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1. Introduction

One of the simplest interesting classes of temporally homogeneous stochastic
processes is that for which the distributions of the defining chance variables
{z(t)} are Gaussian. It is supposed that

(A) if 4 < --- < t,, the multivariate distribution of z(t), --- , z(¢,) is
Gaussian,’ and that

(B) this distribution is unchanged by translations of the t-axis.

The process is N-dimensional if z(¢) is an N-tuple z;(¢), - - - , z»(f). The means
E{z(t)}* are independent of ¢, and will always be supposed to vanish in the
following discussion.

The correlation matrix function R(f): (r;;(t)) is defined by

(1.1.1) rii() = E{xi(s)xi(s + t)}.

This expectation is independent of s, because of condition (B). The matrix
function R(t) satisfies the equation

(1.1.2) rif() = r5(—0), 4,j=1,---,N.
1t follows that when ¢ = 0 the matrix is symmetric:
(1.1.3) 'I'.','(O) = 'I',-.-(O)’ z’j = 1’ SRR N’

and it is also well known that R(0) is non-negative definite. Conditions on the
functions 7;;(f) necessary and sufficient that R(f) be the correlation matrix
function of a stochastic process were found for the case N = 1 by Khintchine®
and for all N by Cramér.*

Hypothesis (A), that the process is Gaussian seems at first a restriction so
strong that Gaussian processes are unimportant. These processes are, however,
of fundamental importance, for the following reasons.

(i) If R(t) is the correlation matrix function of any temporally homogeneous
stochastic process, there is, according to Khintchine and Cramér, a Gaussian
process with this same correlation function. This Gaussian process is uniquely
determined by the correlation function (assuming that all first order moments
vanish, as usual). Because of this intimate connection between the temporally
homogeneous Gaussian processes and the most general temporally homogeneous

! Singular Gaussian distributions will not be excluded. For example the z(¢;) may all
vanish identically.

2 The expectation of a chance variable z will be denoted by E{z}.

3 Matematische Annalen, Vol. 109 (1934), p. 608.

4 Annals of Math., Vol. 41 (1940), pp. 215-230.

229

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [[&

&4

The Annals of Mathematical Statistics. IKOJN ®

www.jstor.org



230 J. L. DOOB

processes, it is not surprising that very few facts are known about specifically
Gaussian processes, that is facts which are true of temporally homogeneous
Gaussian processes, but not of temporally homogeneous processes in general.

(ii) It follows from (i) that in any investigation of temporally homogeneous
stochastic processes involving only first and second moments—for example
least squares prediction by linear extrapolation—it may be assumed that the
variables are Gaussian. Under this hypothesis, the investigator may be helped
by the suggestive specialized interpretations possible in the Gaussian case of
results which hold in the general case. For example if N = 1, the least squares
best prediction in the Gaussian case for z(n + 1) in terms of a linear combination
of the variables z(1), - - - , z(n) is the conditional expectation of z(n + 1) for
given z(1), --- , z(n), which is the least squares best prediction of z(n + 1)
in terms of z(1), - - - , (n) with no restriction on the functions involved. Thus
the linearity of the prediction, which must be part of the hypothesis in the gene-
ral case, is automatically true in the Gaussian case. There is necessarily a linear
least squares best prediction of z(n + 1) in terms of the complete past
-+, z(n — 1), z(n) since the corresponding conditional expectation is certainly
defined in the Gaussian case, and is linear in that case.

(ili) In many applications, there is a real justification for hypothesis (A) that
the process is Gaussian. This is so in certain physical studies, for example,
because the Maxwell distribution of molecular velocities is Gaussian. Examples
will be given below.

The processes discussed in the present paper are all temporally homogeneous
Gaussian processes. Most of the theorems will be valid for any temporally
homogeneous processes for which the second moments of the variables exist,’
with the following changes: independent chance variables which are linear com-
binations of the xz(s) will become merely uncorrelated chance variables; the
convergence with probability 1 of a series of such chance variables will become
merely convergence in the mean; the conditional expectation of one such variable
y for given values of others, ¥, ¥z, - - - will become merely the linear approxima-
tion Z ay; of y in terms of the y; which minimizes

Efly — 71_: ayil'h

that is to say the conditional expectation becomes the least squares linear
approximation.

The following theorem and its corollary are fundamental in the study of linear
prediction involving infinitely many variables. The results are implicit in much
of the work on the subject but do not seem to have been stated explicitly before.

THEOREM 1.2. Let -+, 20, 21, - - - be a sequence of one-dimensional Gaussian

& The processes need not even be temporally homogeneous. It is necessary only that
E{z(s)} and E{z(s) z(s + t)} be independent of s.
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chance variables with the property that if ny, < --- < m,, the multivariate distri-
bution of xn, , -+ , Ta, ts Gaussian and that

(1.2.1) E{ -, Tm1, Tm’ Tn} = Tm ®
whenever m < n. Then E{xn} = a is independent of m, and
(1.2.2) oo 2 E{@@m — )} £ E{@npn — @)} S -0
If the {x.} are defined for all negative integers,

(1.2.3) ml_'ufw Ty = T—eo

exists with probability 1 and
(1.24) lim E{(Z—w — Zm)’} = 0.

If the {z.} are defined for all positive integers, and if the dispersions in (1.2.2)
form a bounded sequence,

(1.2.3") lim 2z, = %

m—+o0

exists with probability 1, and

(1.2.4) lim E{(ze — 2m)?} = 0.
It follows from (1.2.1) that
(1.2.5) E{z,} = E{E{xn ; x.}} = E{zn}.
Hence --- = E{x} = E{x1} = ---. It will be no restriction to assume from

now on that
-= E{x} = E{xy} =--- = 0.
It also follows from (1.2.1) that
(1.2.8) E{mtn} = E{E{zn; Tnta}} = E{znE{zm; z.}} = E{zn}."
Using this equation,
(127) E(zl} = E{{@z. — zn) + zal?} = E{(z. — 2a)"} + E{2n},

and the dispersions of the z, thus form a monotone non-decreasing sequence.

¢ The conditional expectation of a chance variable y for given values of a chance variable
n will be denoted by Ef{»; y}.

7 Much of this theorem remains true if (1.2.1) is true but only the first moments of the
z, are supposed finite, no other hypothesis being made on their distributions. Cf. Doob,
Am. Math. Soc. Trans., Vol. 47 (1940), pp. 458-460.

8 Alternatively, (1.2.1) implies that . — Zn is uncorrelated with Z». Then E{Zmnz.} =
E{z% + (Tn — Tm)zn} = E{zl}.
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Finally, using (1.2.6),

(1.2.8) E{(xmi1 — Zm)(@py1 — z,)} = O.
The series
(1.2.9) ; (Tms1 = Tm)

is therefore a series of mutually independent chance variables. According to a
well known theorem of Kolmogoroff, a sequence of mutually independent chance
variables converges with probability 1 if the means and dispersions form a con-
vergent series. The present theorem follows at once from Kolmogoroff’s

theorem.
CoROLLARY. Let z be a one-dimensional Gaussian chance variable and let

..........

x‘)l,-’&ﬂ,”'
(1.2.10) Ty, T, e
Loy, Tog,

be sequences of one-dimensional Gaussian chance variables with the property that
if v = 1, the multivariate distribution of x, Tm , * * * , Tmw ©s Gaussian, and suppose
that each variable Tm, 18 @ member of every later sequence. Then

lim E{Zm, Tme, -** ; 2} = 2
(1.2.11) e
im E{tm, Tm, - ; 2} = 24
m—>+o0
exist with probability 1, and in the mean, and
(1.2.12) 2y = E{Zmy,m=0%1,---,n =12 - ;zx}.
It will first be shown that the sequence {z,}, where
(1.2.13) ZTm = E{Tm, Tma, -+ ; 7},

has the property demanded in the theorem. In fact, from the definition of
conditional expectation, the difference x — xz, has expectation zero and is in-
dependent of the variables {z.;} for m =< =, and therefore of the variables
<+, Zp-1, o . Hence
(X = Zn) — (T — Tnp1) = Taga — Tn
has expectation zero and is independent of the variables - -- | ®,_1, .. There-

fore the sequence {z..1 — .} is a sequence of mutually independent chance
variables with vanishing expectations. This implies (1.2.1) if m < n because
n~1
E{"' )xm:xn} =E{"' sxm;xm+ Z (xi-l-l - :C,')}=E{"- ’xm;xm}
(1.2.19) -
+ 2B T T — Ty} = T
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Let a be the common value of E{z}, E{x.}. Sincex — ., is independent of z,, ,
(1.2.15) E{zn — o)’} + E{(x — za)'} = E{(z — a)*}.

Hence the sequence of dispersions of the z,, is bounded and according to Theorem
1.2 the limits z_ and z, in (1.2.1) exist with probability 1. Since z — =z, has
expectation zero and is independent of z.; for m < n, x — z, also has expecta-
tion zero and is independent of x..; for all m, that is (1.2.12) is true.

The simplest non-trivial special case of this theorem is the following:

Let 1, 25, - - -, « be one-dimensional Gaussian chance variables with the property
that if v = 1 the multivariate distribution of z, 7, , - - - , 2, 18 Gaussian. Then
(1.2.16) m E{z,, -+, s 52} = Efny, 22, -5 2},

with probability 1, and this limit is also a limit in the mean.

As stated, the theorem and corollary are true without the hypothesis that the
chance variables concerned are Gaussian. (The existence of second moments
must be assumed if the limits are to exist as limits in the mean.) They are
stated for Gaussian variables because the proof is simple in that case, and be-
cause that is sufficient for the purposes of this paper.

In discussing t.h.G. processes whose parameter ¢ is not restricted to be integral,
the usual continuity hypothesis will be made. It will be supposed that R(t)
is continuous at ¢t = 0:

1.3.1) }ing [R(t) — R(0)] = -'%}ilf)x E{[z() — z(0)]}} = 0.

It is then easily concluded that R(f) is everywhere continuous.

In the continuous parameter case, it would be useful to have the conditions
on R(f) necessary and sufficient for the continuity in ¢ of the chance variables
z(f) and for the existence of the derivative. No set of necessary and sufficient
conditions for the continuity of z(f) is known, although the fact of continuity
will not be difficult to prove in the special cases to be considered in §4. The
conditions for the existence of z’(¢) are quite simple, and will be given in Theorem
14.

The spectral function of a one-dimensional t.h.G. process will play an essential
role in some of the theorems to be discussed below. If R(n) is the correlation
function of a one-dimensional t.h.G. process, R(n) can be expressed in either
of the forms

(13.2) R(n) = fo cos 7 dF(\) n=0, %1, -,

(13.2) R(n) = [ ™ dG() n=0 %1, -,



234 J. L. DOOB

where, F(\), called the spectral function of the process, and G(A), called the
complex spectral function of the process, are real monotone non-decreasing
functions satisfying the following conditions:

F(0) = 0 G(—m) =0
(133) FO =) =FQ), 0<rx <7, Gh=)=GN\), -r<A<m
GO\ — GO0+) = G(0) — G(— M)
F(x) = G(x)
(134) FQ) = GO — G(— A+) = 260) — GO) — GO+), 0 <\ <=
F'Q) = 26°(\)°

The last equation of course holds only at points where the derivatives exist. The
forms (1.3.2), (1.3.2") are derived trivially from each other. The correlation
function determines the spectral functions uniquely, if the latter are supposed
to satisfy (1.3.3). In fact, at the points of continuity of F(\), G(\):

FO) = )\R(O) 42 }: R(n )sm 0N
(1.3.5)
GO\ = 9_%"_)_@_) 11_{2 ; R(n)
ny%0

Conversely if any F(\) or G(\) satisfying the stated conditions is used to deter-
mine an R(n) by means of (1.3.2) or (1.3.2’), R(n) is the correlation function of a
t.h.G. process. The representation of R(n) in terms of G(A) is frequently more
convenient than that in terms of F(\), because of the simple properties of the
exponential function. The following relation, which will be used below, exhibits
the elegance attained by the use of G(A):

- n

E {[Z ena(m)]- [Z crz(m)]} = X cmciR(m — n)

= [ & ce™ (T ere™ doo.

The correlation function of a one-dimensional continuous parameter t.h.G.
process can be represented in either of the following forms:

(1.3.6)

(13.7) R() = fo " cos I\ AFQV

(1.3.7 R() = f & dGON

9 H. Wold, A Study in the Analysis of Stationery Time Series, Uppsala, (1938), p. 66.
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where the spectral function F(A) and the complex spectral function G(\) are
monotone non-decreasing and satisfy the conditions

FO)=0 G(—) =0
(138) FA—)=FQ), 0 <A< = GA—) = G()
G\ — GO+) = G(0) — G(— \+)
F(o) = G(=)
(139) F(\) = GO\ — G(— M) = 2G(\) — GO) — GO+), 0 <\ < o,
F'(\) = 20°(M).
The last equation of course only holds at points where the derivatives exist.
The correlation function R(f) determines the spectral functions uniquely if the
latter are supposed to satisfy (1.3.8). In fact, at the points of continuity of
F(\), G(\):

FO) = ?r fa R 2 LY

(1.3.10) gt S0,

60 = lim 5 [ 2O
TeEOREM 1.4. Let {x(t)} be the variables of a one-dimensional continuous

parameter t.h.G. process with correlation function R(t) and spectral function F()).

Iy
(14.1) f MNdFQ\) <
3
then
(i) R'(¢), R""(t) extst and are continuous, and R’'(0) = O;

(ii) z(t) is an absolutely continuous function of t, with probability 1;
(iii) for each t,

dt + G(0).

(142) lim 2EHA =20 _
h=0 h
exists, with probability 1, and this convergence is also true in the mean:
— 2
(143) lim E{[&L_’%_ﬁ - x/(t)]} -0
h—>i

(iv) the z'(t) prgcess 18 a t.h.G. process, with correlation function —R'(t) and
spectral function j; N dF(M).

Conversely if
— - 2
(1.4.4) lim inf M = ilim inf E [:t(h) x(O)] < w,
h—0 h? h=0 h

then (1.4.1) is true.



236 J. L. DOOB

This theorem is due to Slutsky. The proof will be sketched here, for com-
pleteness. (The hypothesis that the process is a Gaussian process is immaterial,
since only the second moments are involved in the proof.)

