NOTES

This section is devoted to brief research and expository articles, notes on method-
ology and other short items.
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A COMBINATORIAL FORMULA AND ITS APPLICATION TO THE
THEORY OF PROBABILITY OF ARBITRARY EVENTS'

By Kai-Lai CrunG anp Lierz C. Hsu
National Southwest Associated University, Kunming, China

An important principle, known as a proposition in formal logic or the method
of cross-classification can be stated as follows.'

Let F and f be any two functions of combinations out of (v) = (1,2, ---, n).
Then the two formulas
(L.1) F(@)= 23 f(@ + ®)

) ¢ (»)—(a)

@1) fl@) =, 23 “ (—=1D)"F(@ + (8))

) € (v)—(a

are equivalent.
As an immediate application to the theory of probability of arbitrary events,

we have the set of inversion formulas®

XY @) = 3l + @)
(B8) e (v)—(a)
@D = % (=1'p(@ + 6)

where p((a)) is the probability of the occurrence of at least Eq,, Eo,, -+, Ea,
out of n arbitrary events E,, E,, --- , E, and p[(e)] is the probability of the
occurrence of Ea, , Ea,, -+ , Ea, and no others among the n events, (o1, az,
.-+, ) denoting a combination of the integers (1, 2, ---, n). They can be
made to play a central réle in the theory, since they supply a method for con-
verting the fundamental systems of probabilities, p[(e)] and p((«)), one into the
other.

We may further generalize (1.1) and (2.1) by considering combinations with
repetitions. Let such a combination be written as

(@ = (&) = (af'ez*--- o2?)

1 For the notations and definitions see K. L. CHUNG, ‘‘On fundamental systems of prob-
abilities of a finite number of events,”” Annals of Math. Stat., Vol. 14 (1943), pp. 123-133.
2 Cf. FRECHET, Les probabilités associées & un systéme d’événements compatibles et dépen-
dants, Hermann, Paris (1939), formulas (55) and (58).
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92 KAI-LAI CHUNG AND LIETZ C. HSU

where 7; (r; > 1) denotes the number of repetitions of the number a;, ¢ =

1,2, -+, a Correspondingly we write
(@) = (oae -+ @)

and call it the reduced combination corresponding to (a).
If there are n distinct elements (1, 2, - -+, n) in question, we may write every
combination in the form

(1'12'z . n"n)

where each r; is zero or a positive integer. We say that (1''2'? ... n™) belongs
to (12" ... 2™ and write

(22 ...a" (12 ... 0™
if and only if foreach 7,7 = 1,2, --- , n, we have s; < r;. We write
(17227« ™) 4 (192% .. ™) = (171+¢12rg+a, . nr..+:,.);
and if (1°12°2 ... n™) e (1727 ... ™),
1m2s ...a™m) — (122 ...p') = (12T 000,

We define a generalized Mébius function u((e)) for combinations (with or with-
out repetitions) as follows
_ (-1 i (@) = ()
F((a)) = 0 if (a) = (a)l.

This function has the property.
_1 if (@ =1(0)
02w " =0 i (@) = ©.
For we have
_ —1) = af 1) a’
(ﬂ)Z(a) ”((ﬁ)) - (ﬂ)tz(a)' ( 1) g:l)( 1) (b)

_1if a=0_1 if (a) = (0)
0 if a#0 0 if (a) # (0).

Now we state and prove the following general theorem.

TueoreM. Let (a); = (aif'afi? --- afi%) and (»); = (1*12M ... ny™)
where \;j and n; are finiteand 1 < ri; K Nij, 1 L ai < nifori =1,2,---,m
andj = 1,2, ---,n;. Then for any two functions of the m combinaiions (with
repetitions), ()1, ()2, -+, (@)m out of (W1, V)2, -+, (¥)m, the two sets of
formulas:

F(@1, (@2, -+ (a)m)

W - £(@1 4 By @2+ B2y, @m+ B)m)

B)ie()i—(a);
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and

H(@sy @a s, @)
@
-z [II w((B); )] F(@1+ B1y @+ By ) @+ (B)a)
B)s e (v)i—(a)g

are equivalent.
Proor. To deduce (2) from (1)

I #((B).)] F((@s+ B)1, - (@m + (B)m)

B)i e (v)i—(a)g [t-

II «(®2)

B e (").—(a). [i- ] (V)i e ()i—(a)s—(B)¢

f((@1+ B+ (i, - (@m + B)m + (V)m)
= E f((a)l + (8)1 y T (a)m + (8)m)

B e ()i—(a);

> TTu(@) - @)

(7)s € (8)5 tm1

Evidently we have

> T - <v>.>_IIg

(1)s € (8); s=1

u((®): — (7).-)}
(1)i € (8)g

1 if @;i=@0) for =1, ---,m
0 otherwise

; u((‘v).-)g =
=1 (Ml ®)

by the property of the u-function. Hence the preceding sum reduces to
Jl(a)1, + -+, (a)m) In accord with (2).

(1) is deduced from (2) in a similar way.

Although the general case is not without importance in the treatment of
several sets of events,® we shall for the sake of convenience restrict ourselves to
the special case m = 1.

