NOTES

This section is devoted to brief research and expository articles, and notes on
methodology.
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A NOTE ON THE BEST LINEAR ESTIMATE

By Awren T. Craic
University of Iowa

1. Introduction. Iet the chance variable xz be subject to the distribution
function D(x) and as usual let E[g(z)] denote the mathematical expectation of
the functiong(z). Ifa;,a2, - -+, x, constitute a sample of n independent values
of x, the function ¥y = cr; + cs + -+ + .2, is frequently called the best
linear estimate of £(r) when the ¢’s are so chosen that E(y) = E(z), and Ely —
E(x)] = o, is a minimum. It is the purpose of this note to give an example of
an estimate y, best in the sense defined, yet such that, ¥’ being another estimate,

PriE@) — 86 <y<E@) + 8§ < PrlE(x) =6 <y < E@) + 9],
for every & > 0.

2. The rectangular distribution. Consider D(x) = 1/a,0 < 2 < a, and let
the n items of each sample be arranged in ascending order of magnitude so that
n <1< - <a,,n>2 The generating function G(¢) of the moments of
the distribution of ¥y = 1 4 cte + -+ + curs i

] a pYp pPIp—1 xy .
G(l) = E(") = _n_f f f f gllermtetentn) go drg « v da,.
a*Jo o Jo 0
Thus

E@y) = G'(0) = ﬁ% ler + 200 + 3cs + -+ + neal,

and

2

a
(n+ D(n+2)
4+ 2{1-3c1ca + 1-4c1¢cs+ -+ 4+ 1-(n + Leica

+ 2-4cecs 4+ - 4 2(n + 1eaca

EW) = G¢"0) = [1-2¢2 + 233 + -+ + n(n + 1)c

4+ (n = D(n + eaicall.
From E(y) = E(xr) = a/2, we have

a=3n+1)—2c— -+ —nc,.
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2 P . Y
Thus ¢, = G"’(0) — a’/4+ with ¢; in G”(0) replaced by 3(n + 1) — 2co — -+ - — ne,.
dob . . .
From 5-—‘? =0,7=2,3, -+, n, we obtain the following svstem of n — 1 non-
C; ’
homogeneous linear equations in n — 1 unknowns:

4cs + 6c3 + -+ + 2nc, = n+1
6c; + 12¢3 + -+ + 4nc, =2(n + 1)
8c; 4+ 16¢3 + - -+ + Gnc, =30n+1)

2ne; + 4nez + -+ + 2n(n — Ve, = (n — D(n + 1).

Since the determinant of the coefficients is not zero, the solutione; = ¢33 = -+ =
Cn1 = 0, ¢, = (n + 1)/2n, is unique. Further, we see that ¢; = 0 so the best
linear estimate of the mean of the rectangular population is y = (n + 1)x,.2n,
where z, 1s the largest item in the sample.

The distribution function of y is readily found to he

+1

Y IR n
D(y) = n[a(n i 1)] ¥, 0sys-5-—a.

2
a

dn(n +2)°

It has long been known' that the sampling distribution of the statistic
w = (21 + z,), where a; and v, are respectively the smallest and largest items
in samples of size n from a rectangular population, has a smaller variance than
does that of the arithmetic mean & of all n items. The distribution function

of wis

From this, it follows that ¢} =

n—1 n~1
D) =2, 0<w< la,
271y a1 L
= a (@ —w)", 20 < w < a,

1 2 a’
SO that E(w) = ‘2‘a and [ 2(7—2,*—‘1)-(71_:}——-—2) .
Yet Pittman has recently proved that for every & > 0, PrlE(x) — 6 < o <
E(x) + 8] exceeds the probability that any other estimate, including ¥, will fall
in this interval of length 25 about the mean a/2.

o 9 .
Thus ¢, = 0., approximately.

— — A/ . .
Tf we write u = - a/2 and v = & a/2 , then the limits of D(u) and D(r)
Oy Ow
as n approaches infinity are respectively ¢*™, —c < u < 1, and V3 eV

1 R. A. Fisher, “Theoretical foundations of mathematical statistics,” Phil. Trans. Roy.
Soc. London, Series .\, Vol. 222 (1921), pp. 309-368.
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—oo < v < . Thus neither y nor » has an asymptotic normal distribution.
It is, of course, this fact which makes the criterion of minimum variance illusory.

3. Other polynomial distribution functions. Let repeated samples of n in-
dependent values of x be drawn from a population characterized by D(z) =

k—i_—l 2*,0 < z < a, and k a positive integer or zero. It can be shown that the

preT]
best linear estimate of the mean of the population is y = %—1 Zn

where as before z, is the largest item of the sample. The sampling distribution
of y is easily obtained. It follows that
S (& + 1)d’ __ k+3
VS EF G+ D+ 20 nk+ D F2°%
where as usual Z is the arithmetic mean of the sample. Again, if we write

u = (y — : _-:: ;a> / oy, the limit of the distribution of u as n approaches inﬁniﬁy

is, as before, ¢*™}, —o < u < 1.

A NOTE ON TOLERANCE LIMITS

By Epwarp PauLson!

Columbia University

Among various statistical problems arising in the process of controlling quality
in mass production, a rather important one appears to be the determination of
tolerance limits when the variability of the product is known to be due to ran-
dom factors. This problem was recently treated in a pioneer article by Wilks.
This note will point out a relationship between tolerance limits and confidence
limits (used in the sense of Neyman), and will use this concept to establish
tolerance limits when the product is described by two qualities, the measure-
ments on which are assumed to have a bivariate normal distribution.

For the case of a single variate, the problem of -finding tolerance limits as
stated by Wilks is to find a sample size n, and two functions L;(2; - - - x,) and

L
Ly(zyx2 - - - x,) so that if P = f(z) dx denotes the conditional probability of
Ly
a future observation falling between the random variates L, and L, , then
E(P) = a, and Prob. [@a — A < P <L a+ A) 28

The relationship between confidence limits and tolerance limits will arise if
confidence limits are determined, not for a parameter of the distribution, but for

1 Work done under a grant-in-aid from the Carnegie Corporation of New York.