Proof of (£). If the integral (1.4.1) exists, R’'(t), R"” () can be obtained by dlf-
ferentiating under the integral sign in (1.2.2):

R = — j; A sin & dF(\)
(1.4.5) -
R"(t) = — L' A’ cos N dF(N).
Then R’(t), R"(t) are continuous functions, and R’(0) = 0.
Proof of (it), (i%1), (). The quantity
z {[x(t + hi) —a(t) _ z(t+h) < x(t)]’}
1

(1.4.6) e
can be evaluated in terms of the correlation function R(t), and approaches 0
with h; , he, if the second derivative R’ (¢) exists. There is therefore a chance
variable y(f) to which the difference quotient converges in the mean:

(1.4.7) lim E{[Jﬁ%:—@ -~ y(t)]} -0
The y(t) process is a t.h.G. process. Moreover the equation
(1.4.8) E{z(8)xz(s + )} = R()

can be differentiated to give

(1.4.9) E{z(s)y(s + 1)} = Efz(s — thy(s9)} = R'()
and this in turn ‘when differentiated becomes

(1.4.10) Efy(s — )y()} = E{y(s)y(s + )} = —R"(?).

Hence the y(t) process has correlation function —R’(¢). Finally,

8{[s0 - 20 - [y &} = B0 - 200P)
(14.11) o t
+ [ [ Ewewe) asas -2 [ Bl - s0l@) ds = o,

(evaluating the right side of (1.4.11) in terms of R(t), R'(t), R”(¢)). Thus z(t)
is absolutely continuous, with probability 1, and y(t) is the derived function
z'(f). Hence z’'(t) exists for almost all ¢, with probability 1.*° It follows (Fu-
bini’s theorem) that the limit in (1.4.2) exists for each ¢, with probability 1,
except possibly for a t-set of Lebesgue measure 0. Since the proecess is t.h., the

10 For the exact meaning and measure-theoretic justification for statements of this type,
see Doob, Am. Math. Soc. Trans., Vol. 42 (1937), pp. 107-40.
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exceptional set must be either empty or the whole #line. The exceptional set
is therefore empty.

Conversely if (1.4.4) is true, (1.4.1) follows at once from (1.3.7).

It will be convenient to use condensed notation below. If z: (z,, ---, zx),
y: (41, - -+, y~) are N-dimensional vectors and if A: (a;;) is an N-dimensional
square matrix, -y will denote the matrix (z4;), Az the vector with components
2 a:x;and (z, y) the number Y z4:. The adjoint matrix (al;): ai; = aj

; [

1
will be denoted by A*. Throughout this paper, the chance variables will be
real-valued, but it will be convenient to use complex constant vectors. The
identity matrix will be denoted by I. It will be convenient to denote the 7, jth
term of the matrix A by (4)i;. The following equations will be used frequently :

Az-By = A(z-y)B*, (Az,y) = (z, A*y).

If z is a chance variable, it is clear that E{z-z} is a symmetric non-negative
definite matrix.

The simplest Gaussian processes are those in which the distribution of future
states is based not on the complete past, but only on the immediate present.
The precise definition of this (Markoff) property is the following.

(C) If 4 < -+ t,11 the conditional distribution of x(¢,.;) for given values of
z(t), - - -, z(t,) depends only on the value assigned to z(f,). The conditional
distribution of z(t,41) for given values of z(t), - - - , (%) will then be simply the
conditional distribution of z(¢,,;) for the assigned value of z(t,).

The processes to be discussed in this paper are the processes with properties
(A), (B), (C): temporally homogeneous Gaussian Markoff (t.h.G.M.) processes.
The properties of t.h.G.M. processes will also be used to derive properties of the
most important simple types of one-dimensional t.h.G. processes—those with
rational spectral density functions. Some of the results are contained implicitly
in the work of previous writers, but the presentation of the results has in all cases
been chosen to stress their specific probability significance, and may therefore
appeal even to readers familiar with previous work.

The condition (C) on a Gaussian process is equivalent to the condition (C’)
that if t1 < -0 < ty+1

(1.5.1) Efz(t), -+, 2b); z(t4)} = E{z®); =t}
In fact (C) is at least as strong as (C’). Conversely if (C’) is true,
2(bn) = 2br) — Elz®); ob)} + Ela); 24}
=y + El{zt); (b))},

where y is a Gaussian chance variable with mean 0 uncorrelated with and
therefore independent of z(#y), - - - , z(¢,), and the last term of (1.5.2) is simply a
multiple of z(,). Then the conditional distribution of z(t,41) for given z(t),
.-+, z(¢t,) is & Gaussian variable, with mean E{z(,); z({,..)} and dispersion that
of y. Since this conditional distribution depends only on z(t,), property (C’)

(15.2)
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implies property (C). Hence these properties are equivalent. The condition
(C’) can be written in the form

(1.53) Efz(r), 7 £ s; 2(s + )} = Efz(s); z(s + 8}, t > 0.

In many applications the stochastic processes either have this property already
or will have it if the dimensionality of the processes is increased by the adjunc-
tion of auxiliary chance variables. In the latter case the process is called a
component process of a t.h.G.M. process. Component processes are discussed
in detail below. If a process is a t.h.G. process, the right side of (1.5.3) is a
linear transformation (depending only on t) of z(s):

(1.5.4) E{z(s); z(s + )} = A@)z(s), t> 0.

The matrix function A(t) will be called the transition matrix function. It
satisfies the equation (obtained by performing the operation E{z(s)-} on both
sides of (1.5.4))

(1.5.5) R(t) = R(O)A@®)*, t>0,

but is otherwise unrestricted since if (1.5.5) is true, the difference z(t) — A (£)x(s)
is uncorrelated with and therefore independent of z(s). In many applications
the elements of R(¢) will vanish identically except in square matrices down the
main diagonal. If this is true, A(¢) can also be assumed in this form.

If the variables {z(¢)} determine an N-dimensional t.h.G.M. process, and if B
is a non-singular N-dimensional square matrix, the variables {Bz(t)} also de-
termine a t.h.G.M. process. Two processes connected in this way will be called
equivalent. If two t.h.G. processes are equivalent, and if one is a Markoff
process, the other must be also. If there is a change of variable

(1.5.6) y(¢) = Bz(?) .

taking the t.h.G.M. z(f) process with transition matrix A(f) and correlation
matrix R(f) into the equivalent y(f) process with transition matrix A,(f) and
correlation matrix R;(¢), then

(1.5.7) A,(t) = BA()B7, R\(t) = BR(t)B*.

If {z@)}, {y@®}, {2(t)} determine th.G. processes of dimensions a, 8 and
a + B respectively, if the process determined by

{xl(t)) D] xa(t)y Z/l(t), Tt yﬁ(t)}

is equivalent to the z(f) process, and if every z(s) is independent of every y(f),
the 2(t) process will be called the direct product of the z(f) and y(f) processes.
The extension of the definition to direct products of more than two processes
is clear. If the z(f) and y(f) processes are Markoff processes, their direct product
is also a Markoff process. Conversely if the z(¢) process is a Markoff process,
the factor processes must also be Markoff processes. The following facts about
matrices will be used below. If A is any N-dimensional matrix, there is a non-
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singular N-dimensional matrix B such that B'AB is in Jordan canonical form:
the elements of B AB vanish except for those in certain submatrices down the
main diagonal. Each of these submatrices has the form

A0 - - -0
(1558) A0
0 - - 011

or simply (M) if it is one-dimensional. The N\’s are the characteristic values of A4,
that is the roots of the characteristic equation det. | A — Al | = 0, and the sum
of the dimensions of the submatrices with a given A is the multiplicity of A as a
root of this equation. The matrix A is said to have simple elementary divisors
corresponding to a given root A of the characteristic equation if the submatrices
in (1.5.7) with that \ are all of dimension 1. Thus orthogonal matrices, sym-
metric matrices, and skew symmetric matrices have only simple elementary
divisors, since they can be put in diagonal form, (with A’s of modulus 1, real,
pure imaginary, respectively). The transformation B and the \’s may not be
real. If A is real, however, there is a real matrix B such that the elements of
B'AB vanish except for square submatrices down the main diagonal, and the
characteristic roots of different submatrices are neither equal nor conjugate
imaginary,

The powers of a matrix in Jordan canonical form are easily calculated using
the fact that

)\0...0" )\"0...0

n—1 \n
as9 (1AO 0 MmO 0
0 - - 01 A . R O S

It follows that in the general case the elements (4™);; are linear combinations
of A}, m\}, etc., where \;, A2, -+ - are the characteristic values of A. Hence
if (A™);:; — 0 as n — «, the approach must be exponential. The terms of A"
certainly go to O if all the characteristic values of A have modulus less than 1.

The matrix e* is defined by the usual series formula for the exponential func-
tion. If A has the form (1.5.8), ¢** can be calculated using (1.5.9):

e 0 - - - 0
(1.5.10) pa | B 00
' ' ' te.t)\ e;)\

It follows that in the general case the elements (e*);; are linear combinations of
e™ ,te™  etc. where A, \g, - - - are the characteristic values of 4. If (¢");;— 0
as t — o the approach must be exponential. The terms of ¢** certainly go to 0
if all the characteristic values of A have negative real parts.
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A t.h.G.M. process will be called deterministic if the least squares prediction
of (s + t) for given z(s), (¢ > 0), that is E{z(s); z(s + ¢)} is alwayscorrect:

(1.6.1) z(s + t) = A(t)z(s) t>0,

with probability 1.

The following classification of deterministic processes will be useful later. It
will be shown that any t.h.G.M. process is the direct product of processes of the
following four deterministic types, and of a factor process with no deterministic
factors.

M(0). Let {z(t)} be the variables of a one-dimensional t.h.G.M: process,
with z(f) = 0 with probability 1. (The chance variable which is 0 with prob-
ability 1 is considered as a Gaussian variable with mean 0 and dispersion 0.)
The correlation function of the process vanishes identically.

M(1). A one-dimensional t.h.G.M. process which satisfies

(1.6.2) z(t) = =z(0), E{z@t)} = o, E{z@®)’} > 0,

will be called a process of type M(1). The correlation function R(¢) is positive

and independent of &.
M(—1). A one-dimensional t.h.G.M. process with an integral-valued param-

eter n, satisfying
(163) --- =z(—1)= —2(0) =z(1) = --- E{z@n)} =0, E{z(n)’} >0

will be called a process of type M(—1). The correlation function is alternately
positive and negative: R(n) = (—1)"R(0).
M(®). A two-dimensional t.h.G.M. process with

E{z{0)} =0, E{z;00)’} =o' >0, E{x(0)z(0)} =0,
(1.6.4) z1(t) = £,(0) cos t0 — z2(0) sin ¢0
Z3(t) = 21(0) sin ¢6 + 22(0) cos t8,
will be called a process of type M(e®). The correlation function is given by

2 2 .2
o cos té ¢ sin t6
(1.6.5) k@ = (—a2 sintd o cos to) )
A process with variables {z(t)} will be called degenerate if there are constants
¢, -+, cx not all 0, such that

1.7.1) Doczi(t) =0

7
with probability 1, for all ¢. Equation (1.7.1) is true if and only if
(1.7.2) E{[}; cms (O} = ,Z; (B(0))gecice = O

that is if and only if the correlation matrix R(0) is.singular. If a non-degenerate
process is a direct product of factor processes, the latter are also non-degenerate.
The only degenerate one-dimensional process is that of type M(0).
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2. The structure of degenerate and deterministic processes

THEOREM 2.1. Every degenerate t.h.G.M. process is the direct product of proc-
esses of type M(0) and (in some cases) of a non-degenerate t.h.G.M. process.

In proving this theorem, it can be supposed that the original process has been
replaced by an equivalent process, if necessary, so that the symmetric non-
negative definite matrix B(0) is in diagonal form, with only 0’s and 1’s down the
main diagonal, say O to the vth place and 1 thereafter. Then z;(t{) = 0, when
j = v'and the process is obviously the direct product of » processes of type M(0)
and an (N — »)-dimensional non-degenerate process.

THEOREM 2.2. Let {x(t)} be the variables of a deterministic t.h.G.M. process,
with correlation function R(t).

(i), The process 1s the direct product of factor processes of types M(0), M (1),
M.

(ii) If the parameter t of the process is restricted to the integers, there is a non-
singular matrix A such that

2.2.1) z(n) = A"z(0),
(2.2.2) R(n) = R(0)A*", n=0, %1, £2, ---
(2.2.3) R(0) = AR(0)A*.

The transition matriz A is the transform BOB™ of an orthogonal matriz 0. If
the process ts non-degenerate, A is uniquely determined. )

(@ii") If the parameter of the process runs through all real numbers, there is a
malrix @ such that

(2.2.1) z(t) = e“°xz(0), ,
2.2.2') R(t) = R(0), St<e
223 QR(0) + R(0)Q* = 0.

The matriz Q is the transform BKB™ of a skew symmetric matriz K. If the process
18 non-degenerate, Q is uniquely determined.

(iii) Conversely if R(0) is any symmetric non-negative definite matrix, and
if A(Q) Us any matriz satisfying (2.2.3) ((2.2.3')), where A is non-singular, there
1s a deterministic t.h.G.M . process,with correlation function given by (2.2.2) ((2.2.2"))
and satisfying (2.2.1) ((2.2.1")).

In proving (i) (ii) and (ii’) it will be permissible to go to processes equivalent
to the original one, if convenient. Moreover if the given process can be expressed
as a direct product, it will be sufficient to prove (i) (ii) and (ii’) for each factor.
Since (i) (ii) and (ii’) are certainly true for processes of type M(0) (with A in
(ii) the identity, and @ in (ii’) the null matrix), and since according to Theorem
2.1, processes of type M(0) can be factored out of the given process to leave a
non-degenerate remaining factor, if any, it will be sufficient to prove (i) (ii) and
(ii’) for non-degenerate processes.



242 J. L. DOOB

Proof (t integral) of (i) and (%) for non-degenerate processes. If the process
determined by {x(n)} is deterministic, (1.6.1) is true. Hence

(2.2.4) z(v + 1) = Az(v).
Then (2.2.1) is true for n = 0, and will be established for all n as soon as it is

shown that A is non-singular. TUsing (2.2.1),

(2.2.5) R(n) = E{z(0)-z(n)} = E{x(0)-A"z(0)} = R(0)A*", n 2 0,
and

(2.2.6) R(0) = E{z(1)-z(1)} = E{Az(0)-Az(0)} = AR(0)A*.

Under the present hypotheses, R(0) is non-singular. Then A is determined
uniquely by (2.2.5) with » = 1, and A cannot be singular because of (2.2.6).
There is an equivalent process in which R(0) is the identity. Considering this
process, (2.2.6) becomes I = AA*, so that A is orthogonal. Finally there is an
equivalent process (obtained by an orthogonal change of variables) in which
R(0) is still the identity and the matrix A isin the (real) normal form of or-
thogonal matrices: all the elements of A are 0 except for two-dimensional rotation
matrices or 1I’s or —1’s down the main diagonal. It is now obvious that the
process is the direct product of processes of types M(+1), M (€.

