NON-PARAMETRIC ESTIMATION ‘II. STATISTICALLY EQUIVALENT
BLOCKS AND TOLERANCE REGIONS—THE CONTINUOUS CASE

By Joan W. Tuxkey
Princeton University

1. Summary. Wald (2, 1943] extended the usefulness of tolerance limits to
the simplest multi-dimensional cases. His principle is here ised to provide
many new ways of using a sample of n to divide the range of the population into
n + 1 blocks of known behavior. The exact tolerance distribution for the
proportions of the population covered by these blocks is extended from the case
of a continuous probability density function to the case of a continuous cumula-
tive distribution function. Such an extension is needed in dealing completely
with multivariate cases even where the underlying distribution is as smooth as a
multivariate normal distribution.

The devices used in Paper I [1] to extend the usefulness of tolerance limits to
the case of a discontinuous underlying distribution will be applied in the next
paper of this series, with some extension, to extend the usefulness of these gen-
eral tolerance regions to the case of a discontinuous distribution. Some of these
results specialize into new results for the univariate case, although they do not
seem to have any immediate practical application.

The author wishes to acknowledge the stimulation given to his work on this
problem by Henry Scheffé, whose modesty has kept this paper from the joint
authorship of papers I'[1, Scheffé and Tukey 1945] and IV (not yet written).

2. Introduction. Wald’s great contribution to the theory of tolerance limits
was his method of successive elimination. As originally presented for a bi-
variate situation it ran roughly as follows: Let (21, y1), (2, %2), -+ , (Tn , Yn)
be a sample of n from an arbitrary bivariate population. The type of tolerance
region to be used is determined by four preassigned integers, k:, ks, ks, and
ks . The procedure is as follows: Order the n observations according to their z
values. Select the %, highest, and let the x coordinate of the lowest of these k;
be x,. Select the &, lowest, and let the z coordinate of the highest of these
ks be x;. Discard these &y + k; selected observations, and order the remaining
n — k1 — ke observations according to their y values. Select the ks highest of
these remaining observations, and let, the y coordinate of the lowest of these ks
be s . Select the k4 lowest of these remaining observations, and let the y
coordinate of the highest of these ks be y;. The tolerance region, consisting
of all points (z, ), with z; < 2 < 2, and y; < y < y, depends on the sample,
and, hence, so does the fraction of the population falling in (= covered by) this
region. Wald showed that the distribution of this fraction covered was in-
dependent of the underlying bivariate distribution, so long as this latter dis-
tribution had a continuous probability density function. He showed that the

529

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to é
The Annals of Mathematical Statistics. STOR ®

www.jstor.org



530 JOHN W. TUKEY

distribution was the same as that arising in the one-dimensional case when a
tolerance region was set with the aid of & + ks + ks + ks observations. (Nu-
merical approximation to these distributions will be discussed in Paper IV of this
series.

The important device in this process, and the one which makes the conclusion
possible, is the discarding of the ki + k» observations after they have played
their part by determining x; and =, .

We shall shortly be able to describe this procedure of Wald’s as a special case
of a more general procedure, but we shall first go back to the simplest one dimen-
sional case to explain some of our notions and terminology.

Consider the uniform distribution from 0 to 1, draw a sample of n, and let the
sample values, ordered according to size be 1, &, -+« , t». These n values di-
vide the interval from 0 to 1 into the following n + 1 parts (0, &), (¢, &), - -,
(tn-1tn), (., 1) which we shall call blocks. Since the joint distribution of the
¢; is well known, that of the lengths of these n — 1 blocks is easily found. This
distribution of lengths would be unimportant, if it were not at the same time the
distribution of the fractions of the population covered by the blocks. As is
shown later, this distribution of fractions covered, or, more simply, of coverages,
has the following properties:

(i) the fractions covered add up to 1.

(ii) the distribution is completely symmetrical.

Property (ii) makes intuitive the result of Wilks [3, 1941] that the distributions
of the coverage of regions obtained

(a) by removing the k& + k, left-most blocks,

(b) by removing the k; left-most and the k, right-most blocks
are identical. The specific distribution obtained satisfies

(iii) if the coverages are taken as barycentric coordinates on an n-simplex,

the distribution over the simplex is uniform,

(iv) the sum of the coverages of any k preselected blocks of the n + 1 has

the well-known distribution

Pr {sum of k coverages < t} = I, (n — k + 1, k)

where I (n, m) is the incomplete Beta function.
We shall call a set of blocks, derived from a sample, whose coverages behave in
this general way a set of statistically equivalent blocks. Normally this will be
abbreviated to se-blocks. (A precise definition is given in section 4.)

