ON A TEST WHETHER TWO SAMPLES ARE FROM THE SAME
POPULATION'

By A. Warp® anp J. WoLFowITZ

1. The Problem.! Let X and Y be two independent stochastic variables
about whose cumulative distribution functions nothing is known except that
they are continuous. Let 21, T2, , Zn be a set of m independent observa-
tionson X and let 1, - - - , ¥ be a set of n independent observationson Y. It
is desired to test the hypothesis (the null hypothesis) that the distribution
functions of X and Y are identical.

An important step in statistical theory was made when “Student’ proposed
his ratio of mean to standard deviation for a similar purpose. In the problem
treated by “Student” the distribution functions were assumed to be of known
(normal) form and completely specified by two parameters. It is clear that in
the problem to be considered here the distributions cannot be specified by any
finite number of parameters.

It might nevertheless be argued that by virtue of the limit theorems of
probability theory, “Student’s” ratio might be used in our problem for large
samples. Such a procedure is open to very serious objections. The popula-
tion distributions may be of such form (e.g., Cauchy distribution) that the limit
theorems do not apply. Furthermore, the distributions of X and Y may be
radically different and yet have the same first two moments; clearly “Student’s”
ratio will not distinguish between two such distributions.

The Pearson contingency coefficient is a useful test specifically designed for
the problem we are discussing here, but one which also possesses some disad-
vantages. The location of the class intervals is to a considerable extent arbi-
trary. In order to use the x* distribution, the numbers in each class interval
must not be small; often this can be done only by having large class intervals,
thus entailing a loss of information.

2. Preliminary remarks. Denote by P{X < z} the probability of the rela-
tion in braces. Let f(xr) and g(z) be the distribution functions of X and Y
respectively; e.g., P{X < z} = f(z). Throughout this paper we shall assume
that f(z) and g(z) are continuous.

Let the set of m + n elements 21, --- , Zm and ¥, - - - , Ya be arranged in

1 Presented to the Institute of Mathematical Statistics at Philadelphia, December 27,

1939.
2 Research under a grant-in-aid from the Carnegie Corporation of New York.
3 The authors are indebted to Prof. S. S. Wilks for proposing this problem to them.
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148 A. WALD AND J. WOLFOWITZ

ascending order of magnitude, and let the sequence be designated by Z, thus:
Z = 21,2, ,2min, Where 21 < 23 < -+ < Zuya. (f(2) and g(z) were
assumed to be continuous. Hence the probability is 0 that z; = 2,1 and there-
fore we may exclude this case.) Let V = w1, v2, -+, Umsn be a sequence de-
fined as follows: v; = 0 if 2; is a member of the set z;, - -- , zm and v; = 1if 2;
is a member of the set y1, ---,¥s. It is easy to show that any statistic S
used to test the null hypothesis should be invariant under any continuous,
reciprocally one-to-one transformation of the real axis. That is to say, if
t' = ¢(t) is any such transformation, then

(1) S@iy ooy Tmy Y1, 000y yn) = S(e(x1), - -+, 0(Tm), (W), -+ y(o(yn))'

The reason for this requirement on S is the fact that the transformed stochastic
variables X’ = ¢(X) and Y’ = ¢(Y) are continuous and have identical distribu-
tions if and only if X and Y have identical distributions. Hence S must be
a function of V only, with the added restriction that S(V) = S(V’), where
V' = Umin, Umgn-1, --+,01. For if S were a function of z;, -+ ,%m,
Y1, -+, Ys wWhich cannot be expressed as a function of V alone, then there
exists a continuous reciprocally one-to-one transformation ¢’ = ¢(f) such that
(1) is not true. On the other hand, any continuous reciprocally one-to-one
transformation of the entire line into itself is monotonic and hence either leaves V'
invariant or else transforms it into V”.