Proof (t continuously varying) of () and (it') for non-degenerate processes. If
the t.h.G.M. process determined by {z(¢)} is deterministic, (1.6.1) is true.

Hence
(2.2.5") R@) = E{z(s)-z(s + )} = RO)A(@®)*
(2.2.6") R(0) = Efx(s + t)-z(s + )} = AG)RO0)AQ®)*.

The matrix A(f) is uniquely determined by (2.2.5") since R(0) is non-singular.
It then follows from (1.6.1) that

(2.2.7) A+t = AEAQ.

The continuity hypothesis (1.3.1) becomes

(2.2.8) lin: R(0)A(H)* = R(0),
t =

which implies that
(2.2.9) lim A@®) = 1.
t—0

It is well known that any solution of (2.2.7) and (2.2.9) can be written in the
form A() = €. If now the right side of (2.2.6’) is expanded in powers of ¢
and the coefficient of ¢ is set equal to 0, the resulting equation is (2.2.3"). It can
be supposed, going to an equivalent process if necessary, that B(0) is the identity.
Then A()A@)* = I, @ + Q* = 0. An equivalent process can be chosen so
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that R(0) is still the identity, and so that @ is in the real canonical form of skew
symmetric matrices: its elements vanish except for possible two rowed matrices

(-2 o)

down the main diagonal. It is now clear that the non-degenerate process is a
direct product of factors of type M(e'®) corresponding to two rowed matrices
just described, and factors of type M (1).

Proof of (tiz). If R(0) and A(Q) satisfy the conditions of Theorem 1.2 (iii),
choose z(0) as any Gaussian variable with correlation matrix R(0). Then
define z(n) by (2.2.1) ((2.2.1")). The resulting stochastic process is temporally
homogeneous if and only if E{z(s)-z(s + #)} depends only on ¢{. The details of
the calculation will be carried out for only for ¢ integral.

In the first place

(2.2.10) E{z(n)-z(n 4+ »)} = E{4"2(0)-A"*""z(0)} = A"R(0)A*"*".
Now (2.2.3) can be developed further:

(2.2.11) R(0) = AR(0)A* = A’R(0)A¥ = ...
so that (2.2.10) reduces to
(2.2.12) E{z(n)-z(n + »)} = R()A*".

The process is thus temporarally homogeneous, and obviously satisfies the other
parts of the definition of a deterministic t.h.G.M. process. Theorem 2.2 is now
completely proved.

The restriction imposed on R(0), A(Q) by (2.2.3) ((2.2.3")) is quite loose.
Given R(0), there is always an A (Q) satisfying (2.2.3) ((2.2.3")) for example the
identity (null matrix). Given an A which is the transform of an orthogonal
matrix (a @ which is the transform of a skew symmetric matrix) there is always
a corresponding R(0): In fact A (Q) can be assumed to be orthogonal (skew sym-
metric) and the R(0) can be taken as the identity.

3. T.H.G.M. processes with an integral valued parameter

In this section, the parameter ¢ will range through all the integers. The condi-
tion (1.5.3) that a t.h.G. process be a t.h.G.M. process can be simplified in the
integral parameter case. In fact it will be shown that it is sufficient if

@.11) E{---,z(n — 1), z(n);2(n + 1)} = E{z(n); z(n + 1)},
n=0,=l1,---

with probability 1. If (3.1.1) is true,

(3.1.2) z(v + 1) = Az(») + 2(»)
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where A is the transition matrix of the process and 7(v) has mean 0 and is inde-
pendent of ---, z(v — 1), z(v). It follows that

z(n) = A" ™x(m) + AV " qtm) + A" n(m + 1)
+ -+ a(n = 1).

The terms involving the #(j) are all independent of -- - , x(m — 1), z(m). This
equation therefore implies that
B.14) E{---,z(m — 1), z(m); z(n)} = A" "z(m) = E{z(m); z(n)},
and (3.1.4) is precisely the condition that the process has the Markoff property.

The following lemma will be useful.

Lemma 3.2. Let z:(zy, - -+, zn) be any Gaussian chance variable, with E{x}

= 0. Then there is a uniquely determined symmetric non-negative definite w atrizx
S, and a Gaussian chance variable y, such that

3.2.1) E{lyy} =1
and
(3.2.2) r=8y, & =E{zz].

If + = Sy, and if S is symmetric, then the second equation in (3.2.2) is cer-
tainly true. It is easily seen, by examination of the characteristic values and
vectors of the matrix E{z-x} that this matrix has a unique symmetric non-
negative definite square root S. Hence if there is an 8 satisfying (3.2.2), there

can be only one. The chance variables z;, - -, zy can be written as linear
combinations of N uncorrelated Gaussian chance variables & , - - - , & satisfying
E{¢-g) = I

(3.2.3) z = A¢.

If A is written in the polar form A = SU, where S is symmetric and non-nega-
tive definite and U is orthogonal, (3.2.3) becomes

(3.2.4) z = SUt = Sy

where y = Ut satisfies (3.2.1).

It will be shown below that every t.h.G.M. process can be represented as the
direct product of factors of certain types. The deterministic types have already
been catalogued: M(0), M(=%1), M(e*). The non-deterministic factor type
(integral valued parameter) will now be described.

M. Let {n(n)} be a sequence of mutually independent N-dimensional
Gaussian chance variables with 0 means and a common distribution function.
Let A be any N-dimensional square matrix. Define z(n) by

(3.3.1) z(n) = g A" 9(n — m)
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where it is supposed that" A is so chosen that the series converges with prob-
ability 1, This will be true, for example, if all the characteristic values of A
have modulus less than 1, so that the terms of A™ go exponentially to 0. It
will be shown below that it is no restriction to assume that A has this character.
The variables {z(n)} determine a t.h.G.M. process. Since z(n)-Az(n — 1)

is independent of - - - , z(n — 2), z{n — 1), the xz(n) process is a Markoff process
with transition matrix A:
3.3.2) E{.-- z(n — 1); z(n)} = Az(n — 1).

A process defined in this way will be called a process of type M. A non-singular
change of variables y(n) = Bz(n) leads to a process of the same type:

(3.3.3) y(n) = }': (BAB™)™Byp(n — m).

M=)

It will sometimes be convenient to write a process of type M in a form slightly
different from (3.3.1). Using Lemma 3.2 it is evident that there are Gaussian
variables {£(n)} satisfying

(3°3~4) E{E(n)} = 07 E{E(m)"é(")} = 6"'."[7 m,n = O; il’ Tty
and a symmetric non-negative definite matrix S such that n(n) = Sg(n). Then

8" = E{t(n)-£(n)} and
(3.3.5) z(n) = }:) A" 8g(n — m).

Under the change of variable y(n) = Bz(n), A becomes BAB™ and S becomes
BS’B*.

The only condition on A required for convergence in (3.3.5) is that A™S — 0.
It will now be shown that A can always be assumed to have only characteristic
values of modulus less than 1, in the sense that there is an A with this property,
and satisfying the equations

(3.3.6) A™S =A™S, m=1,2 ---.

It is no restriction, going to an equivalent process if necessary, to assume that
the elements of A vanish except for those in two square submatrices down the
main diagonal, where one submatrix 4, has only characteristic values of modulus
less than 1 and the other, A4;, of modulus greater than or equal to 1. If the
matrix S is written in terms of the corresponding submatrices:

Al 0 S[ Ss
39 A= S =
(3.3.7) 0 A Si S
11 Throughout this paper, if A is any matrix, A®is defined as the identity matrix I.
12 We shall use repeatedly Kolmogoroff’s theorem that an infinite series of mutually inde-
pendent chance variables with zero means converges with probability 1 if the series of their
dispersion is convergent. (Kolmogoroff only states the theorem in one dimension, but the

extension to n dimension is trivial.) If a series of mutually independent Gaussian variables
converges, the series of dispersions converges to the dispersion of the sum.
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the condition on A implies that A2'S; — 0. If it is shown that S, = 0, it will
follow that S; = S, = 0, because S is symmietric and non-negative definite. The
matrix A will then be defined by

A4, 0
(3.3.8) 4= 0‘ 0

and A will satisfy (3.3.6) and will have only characteristic values of modulus
less than 1. The problem has thus been reduced to the case where A, is absent:
A only has characteristic values of modulus at least 1, and it must be proved
that A™S — 0 implies that § = 0. The proof of this is immediate when A is put
into its Jordan canonical form.

The symmetric non-negative definite matrix S satisfies the equations

0

(3.3.9) R(0) = }F“, A™SP A = 8 + AR(0)A*.

TrEOREM 3.4. A direct product of processes of type M s also of type M. Con-
versely any factor process of a process of type M s itself of type M.

The direct part of the theorem is obvious. To prove the converse, suppose
an N-dimensional process of type M has an I-dimensional factor, corresponding
to the variables z,(n), - - -, z:(n). It can be supposed, that all factors of type
M (0) are separated out, so that there are indices j, k: 1 < j < 1 < k < N such
that the {z(n), ---, z;(n)} and {xru(n), ---, zy(n)} processes are non-de-
generate and that the variables z;1(n), - - - , zx(n) vanish identically. Making
a change of variables, if necessary, it can be supposed that R(0) has the form

i k—j N—k

I o 0
(3.4.1) R(0): 0 0 0
0 0 I

and that R(n) has the blocks of zeros indicated in (3.4.1). Since R(1) = R(0)A*,
A must have the form

j k—j N—k

_ - 0
(3.4.2) A: 0 0

0 — —_
Then A™ will have this same form. Finally, because of (3.3.9), S% and therefore
S raust have the form

— 0 0
(3.4.3) S:{o o o).
0 0 —

Let A, be the matrix whose elements are the same as those of A except that the
(7 + 1)th to kth columns of A, vanish. Since

(3.4.4) APS = A™S, m=0,1,---
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it follows that
(3.4.5) z(n) = D, AT SE(n — m).
Me=(

It is now obvious that the {z1(n), - - -, :;(n)} process is of type M.
TaEOREM 3.5. A mon-degenerate process of type M has no deterministic factors.
Any factor process is non-degenerate and of type M. To prove the theorem,
it will therefore be sufficient to prove that the process itself cannot be deter-
ministic. If it were, we should have

z(n) — Az(n — 1) = Sg(n — 1) = 0.

Then S8 = 0. But then the process is certainly degenerate, contrary to hy-
pothesis.

TarorEM 3.6. (i) Every t.h.G.M. process (discrete parameter) is the direct
product of processes of type M(0), M (1), M(e*), M.

(ii) Let A be a transition matriz of a t.h.G.M. process, with variables {z(n)}.
There are mutually independent Gaussian variables - - - , £(0), £(1), - -+ , & saiis-
Jying

E{t(m)} = E{t} =0
E{t()-¢(n)} = Eft-£) = I,

and symmetric non-negative definite matrices S, T such that

(3.6.1)

(3.6.2) x(n) = io A™St(n — m) + A"Tt, n=0,1,- -,
(3.6.3) T® = AT® A*,
(3.6.4) R(0) = )i‘o A™S'A¥™ 4+ T* = AR(0)A* + S,

where the series in (3.6.2) converges with probability 1. If A is non-singular, (3.6.2)
holds for all n. The sum and last term in (3.6.2) are linear transformations of x(n):
(3.6.2) exhibits in part the decomposition into factor processes described in (z). The
correlation function is given by

R(n) = R(0)A*"

(3.6.5) n=20,1---.
R(—n) = A"R(0).

(iii) The transition mairix A is uniquely determined if and only if the process
18 non-degenerate. In any case, there is a transition matrixz whose characteristic
values are all of modulus less than or equal to 1, and whose characteristic values of
modulus 1 correspond to simple elementary divisors. The transition matriz A
Sfurnishes the solution of the prediction problem of the process:

(3.6.6) E{---,z(m — 1), z(m); x(m + n)} = A z(m), n=20,1,---
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The matriz S°, which is uniquely determined, measures the dispersion of z(n + 1)
about its predicted value in terms of z(n):

3.6.7) E{[lz(n + 1) — Az@)]'} = S~

(iv) Conversely if A is a matrix with af least one characteristic value of modulus
less than 1 or of modulus 1 and corresponding to a simple elementary divisor, A is the
transition matrix of a t.h.G.M. process, with R(0) not the null matriz. If all the
characteristic values of A are as just described, A is the transition matriz of a non-
degenerate t.h.G.M. process. If R(0), S, A are matrices satisfying (3.6.4) with
R(0), S, symmetric and non-negative definite, there is a t.h.G.M. process whose
variables can be written in the form (3.6.2) with the given R(0), S, A.

This decomposition of a t.h.G.M. process into deterministic factors can be
considered as a special case of the general decomposition theorem of Wold, which
is applicable to all t.h.G. process.” (Wold only considered the one-dimensional
case.) The proof in the present special case is simpler, however, and illumi-
nates the general case. ,

Proof of (1) and (i7). Equations (1.5.3) and (1.5.4), in the present case,
lead to

(3.68) E{---,z(n — 1), 2(n); z(n + 1} = Efz(n); z(n + 1)} = Az(n).

The first two terms are equal because the process has the Markoff property.
The last term is linear in x(n) because the process is Gaussian. The matrix A
can be taken independent of n because the process is temporally homogeneous.
Thus (3.6.8) involves the three fundamental properties of the xz(n) process.
From the definition of conditional expectation, it follows that z(n + 1) — Az(n)
is independent of the chance variables - - -, z(n — 1), z(n). Hence the variables

ooy [z(n) — Az(n — D), [z(n + 1) — dz(@)], - -

are mutually independent. According to Lemma 3.2, there are mutually inde-
pendent chance variables {£(n)} satisfying

(3.6.9) z(n) — Az(n — 1) = St(n), E{t(n)-tm)} = I, Efi(n)} =0,
where 8 is symmetric, non-negative definite, and satisfies (3.6.7). The matrix

S? thus measures the dispersion of z(n) about its predicted value Az(n — 1).
The representation (3.6.2) can be obtained very simply. In fact

z(n) = [zx(n) — Az(n — 1)] + Alz(n — 1) — Az(n — 2)] + ---

(3.6.10) + A" z(v + 1) — Az(»)] + A" 2(»)

n—r—1

= 2 A'St(n —j) + A" (),

7!