We shall concentrate much of our attention on all the blocks and their sym-
metrical character, rather than on the tolerance region formed by delefing &
of them, since our results will then be applicable to many other problems.

Now we can generalize Wald’s original procedure. Let Wy, W, ---, W,
be a sample of n—we shall not need to consider its distribution—and let ¢,
@2, **+, ¢, be n numerically valued functions of W, possibly alike, possibly
distinct, such that ¢1(W), e2(W), - -+ , (W) have a joint distribution. Proceed
as follows:
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Order the W; according to the numbers (W), select the W; for which ¢,(W5)
is largest and denote it by W1 .. The first block contains all W such that

(2.1a) (W) > o(Wiw).

Discarding W, , order the remaining W; according to the values of ¢:(W3),
and select as W) the one giving the largest value. The second block contains
all W such that

ea(W) < (W),
(W) > o(W).
Continue this process. The mth block, for m < n will be defined by
ei(W) < ¢i(Wiip), J=12--,m—1,
en(W) > on(Wim),
and the (» + 1)st block by
(2.1n) ;W) < 0iWia), j=1,2 ---,n.

(A graphical example of this construction is given shortly.) This set of n 4 1
blocks will be statistically equivalent whenever the cumulative distribution of
each ¢; function is continuous.

To specialize this to the case described above, let W be a pair (z, y) of numbers
and let

(i) the first ki ¢’s be the 2-coordinate of W,

(ii) the next k:¢’s be minus the xz-coordinate of W,

(ili) the next k;¢’s be the y-coordinate of W,

(iv) the next ki¢’s be minus the y-coordinate of W,

(v) the remaining ¢’s be arbitrary.
Then the first k; blocks will contain all W for which

(2.1b)

(2.1m)

z = ¢i(W) > 0;(Win), J=12 -,k
that is, for which
z > 2y = or,(Wigp).
Similarly, the next ks + ks + k4 blocks will contain all W with
z <,
Yy>y, u1<z<a,,
y<yi, 1 <zZ 2,

respectively, and the removal of these k1 + k» + ks + k4 blocks leaves Wald’s
tolerance region (plus the boundaries where 2 = z., 2 = z;,y = yu, ¥y = yJ).
There would be no point in this more general wording, if it did not include
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new cases of some interest. We give now, in graphic terms, an example of such
a case.

We deal with a sample of n bivariate observations, which we think of as plotted
on a map so that we can use geographical language. The number n is rather
large, and we wish to construct a tolerance region by deleting 12 blocks. We
proceed as follows:

Find the most northerly point, draw an East-West line through it, and shade
the area North of the line. Find the most easterly point in the unshaded area,
~r w a North-South line through it, and shade the unshaded area East of the
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ine. Find the most southerly point, (always working in the unshaded area),
draw an East-West line through it and shade the area South of the line. Find
the most westerly point, draw a North-South line through it, and shade the area
West of theline. Find the most northeasterly point, draw a NW-SE line through
it and shade the area northeast of the line. Find the most southeasterly point,
draw a NE-SW line through it, and shade the area southeast of the line. Repeat
this 6 times more, choosing in succession the most southwesterly, northwesterly,
northerly, easterly, southerly, and westerly points. The remaining points will
now lie in an unshaded area surrounded by a polygon, which will have 8 (or
perhaps fewer) sides. The inside of this polygon is the desired tolerance region.
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Figure 1 shows the final result, starting from n = 25. The practicing statis-
tician is invited to try an example of his own with n at least 100.

Other newly accessible cases can easily be invented by the reader, after he con-
siders this example carefully.

The use of a single W and n functions ¢; has two virtues; it simplifies nota-
tion and' frees the intuition, as compared with the use of n chance quantities
Z; = o(W). 4

If the bivariate situation above were regarded as a 12-variate situation, where
the variates were, in order, (y, 2z, —y, -2,z + y,z —y, — 2z — y, — 2 + ¥,
¥, &, — Y, — «) then the original Wald procedure with %; = ks = «++ = ky =
1;k = ky = -+ = kyy = 0 would apply to construct the same region. Yet
even if  and y had a bivariate normal distribution, Wald’s proof would not
apply without extension. For the 12-dimensional distribution is highly singular
(it is concentrated on a 2-dimensional plane in 12-dimensional space) and there
is no hope of a density function. An extension of Wald’s result to the case
where the 12-dimensional joint cumulative distribution function is continuous
—as is the case in this example when z and y have a continuous joint cumulative
—is clearly needed. '

When we come to deal with the case of where the cumulative needs not be
continuous we shall meet a further difficulty, namely “ties”. But if, as in the
present case, the cumulative is continuous, it is easy to see that the probability
that ¢;(W;) = @i W3) for any 1, j, %k is zero.

