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corresponding value of R; computed for a chosen p, then approximately, the
proportion p’ of plotted errors should fall within the circle of radius R; .
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A NOTE ON THE EFFICIENCY OF THE WALD SEQUENTIAL TEST
By Epwarp PauLson
Institute of Statistics, University of North Carolina

The sequential likelihood ratio test of Wald for testing the hypothesis H,
that the probability density function is f(X, 6,) against the one-sided alternative
H, that the function is f(X, 6;) has been shown [1] to have the optimum property
of minimizing the expected number of observations at the two points § = 6,
and § = 6,. Tables showing the actual magnitude of the percentage saving
of this sequential procedure compared with the classical “best’’ non-sequential
test have been calculated (see [1], page 147) for the normal case when

1 . - 2
fX,0 = Vor exp ——ng—g)— .

In this note we will show that when 6, is close to 6y, the percentage saving is
independent of the particular function f(X, 6) and the particular values 6,
and 6, so that the tables mentioned above can be used to show the percentage
saving for any one-sided sequential test involving a single parameter, provided
f(X, ) satisfies some weak restrictions.

Let f(X, 6) be the probability density function of a random variable. Let
E;(n) denote the expected value (when 6 = 6,) of the number of independent
observations required by the Wald sequential procedure to test the hypothesis
H, that § = 6, against 6 = 6; = 6, + A with probabilities « of rejecting H,
when 6 = 6, and 8 of accepting H, when 6 = 6;. Let N be the number of in-
dependent observations required to achieve the same probabilities « and g
for testing the hypothesis § = 6, against § = 6, by the most powerful non-
sequential test. Let U, and Upg be defined by the relations

I £\
o = \/2—7; /;anp {—-2—; dt
and

1 L] t2
B = NG /;]Bexp {— 5} dt.
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We will prove the following theorem:

Limit {E—g-f,n—)} L, {a log <1—;—§> + @0 -a) log <1_La)}

A=0;—0g—0 (Ua + Uﬁ)2
provided f(X, 6) satisfies the following conditions:
4) f f(X, 6) dz can be differentiated twice under the integral sign with respect

to 6.
(B) All four of the integrals

(1@, 0 [, 09
f—w{f(w, ) [ 7z, o*)]f Iz, 60 de,

°‘,f,(x, 00) ! *
[ e 1w, 07 da,

1 90)]2
: z, 0%) dx
[15Ea ] re oo
*f'(x, 60)
—— f(zx, 6*) dz,
—o0 f (x’ 00) f( )
are continuous functions of 6* at 6% = 6,. A sufficient condition for (B) is that
all the integrals be uniformly convergent with respect to 6* in some interval 6, <
0* < 6o + A, and all the integrands be continuous functions of X and 6*. A
similar theorem holds regarding the limat of j E}Ern) } .

A—0
The proof is as follows: From [1], we know that

Eotn) = - o <1“;ﬁ> +E'(1(z)_ b (1 . "‘>' + o1),

where

s = g [ f0e |

and o(1) — 0 as A — 0.

[ox ()

= [ g s, 00 + A1 5@, 00 dx — [ llog Sz, 00151, ) d.

Now

Eo(2)
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Expanding log f(z, 8, + A) in a Taylor series about A = 0, we have

= I’ (=, 80) i it A?
logf(x, 00 + A) B logf(x, 00) + A f(xr 00) + [ f2 ]0—00 + E Rl ’

where

8 f(x,6) f = 62f(x, 0)

<o <L ! =
b < 0* < 6o + A, J 3 TR

- [T

From assumption (A) we find that

and

f f'(z, ) dz = 0 and f Mz, 6)) de = 0,
while from assumption (B)

f Rif(z, 60) dz — 0 as A — 0,

s« [ LTAYL, o 00]

To find N for the most powerful non-sequential test, we make use of the fact
(see [2]) that an asymptotically most powerful test for one-sided alternatives is
given by a region of the type

Therefore

lme (xn 00)
z f(xh 00) - z K.

When A — 0, N — o, and since Uy is the sum of N independent variates with
— E (UN)

Ty

a finite second moment, the distribution of approaches that of a

N
normal variate with zero mean and unit variance. Hence we find the N re-

quired for a test with Type I and Type II errors « and 8 by solving for N from

the relations
K

) V().

and

= U,

2) K- VNE <f7,>6-00 = —Us

Vel 6]
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Now let y = ('£>0 o and we find from (1) and (2) that
00>

f
N = [Ua VEW) + Us VEW) — [E1<y)12]’
E\(y)
Now
_ f (z, 60)

B = [ L0 16,00 o
*f'(z, 60) , 'z, 60) ¢, om0
| 7z, Bo)f( 0o)dx+Af e 0)[f( , 0)]ome, d

= AEoyz[l + 0(1)] from assumption B.

Proceeding in a similar manner, we find
(Ve VE@Y: + Us VEGY — B = E@)Ua + Up(l + o).
We now have

B
Eo(n) _ AME, DI + o(1))? y a log( " >+ 1 -« log( a)
o RN e 2B + o]

therefore
1-8 8 )]
1 —
- Eo(n)} _2[“l°g( : > + (- alog ( 2.
A—0 N (Ua + Uﬁ)2
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A NOTE ON THE POISSON-CHARLIER'
 FUNCTIONS
By C. TRUESDELL
Naval Ordnance Laboratory

The polynomials p.(m, z) given by the definition

(1) palm,2) = (=)"e 2" g—";,[_zz"'l,

1 This note was written while the author was employed by the Radiation Laboratory,
M.IT.