13 A Study in the Analysis of Stationery Time Series, Uppsala (1938), p. 89. See also
Kolmogoroff, Bull. Acad. Sci. URSS Ser. Math., Vol. 5 (1941), pp. 3-14 and Bolletin Mos-
kovskogo Gosudarstvenogo, Mathematika, Vol. 2 (1941), pp. 1-40), in whose papers the de-
composition theorem is brought out in its full significance.
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and it will be shown that when » — — « (3.6.10) leads to (3.6.2). Before going
to the limit, however, we note that in (3.6.10) the sum is independent of the
variables - - - , z(v —1), z(v), so that

(3.6.11) Ef---,z(v —1), z(»); z(n)} = A" "z(v)
which is another way of writing (3.6.6). Moreover, using (3.6.11),
(3.6.12) R(n — ») = E{z(»)-z(n)} = R(0)A*",

which is another way of writing (3.6.5). (The value of R(n) for n < 0 is ob-
teined using the fact that R(—n) = R(n)*.) The last term in (3.6.10) is the
conditional expectation of xz(n) for preassigned ---, z(v —1), z(»). It follows
from the corollary to Theorem 1.2 that this conditional expectation converges
with probability 1 when » — — «, but this convergence will be proved directly
in the present particular case.

From (3.6.10),

n—y—1

(3.6.13) E{z(n)-z(n)} = R(0) = go A'SPA¥ 4 A" R(0)A*™.

The terms of the sum and the last term are all symmetric and non-negative
definite matrices. It follows that there is convergence in (3.6.13) when » —
— 00 !

(3.6.14) R(0) = X A’S*A¥ + lim A™R(0)A*".
=0 m—rc0

The convergence of the series of dispersions in (3.6.14) implies that the series of

chance variables in (3.6.2) converges, with probability 1. Then when » - — «

(3.6.10) becomes

(3.6.15) 2(n) = 5__': A3 8E(n — j) + 2(n),
where
(3.6.16) z(n) = lim A" " z(v).

Since z(n) is independent of £(n 4 1), £(n + 2), - - - , 2(n) is independent of every
£(m). Moreover, writing 2(0) = T'¢, where £ satisfies (3.6.1) and 7T is symmetric
and non-negative definite, .

(3.6.17) z(n) = A"2(0) = A"T¢, nz 0.

Thus (3.6.3) and (3.6.4) are satisfied. If A is non-singular, (3.6.17) will be cor-
rect for negative n also. ,

The decomposition of the process into factor processes of the types described
in the theorem will be obtained by a detailed analysis of the significance of
(3.6.2). Under the change of variable y(n) = Bz(n), T® becomes BT*B*, and
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A becomes BAB™'. Making a suitable change of variables, if necessary, it can
be supposed that A has the form

(3.6.18) A: (“é‘ [‘1)2)

where the characteristic values of A; have moduli unequal to 1 and those of A,
have modulus 1. The matrix T? can be written in terms of submatrices of the
same dimensions in a corresponding way:

o (TT —
(3.6.19) T.(__ T

where T, T, are symmetric and non-negative definite. A further change of
variables may be made, if necessary (transforming only the last » variables) pre-
serving the forms (3.6.18) and (3.6.19) and transforming T, into the identity.
Then using (3.6.3)

(3.6.20) AT2AY = Ti,  A.A; =1

Hence A, is orthogonal. Developing (3.6.20) further, ATTIAT™ = T3, for all
m = 0. When m — o in this equation, the terms in the matrix product on the
left involve the mth power of the characteristic values of 4; (all of modulus
different from 1, by hypothesis). Then those characteristic values which actually
appear can only be those of modulus less than 1, and the matrix on the left must
goto0asm — «:T; = 0. Since T is non-negative definite, 7 must have the
simple form

00
(3.6.21) T (0 I) )
The matrix S can also be divided into corresponding submatrices:
. Sl -
(3.6.22) S: (__ S,)'

The convergence of the series in (3.6.4) implies that
lim A7S;4;:™ = 0.

m-—»00
Since A is orthogonal, this means that S; = 0, and since S is symmetric and non-
negative definite, S has the form

(3.6.23) s (%‘ g).

Tt is now clear from (3.6.2) that the x(n) process is the direct product of a process
of type M and a deterministic process corresponding to the division of the vari-
ables determining the above submatrices. The deterministic factor process is
the direct product of the elementary types already discussed. The variable
z(n) and the sum in (3.6.2) are linear transformations of z(n).
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Proof of (#12). If the process is non-degenerate, RB(0) is non-singular, and the
transition matrix is determined uniquely by {3.6.5) with n = 1. If the process
is degenerate, there will be one or more factor processes of type M (0), and their
transition matrices are quite unrestricted. In the non-degenerate case the
characteristic values will be of modulus less than 1 (corresponding to a factor of
type M, if one is present), or equal to 1 (corresponding to the factors of type M
(21), M(e™®) making up the deterministic factor, if one is present), and in the
latter case the elementary divisors are simple. If the process is degenerate, and
if the part of A corresponding to the factors of type M (0) is taken to be the iden-
tity, there will be simple elementary divisors corresponding to the characteristic
value 1 for each such factor. The remaining statements of (iii) have already
been proved.

Proof of (iv). Let A be a matrix with at least one characteristic value of
modulus less than 1 or equal to 1 and corresponding to a simple elementary
divisor. Then some transform BAB™ has the form

4, 0 0
(3.6.24) 0 4 O
0 0 A4,

where A, (if present) has only characteristic values of modulus less than 1, 4.
(if present) is orthogonal, and both A4,, A; are not absent. For the purposes
of the present proof it can be supposed that A is already in this form. Define
S, T by

S, 00 0 0O
(3.6.25) S:{0 0 0 r{0 1 0
0 0 O 000

where the indicated submatrices of S and T are in the same positions as those of
A, and where 8, is any symmetric positive definite (and therefore non-singular)
matrix of the proper dimension. The series in (3.6.4) converges and the first
equation in (3.6.4) defines a matrix R(0) which obviously satisfies the continued
equality. If all the characteristic values of A are as described in the beginning
of this paragraph, A; can be supposed absent. In this case

RO)=8+T"+ ---

is non-singular. The proof of the first two parts of (iv) has now been reduced
to that of the last part. Suppose then that R(0), A, S satisfy the hypotheses
of the last part of (iv). Then

R(0) = AR(0)A* + S*
(3.6.26) AR(0)A* = A’R(0)A* + AS*A*

............................

A"R0)A*™™ = A"R(0)A*" + A" SP4*" !,
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Adding these equations

n—1

(3.6.27) R(0) = Z; A™SPA*™ 4+ A"R(0)A*".

This equation leads to (3.6.14), and T? defined as the limit in (3.6.14), satisfies
(3.6.3). Let---, &—1), £0), - - -, £ be mutually independent Gaussian vari-
ables satisfying (3.6.1). Then the z(n) defined by (3.6.2) determine the vari-
ables of a Gaussian process with non-negative values of n, but a slight modifica~
tion is needed to obtain an expression defined for all n. To obtain this, it can
be supposed that 4, T, S are in the forms (3.6.24), (3.6.25). Define 4 by

I 0 0
(3.6.28) A:{0 4, 0].
0 0 I

Then A is orthogonal and AT = AT. If now (3.6.2) is used to define z(n) for
all n with A™T replaced by A™T, the z(n) process is a t.h.G.M. process with the
desired properties.

The properties of the process reversed in time are of some interest. It is easy
to see that if n is replaced by —n, a t.h.G.M. process remains a t.h.G.M. process.
If the original process is non-degenerate, the new transition matrix is
R(0)A*R(0)™. If the transition matrix remains unchanged when # is replaced
by —n, R(0)A*R(0)™ = A. This is equivalent to the equation R(n) = R(—n).

The simplest generalization of a t.h.G.M. process is the following. Let the
chance variables {y(n)} determine a t.h.G. process with the property that for
some N > 0,

(8.7.1) E{---,y(n — 1);y(n)} = E{y(n — N), --- , y(n — 1); y(n)},

with probability 1. If N = 1, the process is a t.h.G.M. process. This type
process will be called a t.h.G.My. process. To avoid notational complications
only the one-dimensional case will be considered. The right hand side of (3.7.1)
is a linear combination of the variables y(n — N), --- , y(n — 1). The variables
thus satisfy a difference equation of the form

(3.7.2) y(n) — ay(n — 1) — --- — axy(n — N) = 5(n)
generalizing (3.6.9), where 7n(n) is independent of the chance variables - - -,
yn — 2), y(n — 1). The {5(n)} are mutually independent chance variables
with zero means and dispersions independent of n. Equation (3.7.2) leads to
3.73) y) —ai" Pym — 1) — .-+ — a&x"Vy(m — N) = 2" (n)

(m = n)
where 7" ™ (n) has zero mean and is independent of the chance variables - - - ,
ym — 2), y(m — 1). Hence
(3.74) E{---,y(m — 1);y(n)} = E{y(m — N), --- ,y(m — 1); y(n)},

m = n.
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The difference equation (3.7.2) has been studied in some detail in the past.™*
We shall use an approach which adds insight into the structure of the solution
and which clarifies the place of the solution in the general theory of t.h.G.
processes. This approach is in terms of N-dimensional t.h.G.M. processes.
Define the variables {x(n)} of an N-dimensional process by

(3°7°5) x;(n)=y(n+j)1 n=0’=’=11"" j=1""’N°
The x(n) process is evidently a t.h.G.M. process. If the index & of the y(n)
process is the minimum for which (3.7.1) is true, the corresponding x(n) process

will be non-degenerate. Then the transition matrix A is uniquely determined,
and is evidently

(3.7.6) A: a; # 0.

01 P
0 0 o . .0
0 . - . .01

an . . . . . .
The matrix S, measuring the dispersion of the prediction Az(n — 1) of z(n),

has the form

0O - « « « .« .0
3.7.7) S: 0 .- . . - . .0l
0 - . . . - 0 s
The characteristic equation of A is simply
(378) a" ol ala"—l — s — QN = 0.

The matrix A has only a single characteristic vector corresponding to each char-
acteristic value A, the vector (1, ), ---, A¥™"). Hence if A is a multiple root of
(3.7.8), it does not correspond to a simple elementary divisor. Therefore, ac-
cording to Theorem 3.6, all roots of (3.7.8) of modulus 1 must be simple roots.
It will be proved below that either no roots have modulus 1 or all roots have
modulus 1.

If an N-dimensional non-degenerate t.h.G.M. process is given whose transition
matrix A and dispersion matrix S have the forms (3.7.6) and (3.7.7) respectively,
zj(n) — Tl — 1) =0
with probability 1, for j < N. Then a y(n) process can be defined unambigu-
ously by (3.7.5). Since for fixed j, z;(n) determines a one-dimensional t.h.G.
process, the y(n) process is a t.h.G. process, and (3.7.1) is obviously true, with

N minimal if A is non-singular.
Case 1. S8 = 0 (deterministic case). In this case the z(n) process is deter-
ministic, and the y(n) process satisfies the equation

(3.7.2") y(n) = aiyin — 1) + --- + ayy(n — N).

1 Cf. for example H. Wold, A Study in the Analysis Of Stationery Time Series, Uppsala,
1938.
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All the roots of (3.7.8) are simple roots, of modulus 1. Since S = 0,

3.7.9 z(n) = ATt n=0,=+l1,---
and therefore

N
(8.7.100 y(n) = zm(n — 1) = Zl (A"'T)ye; n=0=%1-.-.

1-

Using either the well known form of the solution of the Nth order difference
equation (3.7.2") or of the powers of an orthogonal matrix, it follows that

N
3.7.11) y(n) = :Z=:1 (n; cos nb; + ¢;sin nb;)

where the 7, and {; are (one-dimensional) Gaussian variables, and
{cos 6; + 7 sin 6}

are the NV distinct characteristic values of A, that is the roots of (3.7.8).

Case 2. S % 0 (non-deterministic case). In this case it will now be shown that
the z(n) process can have no deterministic factors: that is that the roots of
(3.7.8) all have modulus less than 1. In fact let 8 be a root of (3.7.8), corre-
sponding to the characteristic vector z of A*:

z=(axB" ", anB" " + an 8”7, -, an + av-B + - + a7
3.7.12) N-1 N
=(aNﬁ v"':ﬁ)-
Then using (3.6.4),
(R(0)z, 2) = (AR(0)A*z, 2) + (8%, 2)
(3.7.13) = (R(0)A*z, A*2) 4+ (Sz, Sz)
= | B[R0z 2) + 8| B ™.

Hence | 8| cannot be 1, and the z(n) process can have no deterministic factors.
Equation (3.6.2) becomes

(3.7.14) z(n) = g A" Sg(n — m)

which leads to

6715) v = X = (A9utin —m = 1) = s 5 UDwten = m = 1.

According to Theorem 3.6 the only restriction on the coefficients a;, -« - , ax
in the two cases § = 0, S = 0, are respectively that equation (3.7.8) has N
distinet roots of modulus 1 and all roots of modulus less than 1. Hence (3.7.10)
and (3.7.15) furnish (with the stated restrictions on A) the most general
t.h.G.My. processes. ‘
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It was shown in Theorem 3.6 that if R(n) is the correlation function of a
t.h.G.M. process, R(n) can be expressed in the form (3.6.5), where A is some
suitably chosen matrix. Conversely if the correlation function of a t.h.G.
process has the form (3.6.5), the process is a t.h.G.M. process since z(n + 1) —
Az(n) is then orthogonal to (and therefore independent of) the variables

-, z(n — 1), z(n). (This fact implies the truth of (3.1.1)). The character-
ization of t.h.G.M. processes in terms of their correlation functions is thus
easily solved. The following theorems characterize one-dimensional t.h.G.My.
processes from various points of view. It will be convenient, and also intrin-
sically interesting to treat at the same time a slightly larger class of processes:
the class of component processes of t.h.G.M. processes. A one-dimensional t.h.G.
process with variables {z:(n)} will be called a component process of an N-dimen-
sional t.h.G.M. process if there are N — 1 t.h.G. processes with variables
{zo(n)}, -+« , {zx(n)} such that the N-dimensional process with variables

{r(n), - -+, zw(n)} is a t.h.G.M. process. If the variables {z(n)} determine
an N-dimensional t.h.G.M. process, the t.h.G. processes determined by
{zi(n)}, -+, {zx(n)} will be called its N component processes. If an z(n)

process is not of type M(0) and is a component process of an N-dimensional
t.h.G.M. process, it is a component process of a non-degenerate N;-dimensional
t.h.G.M. process, for some N; < N. It has already been seen that one-dimen-
sional t.h.G.My. processes are component processes of N-dimensional t.h.G.M.
processes.

Tueorem 3.8. Let ---, z(0), z(1), - - - be the variables of a one-dimensional
t.h.G. process. The process is a component process of an N-dimensional t.h.G.M.
process if and only if the chance variables

(3'8'1) x(O)’ E{ ) x(_1)7 x(O); x(")}) n = 1’ 2’ te

are linearly dependent on the first N.

