CONCERNING THE EFFECT OF INTRACLASS CORRELATION ON
CERTAIN SIGNIFICANCE TESTS

By Joan E. WALsH
Princeton University

1. Summary. In practical appuiications it is frequently assumed that the
values obtained by a sampling process are independently drawn from the same
normal population. Then confidence intervals and significance tests which were
derived under the assumption of independence are applied using these values.
Often the assumption of independence between the values may be at best only
approximately valid. For some cases, however, it may be permissible to assume
that the correlation between each two values is the same (intraclass correlation).
The purpose of this paper is to investigate the effect of this intraclass correlation
on the confidence coefficients and significance levels of several well known
confidence intervals and significance tests which were derived under the assump-
tion of independence, and to extend these considerations to the case of two
sets of values.

In the first part of the paper the relations given in Table I are used to compute
tables which show the effect of intraclass correlation on the confidence coefficients
and significance levels of the confidence intervals and significance tests listed in
Table II. The second part of the paper consists of the proofs of the relations
given in Table I.

2. Introduction. Let the n values z;, ... ,x, represent a single value of a
normal multivariate population for which each of the n variables has mean u
variance o, and the correlation between each two variables is p. These n
values will be called a correlated ‘“sample.” The values 2, ---,xz, and
Y1, - ,Ymare said to represent two correlated “samples” if they have a normal
multivariate distribution such that the z’s have mean y, variance ¢°, correlation
p, the y’s have mean u/, variance ¢'*, correlation p’, and the correlation between
each x and y is p’’. This paper shows that several well known quantities which
have Student ¢, x*, or Snedecor F distributions when the values form random
samples still have these same distributions for correlated ‘“‘samples” if the quanti-
ties are multiplied by suitable constant factors, where it is to be remembered
that for normal populations a correlated “sample” is a random sample if and
only if p = 0 and that two correlated “samples” represent two random samples
ifandonlyif p = p’ = p”’ = 0. The quantltles cons1dered and the corresponding

factors are listed in Table I, where & = Z zi/nand § = Z Yo/m. Several com-

monly used confidence intervals and s1gmﬁcance tests based on these quantities
and derived under the assumption of randomness are considered, and tables are
computed which show how the confidence coefficients and significance levels of
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these confidence intervals and significance tests vary if the values are from
correlated ‘‘samples’ instead of random samples. Table I1 contains an outline
of the confidence intervals and significance tests considered. It is found that
these confidence coefficients and significance levels can change noticeably when a
correlated ‘‘sample’ is considered. This is particularly true for the Student
t-test. For example, in one case it is found that if the sample size is 32 and the
significance level is .05 when p = 0, then the significance level becomes .23 for
p = .05. This large change in significance level for a small change in p is ex-
plained by the factor given for the Student {(-distribution in Table I. This
shows that test results which appear to be ‘‘significant’’ under the assumption of
randomness are not necessarily ‘‘significant’”’ when correlation is present, even
though the amount of correlation may be small. The effect of correlation on the

TABLE 1

Factor MultiPlying
Statistic for
Correlated ‘“Samples”

(2 —w) Vn(n = 1) (2 — p) v/n(n — 1) | Student t-distribution 1—p
s - | /& gaa(t) dt Y ivxa-ns
2 , (2 — £)2
- z z)

Distribution For

Quantity Random Sample

S2 1 Z": ( - x2-distribution 1
- = z; — &
LA Jar(x?) dx? 1—»
2 Snedecor F-distri- 1—p
eas: ; (@; — &) bution 1—»p

G‘ZS,Z hn—l.m—l (F) dF

o? ; (ya -9

x” and Snedecor F tests is not as great as for the Student ¢-test as can be seen from
the factors given for the x” and Snedecor F distributions in Table I.