In order to apply these formulas we must first introduce combinations with
repetitions into the theory of arbitrary events. This can be done in various
ways. Firstly, we may consider the number of occurrences of each event in a
given time-interval or in a series of trials not necessarily independent. Secondly,
we may regard each event as possessing various degrees of intensity. If the
event E; occurs r; times in a given time-interval or occurs with r; degrees of
intensity, we write it as E;*. Hereafter we shall make use of the first interpreta-

3 Cf. FrficrET, Loc. Cit. pp. 50-52; also, K. L. CHUNG, “Generalization of Poincaré’s
formula in the theory of probability,’’ Annals of Math. Stat., Vol. 14 (1943). We may note
that our general theorem may be used to give another proof of the generalized Poincaré’s
formula for several sets of events.
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tion and we shall assume that the maximum number of occurrences of each event
is finite:

We define
plE* - -+ E77] = p[(»")] = The probability that E; occurs exactly r;
times in the given time-interval.
p(ET* -+ E7) = p((+")) = The probability that E; occurs at least r;
times in the given time-interval.
These quantities play the same réle as the p[(«)]’s and p((@))’s in the ordinary
theory. Evidently the probability of every complex event in question can be
expressed as the sum of certain p[(»")]’s. To prove that the p((»"))’s also form
a fundamental system of quantities we have only to express p[(»")]’s in terms of
the p((»"))’s. This is given immediately by an application of the general
theorem with m = 1. For we have in an obvious way
p(B - E7) = 3, plEY .- B

riStisN;
or

®3) p(()) = 2l + 0= 3
) ¢ GR)—(7) G

%) ¢ (,)\—

it

vE) e
Henze we obtain the inversion

) o0 = 3 wODp(G) + 6.
(v®) € (W)—(»7)

Let (o) denote a running combination without repetitions. Then since u((+°)) =

0 unless (+°) is a (¥'),

@ ploN= %

[

L HE@RE) @) = 5

(-

, (D) + (@)’

The set of formulas (3) and (4) generalize (3.1) and (4.1).

Corresponding to the p((v)) for the ordinary events we define for @ 4+ b +
... = nandr, s --- all distinet:

Drarivis,... (BY* -+« EW) = The probability that among n events Ei, E,,
..., E, exactly a events occur r times, exactly b events occur s times and so on.

By (4) we easily obtain

Prarr e (1)
® =2, 2 )“((,,2))1,((,,:) + @+ @+ )

8 (%) e (PM)=((@)™+(B)o+++
where ()" = (E%, --- Ea,), (B)° = (Eg, --- Eg,), --- and the first summation
is a symmetric sum which extends to all n!/alb! --- different combinations
(a1 aa), (Bi---Bs), -+ out of (») = (1,2---n).
The equality (5) is obviously a generalization of Poincaré’s formula.
Similarly for the probabilities in the definition of which the word “exactly”
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is sometimes substituted for the words ‘‘at least.” Of course we can express
all of them in terms of the p[(+")]’s or of the p((+"))’s. However elegant formulas
such as in the ordinary theory seem to be lacking.

Finally, we may also consider conditions of existence for the p[(»)]’s and the
p((»"))’s. For the former system the conditions are that they be all non-negative
and that their sum be 1. For the latter system, the conditions are given by
(4"), viz. for every (') e (),

>

(a’) € (7

)#((a'))P((V') + (a)) = 0.

These conditions are necessary and sufficient since (3) and (4) are equivalent.

ON THE MECHANICS OF CLASSIFICATION

By Caru F. Kossack
University of Oregon

1. Introduction. Wald' has recently determined the distribution of the
statistic U to be used in the classification of an observation, z; (t = 1,2, - - , p),
as coming from one of two populations. He also determined the critical region
which is most powerful for such a classification. It is the purpose of this paper
to show how such a classification statistic under the assumption of large sampling
can be applied in an actual problem and to present a systematic approach to the
necessary computations.

The data used in this demonstration are those which were obtained from the
AS.T.P. pre-engineering trainees assigned to the University of Oregon. The
problem considered is that of classifying a trainee as to whether he will do un-
satisfactory or satisfactory work® in the first term mathematics course (Inter-
mediate Algebra). The variables used in the classification are: (1) A Mathe-
matics Placement Test Score. This is the score obtained by the trainee on a
fifty-minute elementary mathematics test (including elementary algebra).
The test was given to each trainee on the day that he arrived on the campus.
(2) A High School Mathematics Score. A trainee’s high school mathematics
record was made into a score by giving 1 point to students who had had no high
school algebra, 2 points to students with an F in first-year, high-school algbra
and no second-year algebra, 3 points for a D, - - - | 10 points for an average grade
of A in first- and second-year algebra. (3) The Army General Classification
Test Score. An individual needed a score-of 115 or better in order to be assigned
to the A.S.T.P. These data were obtained for 305 trainees along with the actual

! ABraHAM WALD, “On a statistical problem arising in the classification of an individual
into one of two groups,’” Annals of Math. Stat., Vol. 15, (1944), No. 2.

2 Unsatisfactory work was defined as a grade of F or D in the course (failure or the lowest
passing grade).