Suppose that the z(n) process is a component process of an N-dimensional
y(n) process: z(n) = y1(n), with correlation function R,(n) and transition matrix
A. Since A satisfies its characteristic equation

(3.8.2) det |l —A|=a" —aad” — - —ay =0,

it follows from (3.6.2) that if n(n + N) is defined by

383) y(n + N) —ayin + N — 1) — --- — awy(n) = n(n + N)

then n(n -+ N) is independent of - -- , y(n — 1), y(n). Then

3.84) z(n + N) — ax(n + N — 1) — -+ — ayz(n) = m(n + N)

where m(n + N) is independent of the chance variables - -, z(n — 1), z(n).

Equation (3.8.4) leads to
385) z(n+N+») —a?zn+N—1)— - —az(n) = o + N + »)
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where 7{”(n + N + ») has zero mean and is independent of the chance variables
-, zfn — 1), z(n). If the operator
E{---,z(n — 1), z(n); -}
is applied to this equation, the result is
E{---,z(n — 1), 2(n); z(n + N + »)}
@86 —ga,(,.')E{---,x(n—1),x(n);x(n+N—m)} =0.

The last term in the sum is z(n) and (3.8.6) is thus the desired linear relation.
Conversely suppose that the (N + 1)th chance variable in (3.8.1) is linearly
dependent on the first N:

3.8.7) N
= EiamE{'-',xm— Dax(n);z(n + N —m)}, n =0, =1, ---.

Define the variables y1(n), --- , y~v(n) of an N-dimensional t.h.G. process by
yi(n) = z(n)
(3.8.8) va(n) = E{---,z(n — 1), z(n); z(n + 1) .

...........................................

Then

.........................................

(38.9) E{---,y(n — 1),y(n); yva(n + 1)} = ynx(n)
E{---,y(n — 1), y(n); yv(n +.1)}

= Bl 20 = 1), 50320+ W)} = 3 antivsin(m).

The y(n) process is therefore a t.h.G.M. process, with transition matrix (3.7.6),
and the z(n) process is a component process.

The following particular type of t.h.G. process will be involved in the proof
of Theorem 3.9. If the chance variables {n(n)} determine a t.h.G. process
whose correlation function R,(n) vanishes when n = N, then according to
(1.3.5) the complex spectral function G,(A) of the n(n) process is continuous,
with derivative G,',()\) given by

N—-1

3.9.1) G =5 > R

= (N~1)
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It is easily verified (using the fact that R,(n) = R,(—n) = R,(n)) that if ais a
root of the equation
N—-1

(3.9.2) Y. R,n)2" =0,

Naw—(N=1)
then &, 1/e, 1/& are also roots, of the same multiplicity. Moreover if | a| =
1, a is u root of even multiplicity, since the sum in (3.9.2) is real and non-negative
when |z] = 1. When |2z| = 1,

3.9.3) lal]@ — &)z — 1/a)| = |z — al.
Hence G5(\) can be written in the following simple form:
(3.9.4) G:()\) — l boed(N—l)X + blei(N—2))\ 4o+ bN—l lz

where the roots of the indicated polynomial have modulus at most 1, and the
coefficients are real.

TueoreEM 3.9. Let ---, 2(0), (1), - - - be the variables of a one-dimensional
t.h.G. process. The process is a component process of a finite-dimenstonal t.h.G.M.
process if and only if the complex spectral function is the sum of the integral of
the square of the absolute value of a rational function of e™ with real coefficients,
and of a monotone non-decreasing function increasirtg only in a finite number of
jumps.'®  Specifically:

(i) The process is a component process of an N-dimensional t.h.G.M. process
if and only if the complex spectral function has the form

$(N—D)A 4+ --- 4 Bya |2 d\ + G()\)

€
728 2
are'™ + o Foan|

A
(3.9.5) GO = [ ' B‘l’

where

(a) G(\) is a monotone non-decreasing function satisfying (1.3.3), increasing
only by jumps, at no more than N points;

(b) the denominator of the integrand vanishes at every discontinuity of G(N),
and the numerator vanishes at every zero of the denominator, to at least the
same order;

(c) the coefficients ag, +++ , an, Bo, *** , Bn—1 are real, ap ¥ 0, By 7 O unless
the integrand vanishes identically, and the roots of the polynomials in the
integrand have modulus, less than or equal to 1.

The integral vanishes identically if and only if the x(n) process ts a component process
of an N-dimensional deterministic process, and e (M) vanishes tdentically +f and only
if the variables x(n) vanish identically or the x(n) process is a component process of
an N-dimensional t.h.G.M. process with no deterministic factor.

(ii) The process is a t.h.G.My. process (deterministic case) if and only if the

15 Tt is easily seen that the first term of the two can also be described simply as the in-
tegral of a rational function of e®, which is non-negative for A real and is an even function
of X like all complex spectral density functions,
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complez spectral function G(\) = G(\) s a monotone non-decreasing function satis-
fying (1.3.3) increasing only in jumps, at no more than N points; (non-deterministic
case) if and only if the complex spectral function has the form

» d\
(3.9.6) GO)=[ngm+.”+aﬂz

where oy, -+ -, ay are real and ap # 0.

Proof of (i). If the x(n) process is a one-dimensional component of an N-
dimensional t.h.G.M. process, it has already been seen that for properly chosen
real numbers a;, - -+, ay, (3.8.4) is true, where ni(n + N) is independent of
the chance variables - - -, z(n — 1), z(n). Equation (3.8.2) can be assumed to
have all its roots of modulus less than or equal to 1. It follows from (3.8.4)
that m(n) is independent of m(m) if |[» — m| = N. The complex spectral
function of the 7,(n) process is therefore continuous, with derivative given by
(3.9.4). It will be no restriction to assume that b, O unless the derivative
vanishes identically. According to (1.3.6), if G(A) is the complex spectral func-
tion of the z(n) process,

E{n(0)m(n)} = L, ¢ | boe M - by [TdN

3.9.7 .
_ [ ™ 6™ — @ d TN L gy [FdG().

Hence if G(\) is the jump function of G(\) (G(—7) = 0, and G(\) is constant
except for jumps at the same points as those of G(A), and of the same magnitude),

A

[ I boe* M oo o by Iz dx
398) )
_ [ l e — o — ay lz dlG() — GO‘)]

A
+ | |€™ = —ax [FdGQ).

Since the first two integrals are continuous in ), the last must be continuous also.
Hence the last integrand must vanish at every discontinuity of G’()\), that is at
every discontinuity of G(A), and the last integral vanishes identically. It
follows that

‘ A $(N—D) . 2
(399) GO~ a()\) - -[r l boTe‘Nk + + bN—l[ dr

— =

where the numerator vanishes at each zero of the denominator, with the same or
greater multiplicity. Since the denominator vanishes at each discontinuity
of G(\), there can be at most N discontinuities. If the N-dimensional process
is a deterministic process, it can be assumed that all the roots of equation (3.8.2)
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have modulus 1, that is that the denominator and hence also the numerator in
(3.9.9) have N roots. This can be true only if the numerator vanishes identi-
cally: G(\) = G(\). If the N-dimensional process has no deterministic factor, it
can be assumed that all the roots of equation (3.8.2) have modulus less than 1.
Then G(\) can have no discontinuities: G = o.

Conversely if G(\) has the form described in Theorem 3.9 (i), G(A\) can be
assumed in the form (3.9.9) with real coefficients in numerator and denominator
and the stated relations between the jumps of G(\) and the zeros of the numerator
and denominator in the integrand. (If the integrand vanishes identically and
if @(\) has N discontinuities, a; , - - - , ay can be chosen as those numbers making
the polynomial

eM gt _ Ll g,

vanish at the discontinuities of G(A).) Then

Rn+N) —aiR(n+ N —1) — -+ —axE(n)
_ [ o B0+ o+ b€ b N A+ - ba]
(3.9.10) - 1 — e — ... — aye™

+ ‘[t e e — - — an] dG(N). |

The last integral vanishes since the bracket vanishes at every jump of GO).
The denominator in the first integrand is the value on | z| = 1 of a polynomial
all of whose roots are outside |z| = 1,oron |z| = 1. Any zeroon |z| =1
corresponds to one of the numerator at the same point. The integral therefore
vanishes if n = 0 (Cauchy Integral Theorem):

(3.9.11) Rn+ N) —aRn + N — 1) — .-+ — avR(n) = 0, n 0.
This equation implies that

(3.9.12) zin + N) — aix(n + N — 1) — -+ — ayz(n)

is independent of the chance variables - - -, z(n — 1), z(n), that is that (3.8.4)

is true, where m(n + N) has the stated properties. It has already been seen
in the proof of Theorem 3.8 that this implies (3.8.6) and that this in turn implies
that the process is a component process of an N-dimensional t.h.G.M. process
whose transition matrix A has characteristic equation (3.8.2). In particular if
G(\) = G(\), the roots of the characteristic equation are of modulus 1, so that
the N-dimensional process must be deterministic. If G(\) = 0, the z(n) process
is a component process of an N-dimensional process whose transition matrix A
has only characteristic values of modulus less than 1. This N-dimensional
process can have no deterministic factors other than one or more of type M(0).
If these exist, (and if the z(n) process is not of type M(0)) they can be replaced
by non-degenerate factors of type M, to obtain an N-dimensional process with
no deterministic factor, having the z(n) process as a component process.
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Proof of (i¢). If the x(n) process is a t.h.G.My. process, (3.8.4) is true with
m(m) independent of m(n) if m = n. The discussion in (i) is therefore simplified
by the fact that the numerator in (3.9.9) is constant. If this constant is 0,
the spectral function is a function of jumps: G(\) = G(\). If this constant is
not 0, the denominator in (3.9.9) does not vanish, and G\ therefore vanishes
identically. The converse is proved as in (i).

TaeoreM 3.10. () If a1, -+ -, ay are real numbers, there is a one-dimensional
t.h.G. process not of type M(0) with correlation function R(n) satisfying
(3.10.1) Rm+N)—a,Rm+N—-1)— --- —avR(n) =0
for n = 0 if and only if the equation
(3.10.2) e — g — - — ay = 0
has at least one root of modulus less than or equal to 1.
Let ---, 2(0), z(1), - -- be the variables of a one-dimensional t.h.G. process

not of type M(0).

(ii) This process is a component process of an N-dimensional t.h.G.M. process if
and only if the correlation function R(n) satisfies an Nth order linear difference
equation (3.10.1) for n = 0.

(iii) The process is a t.h.G.My. process if and only if the difference equation
(3.10.1) 15 true for n = —(N — 1). In this case the vectors. {x(n), ---,
z(n + N — 1)} determine an N-dimensional t.h.G.M. process.

(iv) Equation (3.10.1) ¢8 satisfied for n = —N if and only f

3.103) zn+N) —az(n+ N —1)— --- —axz(n) =0, n =0, %1, ---.

Proof of (it), (43%), (7). Let the z(n) process be a component process of an
N-dimensional t.h.G.M. y(n) process with correlation function R,(n): z(n) =
y1(n), and transition matrix A. Since A satisfies its characteristic equation
(3.8.2), it follows from (3.6.5) that

3.104) R(n+ N) —aRmn+ N —1)— --- — avRy(n) = 0, n = 0.

Then R(n) = (R,(n))u satisfies this same difference equation. Conversely if
(3.10.1) is true for n = 0, it has already been proved in the course of the proof of
Theorem 3.9 that the z(n) process is a component process of an N-dimensional
t.h.G.M. process. 'This finishes the proof of (ii). Parts (iii) and (iv) are proved
similarly.

Proof of (). According to (ii), if there is a one-dimensional t.h.G. process
whose correlation function R(n) satisfies (3.10.1) for » = 0, the process is a com-
ponent process of an N-dimensional t.h.G.M. process whose transition matrix
A has (3.10.2) as characteristic equation. Since A has at least one characteristic
value of modulus less than or equal to 1, (unless the z(n) proeess is of type
M(0)), (3.10.2) must have at least one root of modulus less than or equal to 1.
Conversely if (3.10.2) has at least one such root, there is a real N-dimensional
matrix A whose characteristic equation is (3.10.2), and which has simple ele-
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mentary divisors. According to Theorem 3.6 (ii), A is then the transition matrix
of some t.h.G.M. process. The correlation function of this process and hence
that of each component process satisfies (3.10.1) for n = 0.

TraeoREM 3.11. (i) If a1, - - , ay are real numbers, there is a one-dimensional
t.h.G. process not of type M(0) satisfying
3.11.1) zn+ N) —ax(n + N — 1) — -+ — ayz(n) = n(n + N),
n = O’ :h]_, cee

with n(m), n(n) independent for |m — n| = N #f and only if (3.10.2) has at least
one root of modulus less than or equal to 1.

Let ---, z(0), (1), --- be the variables of a one-dvmensional t.h.G. process.

(ii) This process is a component process of an N-dimensional t.h.G.M. process
if and only if (3.11.1) is true with n(m), n(n) independent for |[m — n| = N.
In this case y(n + N) will be independent of the chance variables - -- , x(n — 1),
z(n).

(ii1) The process is a t.h.G.M. process if and only if in addition to the condition
wn (42), 7(n) ts independent of the chance variables - - -, z(n — 2), z(n — 1): de-
terministic case if n(n) = 0 with probability 1, nondeterministic case otherwise.

Since this theorem follows readily from the preceding theorems, the proof will
be omitted.

The problem of predicting z(n) in terms of - -+ , x(n — 2), z(n — 1) is trivial
(theoretically at least) for t.h.G.My. processes. In fact these were defined as
those processes for which the solution of the prediction problem is simply a

N
linear combination 2 axz(n — j) of the preceding N variables. The solution
=1

will now be given for the more general class of component processes of N-dimen-
sional t.h.G.M. processes, processes which have been described from several
points of view in the preceding theorems.

The prediction problem for component processes of N-dimensional t.h.G.M.
processes will be put into a more general setting. If the one-dimensional chance
variables {z(n)} determine a t.h.G. process, with correlation function R(n),

the problem of finding E{---, z(n — 2), x(n — 1); z(n)} is that of finding a
series 2 ymx(n — m)'® such that

M1
(3.12.1) z(n) — Zl Ymz(n — m)

is uncorrelated with every z(n — ») (» > 0):

(3.12.2) R(v) — il YmR(y — m) =0, v > 0.

16 We are neglecting all convergence difficulties. They become trivial for the applica-
tions to be made below.
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If the complex spectral function is G(A), (3.12.2) becomes

(3.12.3) [e"’{l - }: yme“'”*} dG\) =0, »=0.