3. Effect of intraclass correlation. The relations stated in Table I will now
be used to investigate the effect of intraclass correlation on the confidence co-
efficients and significance levels of several common types of confidence intervals
and significance tests which were derived under the assumption of random
samples. The confidence intervals and significance tests considered are listed
in Table II, where S* and S’ are defined in Table I. These particular confidence
intervals and significance tests have the property that if « is the confidence
coefficient of the confidence interval listed for a given statistic, then 1 — « is
the significance level of the significance test listed for that statistic, this relation
holding whether random samples or correlated ‘‘samples’” are considered. For
this reason the tables given in this section will be limited to confidence coeffi-
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cients; the corresponding significance levels can be obtained by using the above
relation.

a. Student t-distribution. If a random sample of sizenis drawn from a normal
population with mean u and variance o* (denoted by N(u, ¢%), a confidence
interval for u with confidence coefficient ¢ is given in Table II. If the n values
form a correlated “sample”, however, it follows from Table I that the cor-
responding confidence interval with coefficient e is

o T+ (o = D ] [ F (o = Do
7o A8 n(n_1><1_,,>§"§’”+‘=31/n<n_1)(1_,,>-

TABLE 11
Para-
Stat- | meter Confidence Interval Significance Test Definitions of
istic E_xal(!ix- (Confidence Coefficient ¢) (Significance Level = 1 — ¢) Constants
ine:
t | ow |, teS £ —u te
Y ‘ Tl I gna() dt =
n(n — 1) < teS/A/n(n — 1) —te
teS
é T + —
Vn(n = 1)
xz o? 0 é o? < Sz/x2 Sz ©
¢ S = Uxt o Jr1G®) dx? = e
4 Xe
F a? 0 = o%/o"? £ S2/S"F, 28’2 ®
o2 Jag = 1/F |, Fncnaa () dF = ¢

The confidence interval given in Table II can be rewritten as

- T+ (n — Dp i T+ (n = s
TS A = S E TS T A =

— 1 —p
ta—tEV—h—1+(n_l)p.

Hence if p < 0, @ > ¢ and the confidence coefficient of the confidence interval
in Table II is greater than e. This means that the significance level of the
corresponding significance test listed in Table II would be less than 1 — e so
that any test result which would be significant for a random sample would also
be significant for a correlated “sample’” for which p < 0. If p > 0, however,
€ > o and the significance level of the test would be greater than 1 — . Thus a
test result which would be significant for a random sample need no longer be
when p > 0. The effect of positive values of p upon the confidence coefficient
a = a,(p, n) of the confidence interval of Table II is given in Table III for the
cases ¢ = .95 and .99. Confidence intervals with unequal tails can be treated

where
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in a similar manner. It is thus seen that the effect of correlation on the con-
fidence coefficient increases with the sample size n, and that even a very small
amount of correlation can cause a large change in «. For example, for samples
of size 16 a correlation of p = .05 will change the significance level from .05 to
.135; for samples of size 32 a correlation of p = .05 will change the significance
level from .01 to .102, and from .05 to .23.

Confidence intervals for u — u’ are given by Theorem 5 of section 4. It is to be
observed that if p = p* = p’’ and ¢ = ¢’ the confidence coefficients are inde-
pendent of pand . If m = m,p = p/, 0 = ¢, p’’ = 0, however, the confidence
coefficients of the confidence intervals for 4 — u’ have the values a = a;(p, n)
given in Table III.

TABLE III
Values of a:(p, n)

\ 0 05 1 2 3 4 5
”n
. .99 983 974 961 944 920
95 921 .890 855 805 744
R .99 959 913 853 790
95 865 767 620
" .99 903 795 690 600 515
95 865 74 .64 54
99 808 79 63
82 95 77 .68
64 .99 79
128 .99 .68

b. x*-distribution. If a random sample of size n is drawn from N(, ¢°), a con-
fidence interval for ¢” with coefficient e is given in Table II. If the n values form
a correlated ‘“‘sample’’, it follows from Table I that the corresponding con-
fidence interval with coefficient e is

0= 6" 2 8/x0~ ).
The confidence interval in Table II can be rewritten as
0= =80 -0,
where
Xa = Xe/(L — p).

