corresponding value of R_3 computed for a chosen p, then approximately, the proportion p' of plotted errors should fall within the circle of radius R_3 .

REFERENCES

[1] HENRY SCHEFFÉ, Armor and Ordinance Report No. A-224, OSRD No. 1918, Div. 2, pp. 60-61.

[2] S. S. Wilks, Mathematical Statistics, Princeton Univ. Press, 1943, p. 131.

A NOTE ON THE EFFICIENCY OF THE WALD SEQUENTIAL TEST

By EDWARD PAULSON

Institute of Statistics, University of North Carolina

The sequential likelihood ratio test of Wald for testing the hypothesis H_0 that the probability density function is $f(X, \theta_0)$ against the one-sided alternative H_1 that the function is $f(X, \theta_1)$ has been shown [1] to have the optimum property of minimizing the expected number of observations at the two points $\theta = \theta_0$ and $\theta = \theta_1$. Tables showing the actual magnitude of the percentage saving of this sequential procedure compared with the classical "best" non-sequential test have been calculated (see [1], page 147) for the normal case when

$$f(X, \theta) = \frac{1}{\sqrt{2\pi}} \exp \frac{-(X - \theta)^2}{2}.$$

In this note we will show that when θ_1 is close to θ_0 , the percentage saving is independent of the particular function $f(X, \theta)$ and the particular values θ_1 and θ_0 , so that the tables mentioned above can be used to show the percentage saving for any one-sided sequential test involving a single parameter, provided $f(X, \theta)$ satisfies some weak restrictions.

Let $f(X, \theta)$ be the probability density function of a random variable. Let $E_i(n)$ denote the expected value (when $\theta = \theta_i$) of the number of independent observations required by the Wald sequential procedure to test the hypothesis H_0 that $\theta = \theta_0$ against $\theta = \theta_1 = \theta_0 + \Delta$ with probabilities α of rejecting H_0 when $\theta = \theta_0$ and β of accepting H_0 when $\theta = \theta_1$. Let N be the number of independent observations required to achieve the same probabilities α and β for testing the hypothesis $\theta = \theta_0$ against $\theta = \theta_1$ by the most powerful non-sequential test. Let U_{α} and U_{β} be defined by the relations

$$\alpha = \frac{1}{\sqrt{2\pi}} \int_{v_{\alpha}}^{\infty} \exp\left\{-\frac{t^2}{2}\right\} dt$$

and

$$\beta = \frac{1}{\sqrt{2\pi}} \int_{U_{\beta}}^{\infty} \exp\left\{-\frac{t^2}{2}\right\} dt.$$

We will prove the following theorem:

$$\operatorname{Limit}_{\Delta=\theta_1-\theta_0\to 0} \left\{ \frac{E_0(n)}{N} \right\} = -2 \frac{\left\{ \alpha \log \left(\frac{1-\beta}{\alpha} \right) + (1-\alpha) \log \left(\frac{\beta}{1-\alpha} \right) \right\}}{(U_\alpha + U_\beta)^2}$$

provided $f(X, \theta)$ satisfies the following conditions:

- (A) $\int_{-\infty}^{\infty} f(X, \theta) dx$ can be differentiated twice under the integral sign with respect to θ .
 - (B) All four of the integrals

$$\int_{-\infty}^{\infty} \left\{ \frac{f''(x, \theta^*)}{f(x, \theta^*)} - \left[\frac{f'(x, \theta^*)}{f(x, \theta^*)} \right]^2 \right\} f(x, \theta_0) \ dx,$$

$$\int_{-\infty}^{\infty} \frac{f'(x, \theta_0)}{f(x, \theta_0)} \ f'(x, \theta^*) \ dx,$$

$$\int_{-\infty}^{\infty} \left[\frac{f'(x, \theta_0)}{f(x, \theta_0)} \right]^2 f(x, \theta^*) \ dx,$$

$$\int_{-\infty}^{\infty} \frac{f'(x, \theta_0)}{f(x, \theta_0)} \ f(x, \theta^*) \ dx,$$

are continuous functions of θ^* at $\theta^* = \theta_0$. A sufficient condition for (B) is that all the integrals be uniformly convergent with respect to θ^* in some interval $\theta_0 \leq \theta^* \leq \theta_0 + \Delta$, and all the integrands be continuous functions of X and θ^* . A similar theorem holds regarding the limit of $\left\{\frac{E_1(n)}{N}\right\}$.

The proof is as follows: From [1], we know that

$$E_0(n) = \frac{\alpha \log \left(\frac{1-\beta}{\alpha}\right) + (1-\alpha) \log \left(\frac{\beta}{1-\alpha}\right)}{E_0(z)} + o(1),$$

where

$$z = \log \left[\frac{f(x, \theta_1)}{f(x, \theta_0)} \right]$$

and $o(1) \to 0$ as $\Delta \to 0$.