3. Terminology and notation. A quantity which has a probability distribu-
tion we call a chance quantity (it has frequently been called a random variable).
The term chance quantity does not imply that its values are single real numbers,
they may be single real numbers (when we also speak of a real chance quantity),
sets of n real numbers, or more general objects. The cumulative distribution
function, or cumulative, of a single real chance quantity, X, is defined by

F(t) = Pr{X <},

except perhaps at the discontinuities of #. We have used here the notation
Pr{k(X)} to indicate the probability that £(X) holds, and we have followed our
policy of using capital letters for chance quantities and the corresponding
lower case letters for their values. _

The set of values of W, or, as we shall say, the W-set, for which, for example
(W) < 3, will be denoted by

{W (W) < 3}.

We shall wish to compute probabilities associated with one or more functions
of a chance quantity; usually we will emphasize that these functions shall be
measurable with respect to the probability measure underlying the distribution
of W by asserting that they hayve a joint cumulative, which is defined by

F(tlrt‘l)""tk) =PT{¢]¢(W) <tk}’



534 JOHN W. TUKEY

(except possibly at discontinuities of F) and which does not exist unless the ¢;
are measurable with respect to the unknown underlying distribution of W. In
cases where we neglect to remind the reader, it is still assumed that the functions
are measurable.

The coverage of a W-set, which may itself be a chance quantity, is defined by

Coverage of S = Pr {W e S}.

When S is a chance quantity, its coverage is also a chance quantity. The
barycentric simplex (of dimension n) is the set of points in n 4 1-dimensional
Euclidean space (41,82, **+ ytap) Withty + &+ -+ + fpp = 1and 0 < & < 1.
The name comes from the representation of the point (¢, £, + - , ta41) as the
center of gravity (in mechanical terms) or mean (in statistical terms) of the dis-
tribution where a fraction ¢; is concentrated at the 7th vertex. (In order, the
vertices are (1,0,0, ---,0), (0,1, 0, ---, 0), ete.) The uniform distribution
on this simplex has an (n-dimensional) density

nldtdty oo dtn, O=ZLti, b, ,ta,l —bh—b—t 1),

and the cumulative

T(xl,a:z,o--,x,.+1) =nlff-~-fdt1dt2--~dt,;

where the integration is over the range where 0 < ¢; < z; and at the same time
ht+ b+ o+t < L

4. The blocks determined by n values of W. We deal now with a population
of W’s (a probability measure p on the space T' = {w}), a family of functions
@1, 92, » om of W with a joint cumulative (measurable with respect to u)
and a set of values w1, wy, -+, Wn, (WseT)."

(4.1) DErFINITION The set w1, Wz, + -+ , Wa and the functions o1, ¢4 *** , om
define blocks as follows:

4.2 S = {w]|e(w) > ai}

where a; = max e1(wy) = e1(wiqy), which defines i(1).

(4.3) S = {w]etw) < a1, ew) > al,

where a; = max ex(w;) = o2(Wiw), 9(2) #= (1), which defines i(2). And in gen-
i)
eral, for 1 < k < min (m, n),

(4.4) Sy = {w]aw) < a1, e, o) < G, (w) > ar},
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where a, = max’ op(w;) = ox(Wiwy), the maximum being taken over all © except
]

(1), 2(2), - -+ , i(k — 1); and (k) being chosen distinct from all 1(j), j < k.
If m > n, then

(4.5) Sn-l-l = {w I(al(w) < a y " (Qn(W) < a”}'
If m < n, then
(4.6) Sy = {w|e1(w) < a1, -, em(w) < @m}.

The result of this definition is to use wy, «++, W, and @1, -+, ¢m to define
n -+ 1 blocks (one more than there are w’s) in case there are enough functions,
and, in case there are not enough functions, to define one small block, S;, for
each function plus one large remainder Smj.41. We notice

(42) REMARK. The blocks of (4.1) are well defined unless ¢1(w;) = o:(wy) for
some 1, J, k.