3. Previousresults. In an interesting paper on this problem W. R. Thompson
[1] proceeds as follows: Let the sets 1, --- , m and y1, - -+ , ¥ be ordered in
ascending order of magnitude, thus: z,, , Zp,, -+ , Zp, a0d Ypi, Yps, - 5 Ysi
where 2p, < 25, < -+ < Zpand Yp; < Ypj < +-- < Yp,. Let P{x,, < Ypryr}
denote the probability of the relation in braces under the null hypothesis (f(z) =
g(z)). This probability is shown to be independent of f(z) and the relation

(2) P{xm < y?'h'} = y(m, n, k, k/)

holds, where the right member, which is given explicitly by Thompson, is a
function only of the arguments exhibited. To make a test of the null hypothesis
with, say, a 5% level of significance, this writer proposes to choose k¥ and &’
so that ¢(m, n, k, k") = .05. The test would then consist of noticing whether
Zp, < Ypr, Or not. In the former case the null hypothesis is to be considered
as disproved.

It is clear that this test cannot be very efficient, ignoring as it does so many
of the relations among the observations. Except under certain rather narrow
restrictions on the admissible alternatives, for example, that g(z) = f(z + c),
where ¢ is an arbitrary constant, the test suffers the further defect of not being
“consistent’” in a way which will be discussed below. Hence the test suggested
by Thompson can scarcely be regarded as a satisfactory solution of the problem.
This criticism, of course, does not apply to those sections of Thompson’s paper
which deal with the question of estimating the so-called normal range.
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4. The statistic U. A subsequence vs41, Us42, - -+ , Vsyr of V (where r may
also be 1) will be called a “run” if v,41 = V42 = -+ = Vs, and if v, & V41
when s > 0 and if vy, # Vs3r41 When s + r < m 4+ n. For example, V =
1,0, 0, 1, 1, 0 contains the following runs: 1; 0, 0; 1,1; 0. The statistic' U
defined as the number of runs in V seems a suitable statistic for testing the
hypothesis that f(z) = g(x). In the event that the latter identity holds, the
distribution of U is independent of f(z). A difference between f(z) and g(x)
tends to decrease U. U is consistent in a sense which will be discussed below.

In order to derive the distribution of U under the null hypothesis, we first

!
note that all the %Q (= ™7"C,) possible sequences V have the same

1n!
probability <= G%'

=12 ... ,m)andv;=1GC=m+1,m+ 2, ---,m + n). Clearly the
probability of the sequence is

>. To see this, consider the sequence V where v; = 0

- mm—1) ... 1.a(n — 1) ... 1
1= (m+n)(m+n— D...(n+ Dnn—-1) ... 1°

Furthermore, the probability of any other sequence is equal to the product of
the factors in the numerator of ¢ taken in a different order, divided by the
product of the factors in the denominator taken in the same order. The quo-
tient is, of course, = q.

Let e be the number of runs in ¥V whose elements are 0 and let e; be the
number of runs whose elements are 1. Obviously U = ¢, 4+ e;. Let the runs
of each kind be arranged in the ascending order of the indices of the v;. Let ro;
be the number of elements 0 in the j* run of that kind (j = 1,2, ... , &) and
let 71;» be the number of elements 1 in the 7/t run of that kind (§' = 1,2, - - ., e1).
The following relations obviously hold:

€0
(3) Zl Toj = m,
=
el
4) 2 my =,
i=1
(5) ISeOSm, 1_<_,61$n,
(6) leo — e | < 1.

4+ When this paper was already in proof, our attention was called to a paper by W. L.
Stevens, entitled ‘‘Distribution of groups in a sequence of alternatives,” Annals of Eu-
genics, Vol. 9 (1939). There a statistic, which is essentially the U statistic, is proposed
for a problem different from that considered by us and the distribution of U is obtained
in a different manner. However, the application of the U statistic for the purpose herein
described, the proof of consistency and the other results of our paper are not contained
in it.
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Hence if U = 2k, then ¢g = e; = k, and if U = 2k — 1, then either ¢, = Fk,
ee=k—loree=k—1,e, = k. The element v, of V together with the num-
bers 7o, 7oz, + + + 5 Tosg y T11, T12, * + + , T14y , cOmpletely determines the sequence V
whose probability is g.