Now

$$E_0(z) = \int_{-\infty}^{\infty} \left[\log \left(\frac{f(x, \theta_1)}{f(x, \theta_0)} \right) \right] f(x, \theta_0) dx,$$

$$= \int_{-\infty}^{\infty} \left[\log f(x, \theta_0 + \Delta) \right] f(x, \theta_0) dx - \int_{-\infty}^{\infty} \left[\log f(x, \theta_0) \right] f(x, \theta_0) dx.$$

Expanding $\log f(x, \theta_0 + \Delta)$ in a Taylor series about $\Delta = 0$, we have

$$\log f(x, \theta_0 + \Delta) = \log f(x, \theta_0) + \Delta \frac{f'(x, \theta_0)}{f(x, \theta_0)} + \frac{\Delta^2}{2} \left[\frac{ff'' - f'^2}{f^2} \right]_{\theta = \theta_0} + \frac{\Delta^2}{2} R_1,$$

where

$$\theta_0 \leq \theta^* \leq \theta_0 + \Delta, \qquad f' = \frac{\partial f(x,\theta)}{\partial \theta}, \qquad f'' = \frac{\partial^2 f(x,\theta)}{\partial \theta^2},$$

and

$$R_1 = \left[\frac{ff'' - f'^2}{f^2}\right]_{\theta = \theta_0}^{\theta = \theta^*}$$

From assumption (A) we find that

$$\int_{-\infty}^{\infty} f'(x, \theta_0) \ dx = 0 \text{ and } \int_{-\infty}^{\infty} f''(x, \theta_0) \ dx = 0,$$

while from assumption (B)

$$\int_{-\infty}^{\infty} R_1 f(x, \theta_0) \ dx \to 0 \text{ as } \Delta \to 0.$$

Therefore

$$E_0(z) = -\frac{\Delta^2}{2} \left[\int_{-\infty}^{\infty} \left[f \left(\frac{f'}{f} \right)^2 \right]_{\theta = \theta_0} dx + o (1) \right].$$

To find N for the most powerful non-sequential test, we make use of the fact (see [2]) that an asymptotically most powerful test for one-sided alternatives is given by a region of the type

$$U_N = \frac{1}{\sqrt{N}} \sum_{i=1}^{i=N} \frac{f'(x_i, \theta_0)}{f(x_i, \theta_0)} \ge K.$$

When $\Delta \to 0$, $N \to \infty$, and since U_N is the sum of N independent variates with a finite second moment, the distribution of $\frac{U_N - E(U_N)}{\sigma_{U_N}}$ approaches that of a normal variate with zero mean and unit variance. Hence we find the N required for a test with Type I and Type II errors α and β by solving for N from the relations

$$\frac{K}{\sqrt{E_0 \left(\frac{f'}{f}\right)_{\theta=\theta_0}^2}} = U_{\alpha}$$

and

(2)
$$\frac{K - \sqrt{N} E_1 \left(\frac{f'}{f}\right)_{\theta = \theta_0}}{\sqrt{E_1 \left(\frac{f'}{f}\right)_{\theta = \theta_0}^2 - \left[E_1 \left(\frac{f'}{f}\right)_{\theta = \theta_0}\right]^2}} = -U_{\beta}$$

Now let
$$y = \left(\frac{f'}{f}\right)_{\theta=\theta_0}$$
, and we find from (1) and (2) that
$$N = \left[\frac{U_{\alpha}\sqrt{\overline{E_0(y^2)}} + U_{\beta}\sqrt{\overline{E_1(y^2)} - [\overline{E_1(y)}]^2}}{\overline{E_1(y)}}\right]^2.$$

Now

$$E_{1}(y) = \int_{-\infty}^{\infty} \frac{f'(x, \theta_{0})}{f(x, \theta_{0})} f(x, \theta_{1}) dx$$

$$= \Delta \int_{-\infty}^{\infty} \frac{f'(x, \theta_{0})}{f(x, \theta_{0})} f'(x, \theta_{0}) dx + \Delta \int_{-\infty}^{\infty} \frac{f'(x, \theta_{0})}{f(x, \theta_{0})} [f'(x, \theta)]_{\theta=\theta_{0}}^{\theta=\theta_{0}} dx$$

$$= \Delta E_{0}y^{2}[1 + o(1)] \text{ from assumption } B.$$

Proceeding in a similar manner, we find

$$[U_{\alpha}\sqrt{E_{0}(y)^{2}}+U_{\beta}\sqrt{E_{1}(y)^{2}-[E_{1}(y)]^{2}}]^{2}=E_{0}(y^{2})[U_{\alpha}+U_{\beta}(1+o(1))]^{2}.$$

We now have

$$\frac{E_0(n)}{N} = \frac{\Delta^2 [E_0(y^2)]^2 (1 + o(1))^2}{E_0(y^2) [U_\alpha + U_\beta (1 + o(1))]^2} \times \frac{\alpha \log \left(\frac{1 - \beta}{\alpha}\right) + (1 - \alpha) \log \left(\frac{\beta}{1 - \alpha}\right)}{-\frac{\Delta^2}{2} [E_0(y^2) + o(1)]}$$

therefore

$$\lim_{\Delta \to 0} \left\{ \frac{E_0(n)}{N} \right\} = -2 \frac{\left[\alpha \log \left(\frac{1-\beta}{\alpha} \right) + (1-\alpha) \log \left(\frac{\beta}{1-\alpha} \right) \right]}{(U_\alpha + U_\beta)^2}.$$

REFERENCES

- A. Wald, "Sequential tests of statistical hypotheses", Annals of Math. Stat., Vol. 16 (1945).
- [2] A. Wald, "Some examples of asymptotically most powerful tests", Annals of Math. Stat., Vol. 12 (1941).

A NOTE ON THE POISSON-CHARLIER¹ FUNCTIONS

By C. Truesdell

Naval Ordnance Laboratory

The polynomials $p_n(m, z)$ given by the definition

(1)
$$p_n(m,z) \equiv (-)^m e^z z^{-m} \frac{d^n}{dz^n} [e^{-z} z^m],$$

¹ This note was written while the author was employed by the Radiation Laboratory, M.I.T.