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In the special case m = k and for a symmetrical initial distribution with mean
zero, the following equations hold
(13) mo = O = Ol mlh = = Up = Uy .
(131) m¢=1_¢k=1—¢m; mP = Pk = POm .
and the bivariate distribution of the mth values from the bottom .z, and from
the top z, , is

(14) mn(mx’ Zm) = mf (m) *fn(Zom),
where
(14") wf(nZ) = fu(— Tm)

is the expression used in the beginning of article [1]

It follows from (11) that the mth observation in ascending order, and the kth
observation in descending order, may be dealt with as independent variates
provided that n» is large, the ranks m and k are small, and that the initial con-
tinuous unlimited distribution is of the exponential type as defined by equations

@).
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A NOTE ON SAMPLING INSPECTION
By PauL Pracu aAxD S. B. LITTAUER

North Carolina State College and Newark College of Engineering

In designing an industrial sampling plan conformable to the Pearson-Neyman
approach, the operating characteristic is made to pass as nearly as possible
through two predetermined points. Wald [1] has used this method for setting up
sequential sampling plans.

A similar type of single sampling plan can be designed by using tables of the
incomplete Beta function. Unfortunately, tables of this function are not
generally available, and the existing tables do not cover the range for large
sample sizes.

An approximate solution of the problem for single sampling can be based on the
widely available tables of percentage points of the chi-square distribution. This
is equivalent to assuming a Poisson distribution of defectives in the sample,
utilizing the well known fact that for even degrees of freedom the chi-square
distribution gives the summation of a Poisson series.

We use the following well established notation:
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n = sample size

¢ = acceptance number

p1 = acceptable fraction defective
pa = objectionable fraction defective
a = risk of rejecting a lot if p = p,.

B = risk of accepting a lot if p = ps.

There seems little to be gained by using a large assortmenf of possible risk
values, since the necessary adjustment to secure a desired effect can be made
on the p’s. We suggest the adoption of .05 as a standard value for both « and 8.
This convention conforms to much existing statistical practice, in particular to
some existing inspection tables.

We propose also the use of

Ry = po/p1,

which we call the “operating ratio,” as a measure of the power of discrimination
of an inspection scheme. Dodge and Romig [2] used what is essentially the
reciprocal of R, as a basis for the construction of sampling plans. Now, assume a
binomial distribution of defectives in samples and a series of single sampling
plans with the same ¢ but different n. As n increases, the effective values of
p1 and ps clearly decrease. Their ratio R, is not constant, but it does not change
very much after n has got beyond the range of very small samples—say 5(c + 1).
The value obtained from the chi-square table is the upper limit of R, for a fixed ¢
and increasing n. Since R, is to a first approximation a function of ¢ alone,
provided n is not very small, it is a useful index for the construction of tables,
and gives great compactness.
Using the chi-square approach, we note that

D.F. =2+ 2
= 1.2
np: = 32 X2+2,1~-a
1.2
NPz = 3 X2c+2.8

2
2¢+2,
Ry = S22
X2e+2,1—a

Table I gives Ry, ¢, and np, over a considerable range, with a =8 = .05.
Given p; and p,, we calculate R, and use it to enter the table; ¢ is read off directly,
and the sample size is n = npi/p: .

Sample sizes obtained in this way will be too large when the true distribution
of defectives follows the binomial or hypergeometric laws. There is, however, a
gain in protection due to the extra inspection. For the binomial case the exact
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TABLE I
Single sample inspection plans
a =08 = .05

Ro c np,
58. 0 .051
13. 1 .355
7.5 2 .818
5.7 3 1.366
4.6 4 1.970
4.0 5 2.61
3.6 6 3.29
3.3 7 3.98
3.1 8 4.70
2.9 9 5.43
2.7 10 6.17
2.63 11 6.92
2.53 12 7.69
2.44 13 8.46
2.37 14 9.25
2.30 15 10.04
2.24 16 10.83
2.19 17 11.63
2.14 18 12.44
2.10 19 13.25
2.07 20 14.07
2.03 21 14.89
2.00 22 15.72
1.92 25 18.22
1.81 30 22.44
1.71 37 28.46
1.61 47 37.20
1.51 63 51.43
1.335 129 111.83
1.251 215 192.41

In view of the approximate nature of this table due to the Poisson distribution,
it is suggested that when the calculated value of Ro does not appear, the table be entered
with the next larger value. This rule will result in partial compensation for the
approximation.
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values p; and p, for a given n and ¢ can be calculated, using a table of the
5 per cent points of the F' (variance ratio) distribution. We may take

n = 2(n — ¢
ng = 2(c + 1)
Fy = F(ny, ny)
Fy, = F(ny, ny).
Th : =T
en p ne + mF
F
d = Notls
an Pz n + g Fy ’

utilizing a property of the F distribution pointed out in [3], page 2.
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ON AN EQUATION OF WALD

By DAvipD BLACKWELL

Howard Unwversity

Let X, X,, --- be a sequence of independent chance variables with a com-
mon expected value a, and let S;, S, --- be a sequence of mutually exclusive
events, S depending only on X;, -, X, such that >, P(Sy) = 1. Define

k=1

the chance variables n = n(X;, X2, --+) = k when Si occurs and W = X, +
.-+ + X,. We shall consider conditions under which the equation

¢Y) E(W) = aE(n),

due to Wald [3, p. 142], holds.

This equation has various interpretations:

A. n may be considered as defining a sequential test on the X;. If a and
E(W) are known, (1) may be used to determine E(n), the expected number of
observations required by the sequential test, [3, p. 142 et seq].

B. n may be considered as representing a gambling system, i.e. it represents
the point at which a player decides to stop. W then represents his winnings,