Without loss of generality we may assume that m < n. If U = 2k,
1 < k < m, v = 0, any two sequences of k positive numbers each may consti-
tute a sequence of o1, « - , Toep, T11, * +  , T1e; Provided only that (3) and (4)
are satisfied. The number of sequences 7o, 7oz, - - - , Tor Which satisfy (3) is
the coefficient of @™ in the purely formal expansion of

(a+a’+a"‘+...)'~=( a >"

1—a

and hence is ™ 'Ci_;. Similarly the number of sequences ri, T2, --- , T
which satisfy (4) is found to be "'Ci—;. Bearing in mind the case U = 2k,
v = 1, we obtain

2" 'Ch1-""'Ci)

mia(, ’ (k=1y2)"':m),

(7 P{U = 2k} =

where the left member denotes the probability of the relation in braces under
the null hypothesis. In a similar manner we obtain

(" Ch1-""Chz + ™ 'Cha-""Cry)
m+nCm )

k=2 ...,m+1),

with the proviso that °C, = 0if @ <'d.

We shall now briefly indicate a method of obtaining the mean E(U) and
variance ¢°(U) of U. For example, E(U) may be obtained by performing
several summations of the type

m—1
€ 26"

i=0
It is easy to verify that the expression (9) is the term free of a in the purely
formal expansion in @ of:

n—1
(10) (m—1)-(1+ a)"’“z-a-(l + 5) ,

and hence is

@11) (m —1).™"C,,.
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The other summations required for the mean and variance can be carried out
in a similar manner. We shall omit these tedious calculations. The results are:

2mn
(12) EU) = 22 4,
(13) dz(U) = 2mn(2mn —_-m — n)

(m4+n2m+n—1)"

The critical region for testing the null hypothesis on a level of significance 8
is given by the inequality U < uo, where u, is a function of m and » such that
P{U < w} = 8.

6. The asymptotic distribution of U. Let m/n = «, a positive constant.
Then, as m — o,

2m
14+a’
4am
1+ e
TaeoreM 1. If t is any real number, the probability of the.relation

EU) ~

o (U) ~

2m om | , .
U< iTa + 2 [m] t converges uniformly in ¢ to
1 ¢
w2
vV 2 -[oo ¢ dw
as m — oo,

The proof of this theorem is essentially the same as the classical proof that
the binomial law converges to the normal distribution (see, for example, Fréchet
[2], p. 89) and it will be unnecessary to give the details. Since the asymptotic
distribution of the subpopulation of even U is the same as that of odd U, it
will be sufficient to consider only the right member of (7). Let m' = m — 1,
n'=n—1,and k¥’ =k — 1. We make the substitution

- ,
(14) w = \/15“, where a'=ﬁ,,
1
15 dw = ——
( ) v_"?’

and evaluate the factorials by Stirling’s formula. We shall give here only the
results of successive simplifications. At each step we shall omit the factors
free of k or w, since their product may be reconstructed from the final expo-
nential form. Thus instead of the right member of (7) we can consider the
expression:

(16) " "Cha .
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Omitting factors free of k, we get

1
) G- DIm—HIFE=DIE =R
and by Stirling’s formula, since k£ and m are both large:
. 1
(:8) D (g1 @R (G -

Now apply’ (14). We obtain
(\/_w Lo )_2\/710—12_'_—":,-1.(_ Vw4 e )\/,,rrw—’l’%;{‘—f-;—
i+o m I+

m’ 1

(19)

I !
Dividing inside the parentheses by ira lma Y TAF ) respectively,

and again omitting factors free of w, we get
! 2m’ m'a’
(1 n a+ :l,)w)—z\/;ﬁw—l_'_—a,—l' (1 (1a+ a')w)rw_l+ el
/(1 + a’)w \/_w— 1
1l — ———=— (l+a') z,
(-0)

w?
Taking logarithms, expanding in powers of \/wﬁ, and neglecting terms in mi

(20)

and higher orders, the results are
~(evimu s 2 4 r)(AE D At
w e Y02
~(viro - ey~ (T + )
which equals

(22) —‘M’ + Om™.
QL

The proof of the fact that the distribution of w converges uniformly to the

normal distribution with zero mean and variance —— Tt o) + pon can be carried out

in the same way as the classical proof that the binomial law converges to the
normal distribution.
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It is obvious that
m

k— 1+«

V'm
has the same distribution as w. From this and from the fact that U = 2k or
2k — 1 TuaeoreMm I follows.

