Ashs] = Ls + 10Lss .

In table II are given the estimates of all Thiele seminvariants and all products
of Thiele seminvariants of weight £ 8. From this table the expressions for Lj
and Lj are obtained and, by taking the combination indicated above, it is
seen that

n®M; = (n' — 5n° + 107°)(5) — 5(n° — 5n° + 10m)(4)(1)
— 10(n* — n)(3)(2) + 10(n* — 4n + 8)(3)(1)’
+ 30(n — 2)(2)’(1) — 10n(2)(1)° + 4(1)’,

a result which checks with that given by Dwyer [13; 27]. In similar fashion
the estimate of any other seminvariant of weight < 8 can be obtained by use
of table II.

6. Computation Checks. There are a number of checks which can be applied
to the entries in table II. These may be of interest simply as properties of the
estimates, and they may be of use in correcting errors which may possibly have
crept into the tables.

When any power product of more than one part is expanded into power
sums, the sum of the numerical coefficients of the expansion is zero. To prove
this we need only to consider a set of observations of which one observation is
unity and the rest are all zero. Then any power product of two or more parts
is necessarily zero and all power sums are equal to unity. Hence the initial
statement of the paragraph follows immediately.

From this fact it is apparent that the sum of the coefficients of L, is ;lz , and
the sum of the coefficients of L,,...,, is zero. Thus for L, we have

3 2 2 _ 2 _ _
ntn -4 +n) nw3(n n) + 12n — 6 = 71—L, and for Lg, the sum of the

coefficients is

1

Sl ntdn—4+n’ =343 -2+ 1 =0
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ug ugi— ugr— u09¢ +(D (@)
(g + ug — u)g— (u — w6 (01 + ug — sug)g (% — w)0Lz— 2(1):(2)
(g — ug)p— (ug + u)¥ (01 — u6 + W7 (ug + u)0g1— +(1)(g)
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(ug + ug — u)g (U7 — UG + UG — yu)— (uF + guL — Ug + yu)— Uy — uIT + U9 + (9
s (O bt (0L B (OUIN To% g=a
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A condition satisfied by the coefficients of any seminvariant is that their sum
is equal to zero (See section 2). This provides another check on the entries of
table II, although theé seminvariant must be written in homogeneous form
before the check is applied. Thus we may write

L= e+ 0 -4+ OO
3(n )(2)2+12 (2)(1)2 - 6n (—lf],

n4
and the sum of coefficients is
m+1) —4(n+1) —3(n—1) + 12n — 6n = 0.

Several checks arise from the fact (see section 6) that every seminvariant
must be annihilated by the operator

(24) -3 zs,_1 =
ye]
Another check results from the discussion of the next section and is so apparent
as to need no comment.
All the checks mentioned in this section are applicable to the estimate of any
seminvariant.

7. Estimates as Sums of Simple Seminvariants. A seminvariant such as L,
in which the coefficients of the m’’s are functions of n will be called a composite
seminvariant, while a seminvariant in which the coefficients of the m's are
purely numerical will be called simple. The fact that is to be established in
this section is that every composite seminvariant is the sum of simple semin-
variants. As an illustration consider Ly. It is apparent that

" 3
n n
L‘—ﬁ@l‘+7ﬁk"

where I, and k4 are seminvariants of the sample corresponding to As and «q .
Both I, and k4 are simple seminvariants.

That a composite seminvariant may always be expressed as a sum of simple
seminvariants can be demonstrated by considering the effect of @', (24), on a
composite seminvariant. The coefficients are polynomials in n and are un-
affected by the operator. The expression resulting from application of the
operator can vanish only if the coefficient of n" vanishes for every r. Thus a
composite seminvariant which has r different powers of n appearing in its coeffi-
cients is expressible as the sum of r simple seminvariants, which are not neces-
sarily distinct. Table III exhibits the estimates of Thiele seminvariants of
weight < 6 as sums of simple seminvariants.

Since the factors, appearing in front of each of the simple seminvariants in
the expression resulting from breaking down a composite seminvariant, are of
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successively lower order with respect to »; it is possible to obtain approxima-
tions of various orders to the value of an estimate by using the appropriate
portion of the expression given in the table.

8. The Estimates of the «’s. The seminvariant x, possesses an interesting
property which will be called invariance under estimate. By this is meant that
the estimate of . is k, multiplied by a suitable factor. In particular, k; = us and
k3 = us and it is well known that

3

2
1 _n 1 _n
E " [l —sz, E ™ [us) —Wma

so that the «, certainly possesses the property for r = 2and 3. It can be shown,
however, that

2 3
n
(25) Ky = 25 Ke,  Kon= K.
From (15)
1 & 2r o
K2r = ‘ég‘;(i)l"ﬂzr—o
so that

2 r—1

s 2 (- 1)’(z 2r — )+(—i—’).

=]l
By the Binet-Waring identities [15; 6-7]
(26) (a-b) = (a)(b) — (a + )

and this holds for power products regardless of the values of a and b. Hence

Ky = (2r) 41 2'2"1 (- 1).< )(t)(2r —1) — (2n)

=] (2)

= %T_)[l : 12'2::1( :)'_(1 ):l 'z":‘( 1).< )(z)(irm— )

il =1

Since

£ B ()

t=1

the coefficient of (n) above is ﬁ i and it follows immediately that

2
Ky = 150y (2’) Q=9 _ " K.

This proves the first half of (25) and the second half can be proved in similar
fashion, although with considerably more difficulty.
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9. Other Simple Seminvariants which are Invariant under Estimate. It has
been previously remarked (Chapter I, section 2) that the x system of semin-
variants are the seminvariants of minimum degree, those of even weight being of
second degree and those of odd weight being of third degree. The ks, ’s are the
only seminvariants of degree 2, but for odd weights greater than 7, there exist
more than one seminvariant of degree 3. It is not difficult to show that these
additional minimum degree seminvariants are also invariant under estimate.
The type of proof used could have been applied equally well to obtain the results
of the preceding section and indicates that the property of invariance under
estimate which is possessed by the «’s is a direct result of their minimum degree
property.