Hence if p < 0, @ > € and the significance level of the significance test given in
Table II is less than 1 — €. If p > 0, the significance level of the test is greater
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than 1 — e. The effect of positive values of p upon the confidence coefficient
a = a,z(p, n) of the confidence interval listed in Table II is given in Table IV
for e = .95 and .99. Cases in which the lower limit of the confidence interval
is not zero can be treated in a similar manner. Table IV shows that the con-
fidence coefficient @ = a,2(p, n) decreases with the sample size n for a fixed value
of p. Although the effect of correlation for the x*-distribution is not as great as
for the Student ¢-distribution, it does cause a noticeable change in «. For
example, for samples of size 16 the significance level of the test in Table II is
changed from .05 to .081 if p = .1 and from .05 to .13 if p = .2. For samples of
size 32 the significance level is changed from .05 to .10 for p = .1 and from .05 to
19 for p = .2.

c. Snedecor f-distribution. If two random samples, one of size n (denoted
by 2’s) and the other of size m (denoted by y’s), are drawn from N(g, o°)
and N(u', ¢’*) respectively, a confidence interval for ¢ ?/¢”” with coefficient e

TABLE 1V
Values of ax2(p, n)
\ 0 1 2 3 4 5.
n

4 .99 .988 .986 .983 979 971
.95 941 .930 .918 .900 .872
16 .99 .982 .966 941 .890 .790

.95 919 .87 .79 .67 .49

32 .99 975 .946 .867 715 44

.95 .90 .81 .64 .38 17

1s given in Table II. If the values form two correlated ‘‘samples’, however,
it follows from Table I that the corresponding confidence interval Wlth coeffici-

ent € is
S(l - p')/
<
0 < d*/d” S’z(l—p) F..

The confidence interval in Table II can be restated as
S(1 — o)
/,2—8/2(1 /Fa)

Foa=F1 = p)/(1 = p).

Thus if p = p’, « = € and the significance level of the significance test given in
Table II remains equal to 1 — e. If (1 — p/)/(1 — p) < 1, @ > € and the
significance level is less than 1 — e. If (1 — p")/(1 — p) > 1, however, a < €

where
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and the significance level is greater than 1 — e. Values of the confidence
/
, N, m) of the confidence interval listed in Table II are

1—0p
given in Table V for ¢ = .95 and .99. Cases in which the lower limit of the
confidence interval is not zero can be treated in a manner similar to that given
above. Table V indicates that the effect of correlation on the confidence
coefficient is not as great forn < masforn > m. Forexample,ifn = 4, m = 32,

TABLE V
1 — ’

Values of ar (—p , n, m)
1—0»p

coefficient o = ap (

1 125 15 2.0
4 4 .99 .987 .983 975
.95 .933 .916 .880
.99 978 .962 917
16 4 .95 912 .869 778
.99 .975 .952 .896
32 4 95 906 858 753
4 16 .99 .987 .985 977
.95 .933 .914 .875
.99 973 .945 .858
16 16 95 892 817 637
.99 .919 .837 .628
82 16 95 869 763 518
.99 987 .985 977
4 82 95 931 913 874
.99 .960 .893 .675
32 32 95 850 707 400
- / . . .
11 P = 1.25, the significance level of the significance test given in Table II is
—p
!
only changed from .05 to .069, if 11 P = 1.5from .05t0.087. Ifn =32,m =4,
—p
—_— , .
11 P = 1.25, however, the significance level is changed from .05 to .094, if
—p
— o 1 — ’
11 P = 1.5 from .05 to .142. Also it is seen that for fixed 1 P , the effect of
—p —p

intraclass correlation increases with both n and m.
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4. Analysis. This section contains derivations of the relations stated in the
first three sections. The method used in these derivations is similar to that used
in one approach to the analysis of variance and consists essentially in expressing
each variable as the sum of two quantities, one of which is the same for each
variable and the other of which is different for each variable.