In using conventional tables of the Gaussian function to make tests of sig-
nificance on U when m and n are large, the reader is urged not to forget that the
critical region of U lies in only one tail of the curve.

w* =

6. An example. We give here a simple example illustrating the use of the
statistic U and TaEOREM I.

Suppose 50 observations were made on X and 50 observations on Y. Suppose
further that these observations are arranged in ascending order and that the #th
element of this sequence is said to have the rank 7. The observations on X
occupy the following ranks: 1, 5, 6, 7, 12, 13, 14, 15, 16, 17, 19, 20, 21, 25, 26,
27, 28, 31, 32, 38, 42, 43, 44, 45, 50, 51, 52, 53, 54, 56, 57, 58, 62, 63, 64, 65,
68, 69, 75, 79, 80, 81, 86, 87, 89, 90, 91, 93, 94, 95.

The observations on Y occupy the remaining ranks.

In this case, U = 34.

Form = n = 50,

E(U) = 51,

a(U) = 24.747.
The probability of getting 34 runs or less when the distribution functions of X
and Y are continuous and identical is therefore less than 5.107*

7. Consistency. We shall say that a test is “consistent” if the probability
of rejecting the null hypothesis when it is false (i.e., the complement of the
probability of a type II error, cf. Neyman and Pearson, [3]) approaches one
as the sample number approaches infinity. In the literature of statistics a
function of the observations which converges stochastically to a population
parameter as the sample number approaches infinity, is called a ‘“consistent”
statistic. If a test of a hypothesis about a population parameter is made by a
proper use of a consistent (statistic) estimate of the parameter, the test will
be consistent also according to our definition, which thus furnishes an extension
of the idea of consistency to the case where the alternatives to the null hypothe-
sis cannot be specified by a finite number of parameters.

It is obvious that consistency ought to be a minimal requirement of any good
test. It is the purpose of this section to prove that, subject to some slight and
from the practical statistical point of view, unimportant, restrictions on the
distribution functions, the test furnished by the statistic U is consistent.

We shall say that the distribution functions f(x) and g(z) satisfy the condi-
tion A, if, for any arbitrarily small positive 5, there exist a finite number of
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closed intervals, such that the probability of the sum I of these intervals
is > 1 — & according to at least one of the distribution functions f(z) and g(z),
and such that f(z) and g(z) have positive continuous derivatives f’(r) and
g'(x) in I.

In all that follows, although m and » are considered as variables, their ratio
m/n is to be a constant, denoted by a. Let 8 > 0 denote the level of signifi-
cance on which the test is to be made, so that, if f(z) = g(z),

(23) P{U < uw(m)} = B
where the critical region for two samples of size m and n, respectively, is given by
U < u(m).
TueoreM II. If f(x) and g(z) satisfy condition A, and if
(24) f(z) # g(2),
then
(25) Lim P{U < w(m)} = 1.

m—>e

The proof of this theorem will be given in several stages.
Let E(% 3T g) and a’(% H g) denote the mean and variance, respectively,

of % , when X and Y have the distribution functions f(z) and g(z), respectively,

and the sample numbers are m and n. Let the set &y -+« Tm; Y1 --- Yn be
arranged in ascending order of magnitude, thus:

(26) Z=12z,2, ,Zmmn,
where 23 < 23 < -+ < Zmtn. The sequence
(27) V=vl;v2,"',vm+n

is defined as follows: v; = 0 if z; is a member of the set z; - - - Tm and v; = 1
if z; is a member of the set 41 -+« ¥n .
LemMmA 1. If the following are fulfilled:
a) J@)=0 z <0,
@)=z 0<=z<1,
fiz) =1 z>1
b) gx)=0 <0,
glx) =1 z 21

¢) The derivative g'(z) of g(z) exists, is continuous and positive everywhere in
the interval 0 < z < 1.
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d) & is an arbitrary but fized positive integer. For every m, tim < tam <
<o < 4m are a set of k positive integers subject only to the restriction that the

s less than 1.

. Lem
least upper bound v of the sequence mt
Then the expected value
k k
E (II v.-,.,,,) of II v,
i=1 =1
satisfies the inequality

(28) | E(Iill ,,,.m> _ 1 O )

i=1 a+g'(ar;m)

< ¢(m)

Tim . .
where \j, = - j'_ - and a;, (7 = 1 --. k) is the root of
(29) may;,, + ng(a)tjm) = Nim(m + n)
and o(m) depends only on m and is such that
(30) Lim ¢(m) = 0.