L

Let G(\) be the integral of its derivative G’(\), that is let G(\) be absolutely con-
tinuous. According to (3.12.3) the problem reduces to that of finding a function

(3.124) f(z)=1_";l_21:_... 2 = e

such that f(2)G” is of power series type, a function corresponding to an expansion

in non-negative powers of z. The dispersion of the error of the prediction is
N 0 . 2

etn —- Z Ym ec(n—m)x dG(X)

E{[x(n) - g TmZT(n — m)]z} = ‘[: P
= [T 171 a6,

(3.12.5)

In particular if the z(n) process is a component process of an N-dimensional
t.h.G.M. process, G(A) is given by (3.9.5). It will be supposed throughout the
following that @ = 0. Then

262" + -+ BBt + B2
(mz¥ + .o + an)(aw+ - +anz¥) .

In this ease f = 1if G’ = 0, and otherwise f is given by
Bo(aoz” + « -+ + aw)

3.126) @' =

(3.12.7) flz) = 2Bo2™ L + -+ + Br-)
so that
2
(3.12.8) 7@ [F = f" )
aoG

The dispersion of the prediction error is R(0) if G’ = 0 and otherwise is 2785/ aj .
The prediction formula for z(n) in terms of the variables ---, z(n — » — 1),
2(n — ») has now been derived for » = 1, for the chance variables under discus-
sion in this section. The solution for general v is easily obtained.

As v — «, the prediction converges with probability 1, according to the
corollary to Theorem 1.2. If the process is a component process of an N-
dimensional t.h.G.M. process, and if ¢ = 0 in (3.9.5), the limit is 0. That is,
in this case, the best predicted value of z(n) in terms of the distant past is near
E{z(n)} = 0, the same predicted value which would be used with no knowledge

of the past.
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4. Processes whose parameter ¢ varies continuously

The basic process in terms of which t.h.G.M. processes without deterministic
factors were expressed in section 3 was a process whose variables {£(n)} were
Gaussian, with
(4.1.1) E{gm)} = 0, E{tm)-(m)} = dmal.

The corresponding process in the continuous parameter case is not obtained by
replacing the integral parameters m, n in (4.1.1) by continuous parameters. In
fact the process so defined does not satisfy any useful continuity conditions.
In the present discussion, sums like Y, A.£(m) will be replaced by Stieltjes

integrals f A(t)d¢(t), and dE(t) thus will correspond to £(n). The £(f) process
is defined as follows. For any ¢, < --- < t,, the chance variables

El) — Et), -+, E(ta) — E(tar)

are mutually independent N-dimensional Gaussian chance variables, and if
s <t

(4.12) E{t@) — &)} = 0, E{[t@®) — £&)]-[E¢) — &)} = (¢ — s)I.
This process, called simply a ¢-process below has been discussed in great detail
by Bachelier, Wiener and Lévy. The function £(¢), considered as a function of ¢
is known to be continuous with probability 1.'” The derivative #(t) does not
exist, since E{[£:(¢ + k) — &(#)]’} is proportional to h, whereas this mean would
be proportional to k* if £ (f) existed. In fact it has been shown that £(t) is
(with probability 1) not even of bounded variation in any finite interval. How-
ever, if f(t) is a function defined and continuous for a < ¢ < b (where a or b or
both may be infinite), the integral

(4.1.3) f J@) d&@)

can be defined as the limit in the mean of the usual Stieltjes sum. If f(¢) has a
continuous derivative, the integral in (4.1.3) can be evaluated by integration
by parts:

@1y [0 &0 = 10x0) - f@k@ - [ 0o a.
Integrals of the following type will be used below:
v = [ 1 = 9 det) = JORO ~ 10 ~ )t(@

(4.1.5) ,
+ [ enre - ar

1# Paley and Wiener, ‘“Fourier transforms in the complex domain,”” Am. Math. Soc.
Collog. Pub., Vol. 19, p. 148.
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where f(t) is continueus and has two continuous derivatives. It is then evident
that y(¢) is continuous, but that y'(t) exists if and only if f(0) = 0. If f(0) = 0,
y'(t) is given by

(4.1.6) v @) = f it = 1) d).

A more general process will also come into the discussion below, and will be
called a ¢-process. The chance variables {{(¢)} of a ¢-process are Gaussian, and
have the same independence property as the variables of a &process. The
second equation of (4.1.2) is dropped, so that (4.1.2) is replaced by

417) Efr@®) — O} =0, E{[t® — ¢0)]-[c@® — ¢©@)]} = D@),
where the symmetric and non-negative definite matrix D(f) will sometimes be

supposed to have special properties, such as continuity in ¢, etc. The inde-
pendence property of the {-process implies that

(4.1.8) E{ls@®) — c@1-E@® — )]} = D@ — D(s).

Hence D'(¢) (if this derivative exists) is symmetric and non-negative definite.

THEOREM 4.1. If the dispersion mairix D(t) of a {-process is continuous, the
functions {¢(t)} are continuous in t, with probability 1.

The component processes of a {-process with a continuous dispersion function
are also {-processes with continuous dispersion functions. Hence it will be
sufficient to prove the theorem in the one-dimensional case. In this case D(f)
is non-negative and monotone non-decreasing, according to (4.1.7) and (4.1.8).
It can be supposed that D(¢) does not vanish identically. Let D;(t) be an inverse
function of D(t): D[D1(t)] = t. Then &) = ¢[D:(t)] defines a &-process, and the
continuity of £(f) implies that of ¢(t).

The integrals of type (4.1.3) are defined for ¢-processes as for £-processes, and
satisfy the equations

E{ [ 10 d:(t)} ~ 0

a9 B{[ 10a0:[ s0 a0} = [ 100000 a
b b b
E{f A) de(t)- f B(t)dg'(t)} - f AOD'OBO* dt,

where f, g are numerically valued functions and A, B are matrix functions."

The ¢-processes lie at the basis of t.h.G. processes. To every t.h.G. process
(discrete parameter) with variables {z(n)} correspond two one-dimensional
¢-processes with variables {£1(f)}, {£2(¢)} such that

3

(4.1.10) z(n) = _[, cos nA dfi(A) + sin nA dia(N)

18 These equations are easily proved using the fact that each integral can be approxi-
mated by the usual Riemann-Stieltjes sums.
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where the two {-processes are mutually independent in the sense that every
¢1(\) is independent of every {2(A2) and where, if G(\) is the complex spectral
function of the process,

(4.1.11) E{t:(\)Y = GO).
In the continuous parameter case (4.1.11) becomes

0

(4.1.12) () = [ cos I\ df1(\) + sin O\ dia(n).

This theorem of Cramér shows that x(n), or z(t) as the case may be, is the limit
of a sum of sines and cosines, with Gaussian chance variables as coefficients.
The dispersion of each coefficient, which measures the intensity of the cor-
responding periodic term of the sum, is determined by the spectral function of
the process. In particular, if the spectral function F(\) is the integral of its
derivative F’(\), each integrand involving d¢;(\) in the above equations can be
replaced by one involving \/F’(\)d&:(\) where £;(A) is the variable of a &-process.
Thus in many important cases the processes can be written in a simple way in
terms of ¢-processes.

It will be shown below that every t.h.G.M. process can be represented as the
direct product of factors of certain types. The deterministic types have already
been catalogued: M (0), M(1), M(e*). The standard non-deterministic type,
as in the discrete parameter case, will be called type M.

M. Let {£(t)} be the chance variables of an N-dimensional &process, as de-
scribed above. Let @ be an N-dimensional square matrix, and let S be an N-
dimensional symmetric non-negative definite matrix. Define z(f) by

(4.2.1) () = jo " RS dt — 5) = f ¢ dg()

where it is supposed that the improper integrals converge with probability 1.
There will be convergence, for example, if @ has only characteristic values with
negative real parts so that the elements in the matrix ¢*® go to 0 exponentially
as s — . (Cf. section 1.) It will be shown below that it is no restriction to
assume that @ has this character. The x(t) process is evidently a t.h.G. process.
If u < t, the chance variable

13
(4.2.2) z(t) — e % (u) = €' f e *° S dt(s)
is independent of z(v) for v < w, since z(v) is expressed in terms of £(s) for s < v.
Therefore the z(f) process is a Markoff process with transition matrix A(f) =

e'e:

4.2.3) E{z@),v £ u; z(t)} = ¢ %(u), u <t

¥ H. Cramér, Arkiv For Matematik, Astronomi och Fysik, Vol. 28B, No. 12, pp. 1-17.
Cramér only discusses the continuous parameter case, but the other requires no change of
method. He allows complex-valued &-processes, in terms of which (4.1.10) and (4.1.12)
assume a2 more elegant form.
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A process defined in this way will be called a process of type M. A change of
variable y(t) = Bz(t) leads to a process of the same type:

(4.2.4) y(t) = 'L ) "' BS dt(t — s).

The matrix Q goes into BQB™" and if 8,0 is the polar form of BS, where S is
symmetric and non-negative definite and O is orthogonal, S goes into S;. (We
are using the fact that O%£(t) defines a second gprocess.) The correlation func-
tion of a process of type M is easily calculated:

(4.2.5) R(0) = f S ds,  R(H) = R(0)e' .

The only condition imposed on @ is that the improper integrals in (4.2.1) con-
verge. This condition is easily seen to be equivalent to the convergence of the
integral in (4.2.5). This in turn is equivalent to the condition that
(4.2.6) lim ¢S = 0.
Eiad ]

This condition is certainly satisfied if the characteristic values of @ all have
negative real parts, and it can always be assumed that this is so. (Cf. the cor-
responding discussion of processes of type M in the discrete parameter case.)

The analogues in the continuous parameter case of Theorems 3.4 and 3.5 are
true. The proofs are substantially the same as the proofs in the discrete param-
eter case, and will be omitted.

TeEOREM 4.3. (i) Every t.h.G.M. process (continuous parameter) is the direct
product of processes of type M(0), M(1), M (), M.

(i) If z(t) are the variables of such a process, there is a matriz Q such that A(t) =
¢'® is a transition matriz function. There is a E-process, a Gaussian variable §,
independent of the £(t), satisfying

(4.3.1) E{g} = 0, E{gg =1

and symmelric non-negative definite matrices S, T such that

z(t) = .[, € Sdi(t — s) + €Tk

43.2) , ,
= [ s are) + ¢ Te = [ 05 dets) + ¢ 00),

(4.3.3) QT + T*Q* = 0,

(4.3.4) R(0) = [ S ds + T

(4.3.5) QR(0) + R(0)Q* = -5,

where the integrals in (4.3.2) converge with probability 1. The integral and the
last term in each pair in (4.3.2) are linear transformations of z(t): (4.3.2) exhibits
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in part the decomposition into factor processes described in (i). The correlation
Sunction is given by

R(t) = R(0)e'”
R(—t) = ¢"R(0)

(iii) The matriz Q is uniquely determined if and only if the process is non-
degenerate. In any case there is a Q whose characteristic values all have negative
or zero real parts and whose characteristic values with zero real parts correspond to

stmple elementary divisors. The matrix Q furnishes the solution to the prediction
problem of the process:

4.3.7) E{z(s), s < t; x(t + u)} = e*%x(t), u > 0.

(4.3.6)

The matriz S, which is uniquely determined, measures the dispersion of x(t) about
its predicted value:

(4.3.8) Ef{lz(t + w) — "%z} = R(0) — e°R(0)e*®" ~ uS" (u—0).

(iv) Conversely if Q is a matriz with at least one characteristic value with negative
real part or with zero real part and corresponding to a simple elementary divisor,
e'® is the transition matrix function of a t.h.G.M. process with R(0) not the null
matriz. If all the characteristic values of Q are as just described, e‘® is the transi-
tion matriz function of a non-degenerate t.h.G.M. process. If R(0), S, Q are
matrices satisfying (4.3.5) with R(0), S symmetric and non-negative definite, there
18 @ t.h.G.M. process whose variables can be written in the form (4.3.2) with the
gwen R(0), S, Q.

The proof of Theorem 4.3 follows closely that of Theorem 3.6, and the details
will not be given, except as they differ from those of the earlier proof.

Proof of (£). Suppose that the {x(t)} are the variables of a t.h.G.M. process
which is non-degenerate. The transition matrix function A(t) is then uniquely
determined by (1.5.5). Take the conditional expectation of both sides of
(1.5.4) for given x(0):

(4.3.9) A(s + )z(0) = A@t)A(s)z(0) s,t > 0.
Since the process is non-degenerate,

(4.3.10) A(s +t) = A(s)A(t) 8,t>0.
According to (1.3.1) and (1.5.5)

(4.3.11)- %1_13 R(t) = 1‘1_13 R(0)A(@®* = R(0), ¢> 0.

Hence

(4.3.12) lim A(¢) = 1.

t—0
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It has already been noted that any solution to (4.3.10) under the continuity
hypothesis (4.3.12) can be written in the form

(4.3.13) At) = €',
where
Q=1md® =1
t—0 t

Under a change of variables y(t) = Bz(t), A(t) becomes BA(f)B™" and Q becomes
BQB™. According to Theorem 2.1, if the z(t) process is degenerate, it is the
direct product of one or more factors of type M(0) and (perhaps) of a non-
degenerate factor. The matrix @ of a factor of type M(0) can be taken as the
null matrix. Then the form (4.3.13) is admissible for any t.h.G.M. process,
although @ will only be uniquely determined if the process is non-degenerate.
Define ¢(t) by

(4.3.14) () = A@R7z@) = e z().

Thenif s, < h < 2 < b

(43.15) E{s(t) —t(s)} =0, E{lct) — ¢(s)]-[(t) — $(s)]} =0
and

43.16) D(t) = E[5(t) — £(0)]-[kt) — (0]} = ¢ “R(0)e™**" — R(0).

Hence the {{(f)} determine a {-process, with dispersion matrix given by (4.3.16).
The derivative D’(t) is easily evaluated:

(4.3.17) D'(t) = €[—R(0)Q* — QR(0)le "

Since D’(tf) is symmetric and non-negative definite, the bracket also has this
property, and there is a non-singular matrix S; such that

(4.3.18) Si—QR(0) — R(O)Q*ST = U,

where U is in diagonal form, with only 0’s and 1’s in the main diagonal. Then
the integral

(4.3.19) [ 816" dt (s)

defines a {-process with dispersion matrix tU. There is therefore a ¢process
with variables {£(f)} such that

$
(4.3.20) U = l S16°0 dg(s).
This equation can be solved for {(t) and z(t):

(4.3.21) z(t) = e9¢(d) = ' [ e 98 U di(s) + ¢ z(0)
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where S; = S7'. The matrix S;U can be written in the polar form SO where S
is symmetric and non-negative definite and O is orthogonal. This 8§ is the S
of (4.3.2) ete.

The remainder of the proof follows closely the proof of Theorem 3.6 and will
be omitted.