Let z;, .-+ ,z, represent a correlated ‘‘sample”, that is, have a normal
multivariate distribution for which

E(z;) = p, Z=1-:-,n)
(0 | El@: ~ '] =
El(z: — w(z; — w)] = po’, @=j=1,n).
Write the z;, ( = 1, -+, n), in the form
=0+ M+ &,
where § = Zj: &/nand n, &, - - -, & are independently distributed, 5 according to

N(u, o5) and the £; according to N (0, ot). The values of A, o) and o% are chosen
so that the z; = n 4+ A + & satisfy (1). It is easily proved that it is always
possible to choose \, o; and o} so that (1) are satisfied. It is to be remembered

that p = — 1/(n — 1) for intraclass correlation. From relations (1) and
z; = 5 + N + & it follows that
(2) E(Ef) = 0'2(1 - P), (7‘ =1,--- ,7’&).

1 n
a“’(l——;S ; (z; — %)° has a x-distribution with
n — 1 degrees of freedom and is distributed independently of Z.
Proor. Since the £; are independently distributed according to the same

normal distribution with zero mean, it follows from (2) that

E(E) £>_ Z(x:'—jz

has a x’-distribution with n — 1 degrees of freedom and is distributed inde-
pendently of £ = 5 4+ (1 4+ N)E.

TaeorEM 1. The quantity

THEOREM 2.

(& — u (n—~1 / /E(x° )’ has a Student t-dis-
Vito-m /¥ T T

tribution with n — 1 degrees of freedom. B
@ — wWvn
a1+ (n—1)p
has the distribution N(0, 1). Theorem 2 is then an immediate consequence of

Theorem 1.

Up to this point a single correlated “sample” of size n has been considered.
The next part of the analysis, however, will be concerned with properties which
arise from the consideration of two correlated ‘‘samples.”

Proor. Itis easily seen from elementary considerations that
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Let 21,-++, Zu, 41, -, Ym have a joint normal multivariate distribution
such that
E(z) = p, f=1:-,n)
E(ys) = v, (@=1,-++,m)
E[(xi - #)2] =q
@) El(ya — #)"] =
El(z; — w(z; — w)] = pd’, G#Ej=1--,n)

El(ya — v)(ys — #)] = o'd”, (a=B=1---,m)
El(z; — w)(ya — p)] = p"od’.

Write the z; and y,. in the form

T, =1 + M+ N+ &

4) ey Atz /
Ya = 77,+>\1£+)\2E,+£a’

where ¥ = Zé.',/m and n, 7', &1, , £n, &1, ,&n are independently
1

dlstrlbuted, ] accordlng to N(u, 02), n accordmg to N(u', 0,°), the §; according to
N (0 "E) and the £, according to N(0, o;’). The quantities A1, Az, A1, Az,
ar , o, ot , o are chosen so that the z; and y, satisfy (3). It is easily verified
that it is always possible to choose these quantities so that the z; and ya con-
structed in this fashion satisfy (3). In addition it follows from (3) and (4) that

E@:) = o'(1 - p)

5
©) E(t) = (1 — o).

1 n m
THEOREM 3. m 12 (z; — 2)° and T—'S ; (Wa — §)° have x’-
distributions with n — 1 and m — 1 degrees of freedom respectively, and are dis-
tributed independently of each other and of % and 7.

Proor. From Theorem 1 and (5) it follows that -—— A1 5 Z (zs — %)°

and 0 > (y« — 7)* have x’-distributions withn — 1 and m — 1 degrees

_ 1 ¥
0’2(1 —pP)
of freedom respectively. That they are distributed independently of each other
and of both £ and 4 follows from (4).

o1 — ) 20 (@i — 2)°
THEOREM 4. ml s distributed according to the Snedecor
1= 9 X e =
F-distribution hn_1, ma(F)dF.
Proor. This follows from Theorem 3.
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THEOREM 5.
(=9 —(—w)VnF+m—2 / /}::(x.-—i)z_l_;(ya—??)z

I
' a*(1 — p) a1 — p')

where
o = i 1+ (n — o] + < 14+ (m — 1)p] — 20”00’
n m ’

has a Student t-distribution with n 4+ m — 2 degrees of freedom.
. 1
Proor. It is easily seen from elementary considerations that - (& — 9)—
1

(r — 1')] has the distribution N(0, 1). Theorem 5 then follows from Theorem 3.
The author wishes to express his appreciation to Professor John W. Tukey for
valuable assistance and advice in the preparation of this paper.