Mm=—>o0

It is easy to verify that the root ay,, of (29) exists and is unique.
Proor: It will be sufficient to show that, for any specified set of values of

Vitm * - v‘(r—l)m ) vi(r+l)m s Vi (r = 1 ce k)

the conditional probability P{v;,,, = 1} of the relation in braces satisfies the
inequality

9w  _ py,
(31) a + 9'(axm) P{v'rm 1} < ¢(m)’
where ¢(m) depends only on m and is such that
(32) Lir? y(m) =0.

For each m let
' ' ’ ' ’ ’
(33) Ve = iy s Vigg * - Vitemtym 3 Vicrm *°° Vikm

be a fixed sequence whose elements are either 0 or 1. We shall consider the
conditional probability P{v;,,, = s}, (s = 0, 1) of the relation in braces subject
to the condition that

(34) Vism = Vijm s (G=1,2--(—1,C+1),0¢+2), k.

Let @ and b be two numbers such that 0 < ¢ < b < 1, and let m* be a non-
negative integer such that m* < m, and m* < [y(m + n)] where [y(m + n)]
denotes the largest integer < y(m + n). Let Qu(a, b, m*) denote the proba-
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bility that, if m* observations are made on X and [y(m + n)] — m* observations
are made on Y, the following conditions will be fulfilled:

(a) the total number of observations < a’is exactly 4,m — 1

(b) all observations are < b

(c) if the [y(m + n)] observations are arranged in ascending order and if
v7 = 0 or 1 according as the j* element is an observation on X or on Y, then

(35) Dim = Vigm G=1,2-,r=1),
and
(36) Vit = Vim G=r+1,r+2...k).

It is easy to see that the probability P, of the simultaneous fulfillment of the
relations (34) and of »;,,, = 0 is given by

@) Po=[ [ T Ralo b im0 - 077 = g0) dad,

where

(38) Ru(a, b, m*) = "Cps "Cly(mim1—m» dg;" (a, b, m*),
39) m' = m — m¥,

and

(40) n' = n — [y(m + n)] + m*.

Similarly, the probability P; of the simultaneous fulfillment of the relations
(34) and of v;,,, = 1 is given by

(41) P, = j:‘/: ; Rn(a, b, m*) n'g'(@)1 — b)™ (1 — g(®)" ™ dadb.

Then

P{v;,, =0} _ Po
42 - m =,
( ) P{v.-,,,, - 1} Pl

Letno= >, wvjandme = m + n — [y(m + n)] — no. The variables
i>[y(mtn)]

mo a(l - a"y)

o ™l — = = ) all converge stochastically to
(z‘rm a’)‘rm)) (zh(m-!- )] a‘Y): (no (1 — g(ay))) g y

zero.

Let Py(e) and P;(e) denote the values of the right members of (37) and (41),
respectively, if the integration is restricted to the region where ¢ < b,
|a = ar,, | <¢|b—ay| < eand the summation is restricted to those values
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of m* for which | — ol — ay) <e. Hence, because of the aforementioned
- (T=glay)
stochastic convergence, for all sufficiently large m
(43) | Ps(e) — Ps| < € s=1,2.
Since P, > 0, for sufficiently large m, also
Po(e)  Po
44
(44) P9 B S°

Since g(z) and ¢'(z) are continuous in the interval [0, 1] and hence uniformly
continuous, it is clear that

Po(e)

P l(e) (a’)\rm

where ¢ is a fixed constant independent of m. From (44) and (45) it follows
easily that, for any arbitrarily small ¢,

P a
P 1 g’(a')\rm)

(45)

'<ce,

(46)

for sufficiently large m.