An important class of t.h.G.M. processes which arises frequently in physical
applications is obtained in the following way. Let {#(f)} be the variables of a
one-dimensional ¢-process. Consider the formal equation

N dN—l
(44.1) dd:‘;/)\st) —a —Et—lvg—lgz — oo = any(t) = ct(t),

where a1, - -+ , an, ¢ are constants. This equation cannot be considered precise
as it stands, since £'(t) does not exist. The problem can however be reformulated
as follows: find a y(t) process, where ¥/, - - - , 4" are supposed to exist, satis-
fying the equation

b b
[ 10 a0 - o [ 10420 - -

(44.2) » b
— ax [ f0y® dt = ¢ [ 50 aeco

with proba.b'ility 1, for each continuous function f(f) and each pair of numbers
a, b. The formal integrals are defined as the limit in the mean of the usual
sums.” The integral on the right has already been discussed. With this
interpretation, equations involving ¢ can be treated in the usual way, and this
will be done in the following without further comment. The formal solution
of (4.4.2) is well known. Let A\;, -+, Ay be the roots of the equation

(4.43) AW —aN P — i —ay =0

and suppose that these roots are distinct, and have negative real parts. Let
Az be the cofactor of A¥™ in the determinant

1 A |
(4.4.4) p=| M MM
lev-—l Xlzv—l . . xg—l

Then the general solution of (4.4.1), that is to say of (4.4.2), is
t N N
48 g =S [ 3 e GO + 5 X 4y (0.
dJo j=1 0 ji=1

Since the integrand and its first N — 1 derivatives vanish when s = ¢, ¢/, -+ -,
¥y as defined by (4.4.5) exist, but ¥ (£) does not exist, because ¢ () in (4.4.1)

2 For a full discussion in the case N = 1 cf. Doob, Annals of Math., Vol. 43 (1942), pp.
358-61.
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does not exist. The y(t) process is a t.h.G. process if y(0), ---, ¥ (0) are
chosen properly. This can be seen from the solution

t N
(4.4.6) y@)) =& [ 3 Ans 40 di(s).
) S |

In fact this is the only solution defining a t.h.G. process. To prove this, rewrite
(4.4.5) in the form

N t (t—s 1 N (s _
(445) (o) =52 Aw f‘ L) + 5 X AT,

If the y(t) process is a t.h.G. process, (4.4.5") becomes (4.4.6) when r — — .
Thus there is a unique stationary solution to (4.4.1) and, by (4.4.5), every solu-
tion tends to this solution in the long run. The stationary solution (4.4.6)
has the property that y(t) is written in terms of £(s) for s < ¢. Then in (4.4.5)
the integral is independent of the terms involving the initial conditions. In
other words

1< -
(447) E{y(9), s < 0,30} = 5 2 Ay 'y*(0).

Hence the variables y(t), 4'(®), - - - , ¥ °(t) define an N-dimensional t.h.G.M.
process. The transition matrix function A(t), and the matrices Q, S, T of
Theorem 4.3 are easily calculated.

AQ): (N €Y,

0 100 O
0 01 . O
(4.4.8) Q- .- . . .
o . . 01
ay . . . ay
T =0.

The necessary changes to be made if the A\; are not distinct are well known.
The case ¢ = 0 will be treated below, when the problem will be reconsidered
from another point of view. In all cases the solution of (4.4.1) leads to an
N-dimensional t.h.G.M. process.”

As a simple example, consider a torsion pendulum, suspended in a sealed
container. The only turning forces acting on the pendulum are the molecular
shocks of the surrounding gas, and the restoring torque. The equation of mo-
tion is

2,
(4.49) 1800 4 o WO 4y = x0),

2 According to a letter from Uhlenbeck, the differential equation (4.4.1) was solved;
from a'somewhat different point of view, by Miss Ming Chen Wang, in a thesis written in
1941 which is unfortunately inaccessible to me at the moment.
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where y is the angular displacement measured from the equilibrium position,
I is the moment of inertia, a. is the torque coefficient of the suspension, and the
molecular force is resolved into a systematic Stokes term a;y’ and a remainder X.
The remainder term X (f) defines a stationary process which to a first approxima-
tion is “purely random.” In the present context “purely random’’ means that if
Hh <+ <t, X)), -+, X(@#) are mutually independent. This is precisely
the property the derived process of a £-process would have, if £ (f) existed.
Unfortunately it has already been noted that ¢ (f) does not exist, since the dif-
ference quotient [§(t + h) — £(t)]/h is unbounded as » — 0. It has already
been seen, however, that (4.4.9) can be given a meaning with X (¢) identified
with c¢’(¢) even though ¢ () does not exist, and it has been seen that the solution
approaches a steady state. It may still be a disappointment to some that the
solution y(f) has a first derivative y'(¢) but that y’’(t) does not exist: there is an
angular velocity but not an angular acceleration! This unhappy circumstance
can either be blamed on the physical world, or on the mathematical approxima-
tion to the physical world, depending on the point of view. The corresponding
electrical picture is the following. There are spontaneous currents in any
electrical circuit, due to the thermal motion of the electrons. This is known as
the Johnson effect. In a simple closed circuit, consisting of an inductance L,
a resistance, B, and a capacitance C in series, the current equation can be written
in the form

2
O + %O L 10 _ x,

(4.4.10) L

where y is the charge on the condenser and X(t) represents a fictitious voltage
set up by the motion of the electrons. The X(t) is identified with c¢/(f) as
before. In this case there is a current % , but the current function has no
derivative. In these applications, the physical justification for the Gaussian
character of the &distribution lies in the Gaussian character of the Maxwell
distribution of elementary particle velocities. The known mean particle kinetic
energy determines the constant ¢ in (4.4.1). The more complicated mechanical
or electrical systems will lead to equations of higher order than 2, or systems of
equations. For example the usual current equations of a net or resistances
capacitances and inductances lead to a system of say » second order equations
of type (4.4.10), and the corresponding pairs ¥,y form a 2 »-dimensional t.h.G.M.
process.” ‘

The processes defined by linear differential equations of the type (4.4.1) are
the analogues of the t.h.G.My. processes in the discrete parameter case. Instead
of defining these solutions of (4.4.1) as the t.h.G.My. processes, however, we
shall use a definition closer to the definition in the discrete parameter case. A

22 Further discussion and references to papers by physicists on this subject will be found
in Doob, Annals of Math., Vol. 43 (1942), pp. 351-69.
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one-dimensional t.h.G. process with variables {y(f)} will be called a t.h.G.My.
process if the derivatives y'(¢), - -+ , y¥ > (t) exist, and if whenever s < ¢,
45.1) Efy(n), 7 = sy} = E{y(s), ¥'6), -+, y¥"©); y®)}.

If N = 1, the process is a t.h.G.M. process. The right hand side of (4.5.1)

is a linear combination of the variables y(s), -+, ¥ "(s). The variables
{y(®)} thus satisfy an equation of the form
452) y@) — at — dy(s) — -+ — an(t — YY() = n(s, ?)

where (s, t) is independent of the variables {y(r)} for r £ 5. Define the vari-
ables {z(t)} of an N-dimensional t.h.G. process by

@) = y(@)
zit) = y?@), j=1--,N~=1.

If this process is degenerate, there is a relation of the form

(4.5.3)

N—-1

(4.5.4) coy(s) + ay'(s) + -+ + vy (s) =0, ;o le;| > 0.

It can be assumed that cy_; # 0, (differentiating (4.5.4) to get a term in y¥ ()
if there is none originally). Then y**™"(s) can be eliminated in (4.5.2), to get
a relation of the same type with N replaced by N — 1. Hence the process is
non-degenerate if N is the minimum index for which (4.5.1) is true. It will now
be proved that the z(t) process is a t.h.G.M. process. It can be assumed to be
non-degenerate. Using (4.5.1),

4.55) E{z(r), r = s;m()} = E{y(7), 7 < s;y(1)} = E{x(s); ;(1)}.
It must also be shown that
(4.5.6) E{z(r), v = 8;2(t)} = E{xz(s); z;()} j=2--,N.

This will be shown by justifying the taking of derivatives in (4.5.5). It will be
sufficient to prove (4.5.6) when j = 2. Using (4.5.1),

“57) E{xw, rss ?%y—“’} - E’{x(s); Wt h = v@ y“)}.

The right hand side is a linear combination of z;(s), - - - , zx(s) whose coefficients
are continuous in h, b = 0, since the correlation function of the y(¢) process is
continuous. Hence the right hand side converges to

E{z(s); y"®)} = E{z(s); =)}

when A — 0. Since the difference

x(t) — E{x(s); y(t + h}z - y(t)}
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is uncorrelated with z(7) if 7 < s, the same is true of its limit as h — 0. This
means that (4.5.6) is true when j = 2, as was to be shown. Conversely if {y(t)}
are the variables of a one-dimensional t.h.G. process, if ¥'(¢), -- -,y (@)
exist, and if the x(¢) process defined by (4.5.3) is a t.h.G.M. process, the y(t)
process is obviously a t.h.G.My. process. The transition matrix function A(f)
and the matrices @, S, T' of Theorem 4.3 are easily calculated. Suppose that
the z(f) process is non-degenerate. Since y*“™(¢) is given by

¥ = ) = _[ .Nl [e“™98); dti(s) + ,Z: [e TLis&s

00 Jm=

= j; ‘ ,Z: [e“™9 Sl;; dis(s) + g (¢'%)+524(0)

and since z:(t) exists if ¢ < N, it follows that the integrand must vanish when
s =1

¢

(4.5.8)

4.5.9) 8)i; =0, i=1---,N—-1, j=1,---,N.
Since 8 is symmetric and non-negative definite, S must have the form
0 - - -0
(4.5.10) S: 0 - - . 0l c=0.
0 - - 0 ¢
The fact that z(t) = 2:;1(f) means that
N N
(4.5.11) El (€ Q)s;25(0) = ’Zl (€'®)s41525(0), j=1---,N
pom =
or, since the z(¢) process is non-degenerate,
QY. (). 1=1---,N—-1
(4512) (6 Q)u' = (e )o+li ] = 1’ e ,N.

Hence (¢t — 0) @ has the form
010 - - 0
(4.5.13) Q: 0 - - -0 1
aN . . . . al

Conversely if there is an N-dimensional non-degenerate t.h.G.M. process with
transition matrix function e’® where Q is given by (4.5.13) and dispersion matrix
S given by (4.5.10),

x:'(t) = $;+1(t), 1= 1’ Tty N — 1’

and the z;(t) process is a t.h.G.My. process.
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Case 1. S = 0 (determanistic case). In this case the x(t) process is deter-
ministic:

(4.5.14) x(t) = Tt

Since @ satisfies its characteristic equation

(4.5.15) " — "t — i —ay =0

it follows that

(4.5.16) 2™ (@t) — aw™ (@) — .-+ — ana(t) =0,
(4.5.17) y @) — ay™ V@) — -+ — awy®) = 0.

The roots of (4.5.15) are simple roots, and are all pure imaginary, according to
Theorem 4.3. It follows that

(4.5.18) y(®) = 22 (nj cos #; + ¢;sin 16;)

where the 7; and {; are one-dimensional Gaussian variables, and {70;} are the

distinct roots of (4.5.15).
Case 2. 8 #= 0 (non-deterministic case). In this case it will now be shown

that the z(¢) process has no deterministic factor, that is that the roots of (4.5.15)
all have negative real parts. In fact let 8 be a root of (4.5.15), corresponding

to the characteristic vector z of Q*:
(4.519) z= (av8" ", awB" "+ av 8", -, an + avaB + -0 + a8
= (v, /3”)-
Then using (4.3.5)
0<|B|™ = (8%2)

—(R(0)Q*2, 2) — (QR(0)z, 2)
— AMR(0)z, 2) — A(R(0)z, 2)
= —(\ + N)(R(0)z, 2).

Hence A + A is real and negative: A has a negative real part. In this non-
deterministic case, therefore, the x(t) process can have no deterministic factor.
The matrix 7T is the null matrix, and (4.3.2) becomes

(4.5.20)

1
(4.5.21) () = [ 98 de(s)
which leads to

(4.5.22) y() = c [ [e“ ™y dEn(s).



GAUSSIAN PROCESSES 275

Moreover

v® = [ 106" diucs)
(4523) ............. AR
y(N—l)(t) = C‘[ [QN—le(t—O)Q]lN dEN(s)O

Since @ satisfies its characteristic equation (4.5.15),
¢ N ¢ i
(4.5.24) L [QVe“ ™y dtn(s) — ; a; L [Q"7e“ ™%y dtn(s) = O.
In other words
¢
(4525 ¢ _[ [Q"e“ ™l din(s) — ay™ (%) — -+ — avy(®) = 0.

Now formally, if £y(t) existed, the last equation in (4.5.23) could be differentiated
to give

(4.5.26) ¥ @) = dQ" Nwtn(®) + ¢ [: [QVe"“ "1y dEn(s)

and (4.5.25) would become

(4.5.27) ¥y — a0 — - — awyt) = ctn(t).

(We are using the fact that (Q" ")y = 1.) Thus the t.h.G.My. processes satisfy
the formal differential equation (4.5.27) already discussed above from another
point of view. Equation (4.4.2) is readily justified.

Tueorem 4.6. (i) Let {z()} be the variables determining a t.h.G.M. process.
Then considered as functions of t, the z(t) are continuous with probability 1. Let
{y(®)} = {z.(t)} be the variables of a coordinate process.

(i) If y'(¢) exists, it is a linear combination of coordindte functions:

yw=§wm&

(i) If y'@), -+, y™ () eaist, y(t) satisfies a generalized differential equation
(4.4.1), that is the y(t) process is a t.h.G.My. process.

(V) If '), - - -, y*™(t) exist, y(t) has derivatives of all orders. The y(t) process
1s a t.h.G.My. process (deterministic case) and y(t) therefore satisfies an Nth order
homogeneous differential equation (4.5.17).

) Ifzi(t), - - , Zw(t) exist, that s if ' (£) exists, the x(t) process is deterministic
and the coordinate functions have derivatives of alk orders.

Proof of (). It has already been shown that the {{(f)} determined by (4.3.14)
determine a {-process, and the dispersion matrix function D(¢f) of the ¢-process,
given by (4.3.16), is certainly continuous. Hence, by Theorem 4.1, the {{(¢)},
and therefore the {z(f)} are continuous in ¢, with probability 1.
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Proof of (15). If x,(2) exists, the rth row of S in (4.3.2) must vanish, and z,(¢)
is given by the rth coordinate of

(4.6.1) [ Qe 2 S dt(s) + Qe*®x2(0) = Qx(2).
Hence
(4.6.2) z () = ; (Q)rs25(2).