Consider the estimate in power product form of any seminvariant of degree 3
and odd weight. Power products of 1, 2 and 3 parts will appear. By the Binet-
Waring identities each three part power product (abc) yields a third degree power
sum product (a)(b)(c) plus other products of lower degree. Since (a)(b)(c)
comes only from (abc) its coefficient must be identical with that of (abc) and will
therefore be a constant divided by n®. The coefficient of each second degree
product of power sums will be a sum of terms, the first of which comes from the
corresponding two part power product with a coefficient identical with that of the
power product, and the others come from the three part power products. Then
the coefficient of a second degree product of power sums must be of the form

!’
£L+w+q+-~+a=mn+m
n® n® n®

Similarly the coefficient of the first degree power sum term will be of the form
din® + dan + ds

n®

Since the estimate of a seminvariant is a seminvariant, it follows that d; = 0.
This is true because the coefficient of - 1)Q) _nzl ){1) must be the coefficient of (%
multiplied by —r. Furthermore ¢; = dy = 0 for if the contrary be assumed it is
immediately possible to break the composite seminvariant into two simple
seminvariants, the first being of degree 3 (the original seminvariant) and the
second of degree 2. Since for odd weights no seminvariant of degree 2 exists,
it follows that any seminvariant of degree 3 and odd weight is invariant under

estimate. It is also apparent that the factor n°/n® must appear in the estimate.

10. Composite Seminvariants which are Invariant under Estimate. For
each weight r = 4 there exists a composite seminvariant which is invariant
under estimate. For weights 4 and 5 this seminvariant is easily obtained by use
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of Table III. Thus for weight 4, form the seminvariant A + czAs . From the
table we find that

4

E7' [\ + cxi] = W ls + k4 + ¢ (4) — Cz2 n _nz)m) ks

= 7% (U + cald) + 75 (0" — 0 cm)ka.

If ¢e = n*/n® the seminvariant is invariant under estimate. This seminvariant
is
n2 2
27) Va= M+ 7@ Az
In similar fashion we find for weight 5

(28) ¥s = Ns + (2) )\s Az.

For weights > 5 considerably more difficulty is encountered. For weight 6,
for example, we consider the seminvariant

Ao + Ccoalide + 033)\§ + 0222)\;-
By use of table III we obtain

6
E7 [Ne + cohade + cashi + camAi] = 7% (I + calals + cuals + caels) + &,

where ® is a sum of other seminvariants with coefficients which are functions of
nand ¢, s, C2ee. Now there are only four linearly independent seminvariants
of weight 6 and it is necessary that one of these involve the term (1)°/n°. Byan
argument analogous to that of the previous section this term cannot appear in
® and therefore ® is expressible in terms of three or fewer seminvariants. Ac-
tually three are necessary and equating the coefficients of these to zero the values
of cs, €33 and cg2e are uniquely determined. The result is somewhat lengthy
and scarcely of sufficient interest to record here.

The same sort of procedure can be used for determining seminvariants of
higher order which are invariant under estimate, but the labor of computation
becomes very great.

It is possible to obtain moment functions which are invariant under estimate
by means of a set of equations given by Dwyer [13; 38-39]. These equations
connect the coefficients of a general isobaric moment function and the coefficients
of the expected value of that function. In his notation if, for example,

fi = as(4) + 4a5(3)(1) + 3a22(2)* + 6a21(2)(1)* + (11111(1)4,
then

E[f] = banps + 4bun®usur + 3bun®ud + b n@usu’ + 1Y by m’ ,
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wherein:
as + 4as + 3az + 6aun + aun = by,
as + 3aau + aun = ba ,
(29) ase + 2021 + 011 = bae

G + aun = ban )

aun = bun .

The problem at hand demands that
“) @ @2)*

E'[na4 =+ 4n’an — + 3n’as — t 61’ agn %)—2 + n'aun L‘z‘]
n n " n n
= )\[MAIJ'; + 47&(2)031#.’;#1’ + 3n(2)022#42 + 6"3(3)(1211#;#:2 + n“)auuuf‘]
so that the equations (29) become
ntaun = MPauy,

3 )
NG = A0 (azu + aumn),

ntags = M®(ag + 2a0u + amn),
’n2031 = )\n(z)(aal + 3am + auu),
nay = M(as + 4as + 3as + 6a:n + aun),

and from these equations a4, @s , @22, a2 can be found in terms of @y . Ob-
viously there is only one solution if none of the a’s are zero. In general, forany
weight r, a similar system of equations can be found and they determine the
coefficients of a moment function of weight r which is invariant under estimate.
It appears that this moment function is always a seminvariant although no
proof of the fact has been found. The moment functions of weight 4, 5 and 6
obtained by this method are identical with ¥ , Y5 and ¥, defined above.

Conclusion. The results of this paper include:

1. A demonstration of the fact that the theory of statistical seminvariants is
identical with the theory of algebraic seminvariants.

2. The introduction of new statistical seminvariants.

3. Simplification of the computation of estimates.

4. Proof that the estimate of any seminvariant is also a seminvariant.

5. Proof of the existence of a trio of ‘seminvariants with the same numerical
coefficients.

.6. A discussion of seminvariants which are invariant under estimate.

Many thanks are due Professor P. S. Dwyer for his able guidance in the
preparation of this paper and to Professors C. C. Craig and J. A. Nyswander for
helpful comments.
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