Since P{v;,, = 1} = it + P the required relation (31) follows. This com-

pletes the proof of Lemma 1.
LemMa 2. If conditions a, b, and ¢ of Lemma 1 arc satisfied, then

(47) ,I;il};E(f—]nif"g): flai(;)(x)d
and
(48) 51‘2“( i1 )=

Proor: Since

m+n

U 1 2
— = = (v; — vj1)
(49) m n m ];2 d !
9
IR b L
m m =2 ! m j=2 =

we have from LEmma 1,

5(0) a2t e - 2 (o) ] v

— 3 ag’(a,:m)__ *
=~ > [—-———(a T g’(aim))”:l + n(m) + 2%(v),

(50)
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where

(51) ,I,.‘fﬂ 7(m) = I;l_{f: 7%(y) =0

and @;» is the root of the equation

(52) majm + ng(ajm) = Jj G=2..-m+n).
From equation (52) it follows that

(53) Lim (@jm — aG-nm)(m + ng'(aim)) = 1

m—r0

uniformly in j. Since vy may be chosen arbitrarily near to 1, the required

result (47) follows easily from (50).
It remains to consider the variance of % The expression
1 ) ) n 2 m+n—1
Ltotom. , 275+,
m m =2

differs from z— by at most ;}i, so that its variance converges to zero with m — o,

In order to prove (48), it will be sufficient to show that the variance of

m+n

(54) W = —1— Z Vi-10;

m =2
goes to zero with increasing m. From Lemma 1 it follows that
(55) —z(m) < [E(wowe) — E@w))E(w.)] < z(m),
where Lim | z(m) | = 0, provided only that the integers %, j, k, I are distinct

and < y(m + n). The variance of mW is the sum of terms of the type occurring
in (55). The number of terms for which 4, j, k, I are distinct is of the order m’.
All other terms are of size at most 2 and their number is of the order m. Since
the number ¥ may be chosen arbitrarily near to 1, the variance of W converges
to zero with m — .

This proves LEMMA 2.

Lemma 3.  If conditions a, b, and ¢ of Lemma 1 are fulfilled, and if (24) holds,

then

1
_ g'(z) 1
(56) T—_/; a+g’(x)dx< T

Let a; < a3 be any two real numbers and designate n -; % by a;. Let
F(z) be defined as follows:
F(a) = 0,
F(x) = (z — a)b; + F(as), @LzLam;t=12).

(57)
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Let ¢ be defined by

(58) I’Y(aa) = 0(0,3 - a]_).
Then it is easy to verify that the maximum of
" F()
* — ————
(59) T f L

with respect to b; and bs, subject to the restrictions that b; and b; be non-
negative, and that a; , a; and ¢ be fixed (¢ > 0), occurs when and only when

(60) bl = bz = C
Now define

Pn_%j, Po; =0,
(61)

1. = 9Pi) — 9(Pa-nj)

1] 21-
and

1 & L

S; = (i=1)27"’2j;j=0:1:2"’)'

5’. j=1 & + ll'i’
Repeated application of the result of the previous paragraph easily gives
(62) S; > Sjn.

From (24) it follows that there exists a positive integer j' such that S;» > S; 41 .
Obviously

1
(63) S = Ta
and
(64) Lim §; = T.
i—w

Hence LemMma 3 is proved.

Proof of Theorem 11: Let 8, > 8, > ... > § > .- be an arbitrary but fixed
sequence such that lim 8; = 0. For é = §;,let I, - -, Li;) be a set of closed
intervals such that no two intervals have an interior point in common and
within which, by condition (A), f’(x) and g¢’(x) exist, are positive, and con-
tinuous.  Let Io; be the complementary set (with respect to the whole line).
(It is easy to see that, if condition (A) is fulfilled, such a system can be con-
structed.)  Let U750 = 1, 2 ... k(j) and Uy; denote, respectively, the runs
caused by the observations which fall in the intervals I, Iy;. Then

kG)

(65) U= 3 Ui — Uy < 2G0)).

=1
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From condition (A) it follows that, with a probability arbitrarily close to 1, for
sufficiently large m,

(66) UOi < 3pm6,~,

where p = max [1, ;—i], (Gj=12...).

Letla; <2 <b,7=1,2 ... denote the interval I;, and let m; and n; denote
the number of observations on X and Y, respectively, which fall in the interval

I;. Then % and % converge stochastically with increasing m to [f(b;) — f(a:)]
and [g(b:) — g(as)], respectively.

Within the interval I;(z = 1, 2 ... k) we perform the transformation

(67) X* =fX), Y*=/f(¥),

which leaves U7; invariant. For fixed m;, n; the relative distribution of X*
is uniform and the relative distribution of Y* fulfills condition (c) of LEmMa 1.