Proof of (¢ii). Suppose that z,(t), -+, " (f) exist. Then (r is fixed in
the following equations)

=) = l 2 [0 8],y des(s) + i [e*%).5 24(0),
(463) z(®) = £ ,_z; [¢“™° QS),; dks(s) + 12_; [e*° Ql.;24(0),

x:N—l)(t) = '-Zl [ea—.)a QN—I S]ri- dEj(S) + ”.Zl [eto QN—I];);,-(O)

and (in order that the derivatives can exist)

Srj=0
(QS)rj=0 j=1,---,N.

.............

(QN.aS)'i = 01
Since Q satisfies its characteristic equation, say (4.5.15),

w5 [ 1@ Ssae - Lo [ @ = 0.

(4.6.4)

This veetor equation ¢an be written (using only the rth coordinate) in the form

(4.6.6) [ Nl [e“°Q" Slj di(s) — a1zt P (t) — -+ —.ayz,(t) = 0.

0 Jum

If £(t) existed, the last equation in (4.6.3) could be differentiated to give

467 ™0 = _[ 2[4 Q" 8l,; dii(s) + g:l (@ S).s£i(0)

00 jum]l |
and (4.6.7) would then become
N
468) V(M) — @z VW) — - — ava(l) = g_.‘; Q"7 8); £i(1).

Now the process with variables

(469) {1 > -‘S),,e;(o}

C jel
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is a g-process, if ¢ is chosen properly, unless the parenthesis in (4.6.9) vanishes
for all 7. In either case (iii) is proved.
Proof of (). If in (iii), i (f) exists, (4.6.3) can be augmented to include

463) M) = [: 2 [e“™2 Q" Sl,; dti(s) + '42 [e* @"1z;(0)

and (4.6.4) now includes
(4.6.4") @Q"'8),;=0, j=1,---,N.

In this case the last term in (4.6.7) vanishes and (4.6.8), with zero on the right

hand side, is strictly true.
Proof of (v). If zi(t), -+, zn(f) exist, S must vanish and (4.6.3) yields

(4.6.10) z(®) = e%2(0), @) = Qz(t).

Thus the 2(f) process is deterministic and z(¢) has derivatives of all orders.

TueoreM 4.7. Let {x(t)} be the variables of a one-dimensional t.h.G. process.
The process is a component process of an N-dimensional t,h.G.M. process if and
only if the chance variables

(4.7.1) z(0), {E{z(s), s £ 0; z(t)}} 0<t< >

are linearly dependent on N variables.

Suppose that the z(f) process is a component process of an N-dimensional
t.h.G.M. y(¢) process: z(t) = y.(¢), and let A(f) be the transition matrix function
of the y(t) process. Then if ¢ > 0 and if n is any integer, the difference

yl(n + el — A(e)y(ne)

is independent of every y(s) with s < ne, and therefore independent of every

y(me) with m < n. Hence the y(ne) process is a t.h.G.M. process (discrete
parameter case). Equation (3.8.5) becomes, in this case, if n = 0,

(472  zlN + »)d — o 2[(N — e — --- — af’2(0) = 9" (N + »)

where 7{” (N + ») is not merely independent of the variables - - - , z(—e¢), z(0),
but is even independent of every x(s) with s < 0. It then follows, applying the
operator E{z(s), s < 0;-} to both sides of (4.7.2), that the variables in (4.7.1)
are linearly dependent on N variables if ¢ is restricted to be a multiple of e.
Allowing e to run through the values

{7—’1&-}, m=12 ...

it follows that the statement of the theorem is true if ¢ is restricted to be rational.
The proof will be complete when it is shown that the subject™ variables for ra-
tional ¢ are dense in the whole class in the sense that for any ¢, the expectation

(4.73) 5 = E{[E{z(s), s < 0;2(t")} — E{z(s), s S 0;2(1)}I"}

2 Courtesy of U. S. Navy.
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converges to 0 when ¢’ — ¢. In fact, using the Schwarz inequality

5 = E{[E((s), s < 0; () — s()}]'}

474
@74 < E{E{x(s), s £ 0; [(t) — z()F}} = E{[=(t) — =T}

and the basic continuity hypothesis (1.3.1) imposed on continuous processes is
precisely that the last éxpectation converges to 0 when ' — ¢.

Conversely suppose that the chance variables (4.7.1) are linearly dependent
on N variables. It can be supposed that z(0) is one of these N. Let the others
be those for which ¢ = &, -- -, tx, and define y:1(£), -+ - , yx(t) by

y(t) = z(t)

(4.7.5)
yit) = E{z(s), s < t; x(t + 1) j=2--,N.

The y(t) process is obviously an N-dimensional t.h.G. process. Moreover

E{y(s), s £ 0;y;(t) = E{x(s), s = 0;y;(t)}

(4.7.6)
= E{z(s), s = 0; z(t + )} j=1--,N

(where ¢, is defined as 0). Since the right side is by hypothesis, for each j, a
linear combination of ¥:(0), - - -, y~(0), the y(f) process is a t.h.G.M. process,
and the z(f) process is a component process, as was to be shown.

A detailed examination will now be made of t.h.G.My. processes, and of the
more general class of component processes of t.h.G.M. processes. The following
theorem will be useful.

TueoreEM 4.8. Let {x(t)} be the variables determining a t.h.G. continuous param-
eter process. The process 1s a component process of an N-dimensional t.h.G.M.
process if and only if for each ¢ > O the discrete parameter process with variables
{x(ne)} ©s a component process of an N-dimensional t.h.G.M. process.

If the z(¢) process is a component process of an N-dimensional t.h.G.M. y(¢)
process, the x(ne) process is a component process of the N-dimensional t.h.G.M.
y(ne) process. Conversely suppose that the x(ne) process is a component process
of an N-dimensional t.h.G.M. process (which may depend on ) for every ¢ > 0.
It follows that for each ¢ > 0 the chance variables

(4~81) E{ Tt x(—é), x(O);x(n e)}) n=201---

are linearly dependent on N of their number. Hence the same is true of the
following chance variables, if », m are fixed and » > m:

(4.8.2) E{ ..., x(—1/vY), z(0); x(n/m} n=0,1,---.

According to the Corollary to Theorem 1.2, when » — « the conditional expecta-
tions in (4.8.2) converge to

(4.8.3) E{xz(s), s = 0, s rational; z(n/m)} n=201,-
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Hence the chance variables (¢ rational)

(4.8.4) E{z(s), s £ 0, s rational; z(¢)} = E{xz(s), s = 0; z()}™,
0<t < o,

are linearly dependent on N of their number. As in the proof of Theorem 4.7
it follows that the same is true if ¢ runs through all positive real numbers, and
according to Theorem 4.7, the z(t) process is therefore a component process of
an N-dimensional t.h.G.M. process.

THEOREM 4.9. Let {x(t)} be the variables of a one-dimensional continuous
parameter t.h.G. process. The process is a component process of a finite-dimen-
sional t.h.G.M. process if and only if the complex spectral function of the process
is the sum of the wntegral of the square of the absolute value of a rational function of
\ and of a mono*one non-decreasing function increasing only-in a finite number of
jumps.®  Specifically:.

(i) The process is a component process of an N-dimensional t.h.G.M. process if
and only if the complex spectral function has the form

_ * ‘3(7'7\)»_1'" +B~_1|2
49.1) GO = L e LS (elo)

where

(8) G(\) is a monotone non-decreasing function satisfying (1.3.3) and increasing

only in jumps, at no more than N points.

(b) the denominator of the integrand vanishes at every discontinuity of G0, and

the numerator vanishes at every zero of the denominator, to at least the same order;

(c) the coefficients in the integrand are real, and the roots of the N polynomials are

all on the real axis or in the upper half plane.

The integral vanishes identically if and only if the x(n) process is a component
process of an N-dimensional deterministic process, and G(\) vanishes identically if
and only if the variables {x(t)} vanish identically or the x(t) process ts a component
pracess of an N-dimensional t.h.G.M. process with no deterministic factor.

(i) The process is a t.h.G.My. process, in the deterministic case, if and only if
the complex spectral function G(\) = G(\) is a function increasing only in jumps,
at no more than N points; non-deterministic case if and only if the complex spectral
function has the form

(4.9.2) GO = [wl(i)\)N +c d>\ + an|’

2 The equality (4.8.4) is proved as follows. Let ¢ be fixed, and let = be the chance vari-
able on the left. Then z(f) — z has mean 0 and is uncorrelated with every z(s) with s <0 and
rational. It follows at once from the continuity of hypothesis (1.3.1) that then z(¢) — zis
uncorrelated with every z(s) with s < 0: it follows that (4.8.4) is true.

2 Tt is easily seen that the first term of the two can also be'described simply as the in-
tegral of a rational function of A, which is non-negative Yor real A and is integrable dnd an
even function, like all complex spectral density functions.
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Proof of (7). Suppose that the x(f) process is a one-dimensional component
process of an N-dimensional t.h.G.M. y(¢) process, z(t) = y1(t). It is no restric-
tion to assume that the y(f) process is non-singular. Then the correlation func-
tion of the y(f) process is given by

R,() = R,(0)e” t=0
R,() = e R, (0 =0,
where @ is uniquely determined and

GO — G(0) = [%r [:‘{”—d‘——lm(o dt]u

1 [ —1
=

27 © it

(4.9.3)

(4.94)

[Ry(D)ln at,

at the points of continuity of G(\).
The correlation function R,(t) has derivatives of all orders for ¢ > 0:

() = R,(0)Q¥ '’ t>0
= (—=1’Q@e¢®R,(00 ¢<0.

Suppose first that the y(f) process has no deterministic factor, in other words
that it is non-degenerate and of type M. Then the characteristic values of Q
have negative real parts and R(f) — 0 exponentially when |¢{| — «. Hence
G(\) has a continuous derivative G'(A):

(4.9.5)

(4.9.6) G0) = 4 [ ¢ R, ()] dt.
21!' 0
Integrating by parts,

® §I\
G0 = o [ S RO

_ Ry0+) —Ry0—) | 1 [* & L
(4.9.7) - 2m(IN)E + 27 L. e R, () dt

_ Bi(0+) — By(0-) _ BJ(0+) — BJO0=) _ 1 [ é* e

= 27 (1\)? 2.".(1))3 27 Lo (\)? v ’

Since @ satisfies its characteristic equation

(4.9.8) o —gqad® ™t — i —ay =0,
it follows that
499) RPW®) — aiRM" @) — - —avR,@E) =0 t>0

R™®) + aiR* @) — -+ + (=D 'R,) =0 ¢t<0
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and therefore if U is the operator %
[UY — aU¥' — -« —ayUNUY + a U = -+
(4.9.10) »
+ (=¥ 'UIR,(H)=0, ¢ =0.
Applying (4.9.10) to (4.9.6)
)Y — e — o = all@)Y + a@) T + -
(4.9.11) + (=" an G'(N)
= @Y —a@* — - —ay['G'(N) = P(N)

where P(i\) is a polynomial of degree 2n — 2. Since P(7\) is real and non-
negative, when X is real, the roots on the real axis are of even multiplicity and
those off the axis are symmetric in the axis. Moreover P(:)) is even, since the
left side of (4.9.11) iseven. It follows easily that P(s\) can be written in the form

N—1 2

(4.9.12) P@\) = izo ﬁ,’('&)\)N_j—l

where the roots of the 8 polynomial are all on or to the left of theimaginary axis.
Finally
[ BN + - + Bya[*

@Y — - —anlf

The denominator polynomial in A vanishes only at points where 7\ has a nega-
tive real part, that is where A has a positive imaginary part. This completes
the proof in the case where the N-dimensional y(t) process has no deterministic
factor. If there are such factors, it is easily verified that G(\) has corresponding
discontinuities and the above proof then applies to G(A) less its jump function.
The result can finally be summarized as in the statement of the theorem. If the
y(t) process has only deterministic factors [R, ()] will be a sum of trigonometric
functions and G(A\) will be a function of jumps.

Conversely suppose that the x(¢) process has the complex spectral function
(4.9.13). Then following the ideas of the proof of the analogous section of
Theorem 3.9, it follows that R(t) satisfies the differential equation (cf. (3.9.10)
and (3.9.11)).

(4.9.13) o) =

(4.9.14) R™(¢) — alRY™(t) — -+ — awR(t) = 0,¢ > 0.

Any solution of (4.9.14) is a linear combination of (at most N) functions
(4.9.15) e e ..

where 8 is a root of the equation

(4.9.16) " —ad™ Tt — - —ay =0

and where powers of ¢ may appear if 8 is a multiple root. Let ¢ be a positive
number. The discrete parameter process determined by the variables {z(ne)}
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has correlation function R(ne). This function is a linear combination of func-
tion

(4.9.15") )", n(@®)", -+

corresponding to those of (4.9.15). There is an equation

(4.9.17) o —a()a — - —an(e) =0

with the {¢®} as roots, of the same multiplicity as that of 8 in (4.9.16). Hence
(4.9.18) R[(n+ N)d — ai(e)R[(n + N — 1) — -+ — an(eR(ne) = 0,

n = 0.

According to Theorem 3.10 the z(ne) discrete parameter process is therefore
a component process of an N-dimensional discrete parameter t.h.G.M. process.
Since this is true for all ¢, the 2(f) process is a component process of an N-dimen-
sional continuous parameter t.h.G.M. process.

If the integral vanishes identically, the non-deterministic factors in the N-
dimensional process are irrelevant to the z(t) process and can be replaced by
factors of type M(0). If on the other hand the specural function is continuous,
the deterministic factors are irrelevant and can be replaced by factors of
type M.

Proof of (#5). Since the t.h.G.My. processes are characterized among the
component processes of N-dimensional t.h.G.M. processes by the fact that the
first N — 1 derived process exist, their spectral functions (according to Theorem
1.4) are characterized by the property that

[ NAD GG < »

that is the numerator in (4.9.1) must be identically constant. Tf this constant
is not 0, G(\) can have no jumps, since each jump corresponds to a zero of nu-
merator and denominator. Hence G()) is either identically G(\) or is in the
form (4.9.2). The two possibilities obviously correspond to the deterministic
and non-deterministic cases, respectively.

CorOLLARY. The t.h.G.My. one dimensional process which 1s the solution of
(4.4.1) has complex speciral function

A 2
¢ d\
(49.19) ‘Lo (G — @) — o — & P

In fact the complex spectral function has the form (4.9.2), where the coeffi-
cients in the polynomial are those of the differential equation for the correlation
function R,(f) in (4.9.9), that is the coefficients of the characteristic equation of
the infinitesimal transition matrix Q, (cf. (4.4.8)). The evaluation (4.9.19) is

also easily proved directly.
The analogues of Theorems 3.10 and 3.11 in the continuous parameter case

are easy to prove and will be omitted.