Hence from LEMMA 2 we obtain that % converges stochastically to

(68) Lim E

m=>00

U; _Z[f (b:) — f(ad)]llg(b:) — glas)]
( i g) S 009 = 9@)] + olf ) = fla)]’

It can be verified that the sum of the second members in (68) over all values ¢

is less than or equal to - i +
From (24) and condition (A) we get that, for sufficiently small §;, there exists
at least one interval for which the first member of (68) is less than the second

member. Hence

(69) =<

where

(70) Ele F( ,f, )

i=1 m—w

Now take j so large that

(71) 3pd; < ¢,
where

2 .
(72) 0 <3e < - 2.

1+«
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Since %’ converges stochastically to its expected value, from (65), (66), (70),
(71), and (72), it follows that, with a probability arbitrarily close to 1, for suffi-
ciently large m,

U 2

From (23) and THEOREM I we get
(74) Lim @) _ _2

m=—so0 ‘m 1 + a'

TuaroreEM II follows easily from (73) and (74).

8. Remarks on a proposed test. We have already remarked in Section 3 that
the test proposed by W. R. Thompson is not consistent. To show this, we shall
give two distribution functions f(z) and g(x) such that, although these functions
will be very different, the probability of rejecting the hypothesis that they are
the same will not approach one as the sample number approaches infinity.

Suppose, to simplify the notation, that the observations have been ordered
according to size, i.e.,, thatz; < 22 < -+ < zmandy; <y < -+- < yn. Sup-
pose further than m = n, and that the test is to be made on a level of significance
B > 0. In the right member of (2) we need not exhibit n and shall replace
k and k' by k(m) and k’(m) to show the dependence on m. We have, under the
null hypothesis,

(75) Plaim < yrm} = ¥(m, k(m), k'(m)) = B.
(m)

The sequence k(m

m

subsequence my , mg - - - of the sequence of integers 1, 2 ... and a number &,
0 < &k < 1, such that

is bounded, so that there exists a monotonically increasing

(76) Lim ©0m) _

g—0 My

Tt is easy to see that then also

/ .

(77) Lim ¥ _ 4,
i— mys

We shall now assume that 0 < A < 1. If A = 0 or 1 only a trivial alteration

will be needed in the argument to follow. Let e and & be arbitrarily small posi-

tive numbers. We now consider two populations, A and B described as follows:
A) flz) = g(z) == 0z,
B) J@) == 0<z<1,

0(@) = gla) + & “zéf’ffj’a')‘ 99) (4 <o < am;i=01, .-, 4,
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where
a = g(a) = 0
a=h—2>0 g(a)) =0
aa=h—3 9(as) = as
a=h+06<1-—34§ g(as) = a3
aa=1-—23§ glag) = as
a =1 glas) = 1

The definition of f(z) and g(z) outside the interval 0 < z < 1 is obvious. It
will be shown that even for such different populations as A and B and for
samples of size greater than that of any arbitrarily assigned number, the prob-
ability of rejecting the null hypothesis if B is true will be at most 8 + e.

Let hi, hs, h; denote the number of observations on X which fall in the
intervals 0 < z < az, a3 < 2 < a3, a3 < z < 1, respectively (m fixed, of course).
Let hy, hs, hs be the corresponding numbers for ¥. For a fixed m, the prob-
ability of a set hy , hs, hs, k1, hz, ks is the same whether the sample be drawn
from the population A or B. From (76), (77), and multinomial law it follows
that for all sufficiently large m; the probability is at least 1 — e of the occurrence
of a set by, ha, hs, hi, hs, hs for which Zi(m;) and g m,) will both fall in the in-
terval a; < z < a3. Furthermore it is obvious that for all samples with fixed
ha, hs the distribution within the interval a; < z < a3 is the same whether the
sample came from the population A or B. Hence even when the sample is
drawn from the population B, the first member of (75) is < 8 4+ e. This com-
pletes the proof of the inconsistency of the test based on (75).

This test is consistent if the alternatives to the null hypothesis are limited,
for example, to those where g(z) = f(z + c), ¢ a constant.
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