B. Statement of results for the statistician. The central results can be stated

as follows:
(5.1) THEOREM Amjnis. If Wi, W, -+, W, are a sample of n from a dis-
tribution, if ¢1, @2, *** 5 om , (m < n), are m functions such that

¢1(W), ¢2(I/V)) R ¢M(W)

have a joint distribution which has a continuous cumulative, and if the blocks
81,8, -+, Smand Smias1 are defined as in (4.1), then
(i) the blocks are disjoint chance sets, uniquely defined with probability one,
(ii) the distribution of the coverages

¢i=Pr{iwin8}, =12 -,m
and
Cmint1 = Pr {win Supni1}

is the same as that of t, ta, *+* » tm QN tmi1 + tmi2 + + - + tmis where &

are uniformly distributed on the barycentric simplex with n + 1 vertices.
Conditions (5.1i) and (5.1ii) are the precise definition of a partial family of
statistically equivalent blocks of type n + 1 and an associated (m | n + 1) toleronce
region.

(5.2) THEOREM Boy1. If Wi, W, .-+, W, are a sample of n from a disiribu-
tion, and if o1, @2, **+ » om , (M > n), are m functions such that

¢1(W), ¢2(W)7 MY ¢m(W)

have a joint distribution which has a continuous cumulative, and if the blocks
Si, Sz, +++, Sutr are defined as in (4.1), then
(i) the blocks are disjoint chance sets, defined with probability one.
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(ii) the distribution of the coverages
ci=PrfwinS}, ¢=12---,n+1

is the same as that of ti , b, < -+ , tat1 , Where the t; are uniformly distributed
on the barycentric simplex with n + 1 vertices.
Conditions (5.2i) and (5.2ii) are the precise definition of a complete family of
statistically equivalent blocks. In Paper III we shall have to widen these notions
a little, and this form will then be qualified by the phrase “in the narrow sense”.

6. Statement of results for the measure theorist. The construction of (4.1)
maps the product T" X U™ into E"*" where T is the set of w’s (and hence T™ is
the set of ordered n-tuples of w’s), U is the space of all real-valued functions
defined over T, measurable with respect to a fixed probability measure u, and
‘possessing a continuous cumulative, (i.e. u({w | o(w) = ¢}) = 0 for all real c),
and hence U™ is the space of ordered n-tuples of such functions, and E™ s
Euclidean n-dimensional space. More precisely, the mapping is into the bary-
centric simplex with n + 1 vertices, a subset of E™ and is well defined except
for a set in T™ of measure zero with respect to ", the power measure of u. In
these terms, we may restate theorem B as follows:

(6.1) THEOREM B,y . Hold the n functions g1, ¢z, -+ - , ¢n and the probability
measure fized, then T" is mapped tnto B, and the power measure u" is carried by
that mapping into a measure on B, . This measure is always n! times Lebesgue

measure.

7. Wald’s principle. The essential principle behind Wald’s process of dis-
carding observations is sufficiently fundamental to warrant a name of its own.
It can be stated, quite generally, in the two following forms:

(7.1) WaLp’s PrincieLe. (discrete form.) Let W be a chance quantity,
and consider samples of n. Fix disjoint w-sets Ay, Az, -++ , Am, B. Consider
those samples af n for which exactly one value falls in each A and the remaining
n-m fall in B. The distribution of the n-m falling in B is that of a random sample
of n-m from the distribution of W restricted to B. (i.e. us(X) = [u(B) ~uw(BX).)

(7.2) WaLp’s PrincieLE. (conditional form.) Let W be a chance quantity,
and ¢ a function such that each value of o(W) has probability zero. Consider
samples of n.  Then the conditional distribution of the w; , given that

m?'x ?(’w,t‘) = a,

is that of one wi, with p(ww) = a and a sample of n—1 other w; from the distribu-
tion of W restricted to B = {w | o(w) < a}.

(7.3) CentrRAL LEMMA. Let W be a chance quantity and let ¢1; -« , on be
functions with a joint cumulative such that ei(w) = a has probability zero for each
¢ and a (i.e. the joint cumulative is continuous). Then the conditional distribu-
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tion of the remaining n—k w’s, after k blocks have been chosen according to (4.1)
ts that of a sample from the distribution of W restricted to

B={w|law) <a, -, ew) < ai},

where k = 1,2, -+, n.

The proofs of these statements are elementary and direct. To establish (7.1)
we have only to show that given two sets in B™™*, their probabilities on the
assumption that one w; is in each A4 ; are in the ratio of their probabilities for an
unrestricted sample of n—k. But the probability of finding the n—k w; in a
set R, contained in B"™*, and one w; in each 4, is exactly

ey MADU(AD) - 4D
times the probability that n — k w; , known to be in B* ™, will fall in R. This
establishes (7.1).

In order to prove (7.2) we must show that the probability of a set R of n-
tuples w1 , wy , - -+ , W, is the same whether calculated directly or calculated by
the proposed conditional distribution. To this end, it is natural to decompose
R as follows:

R=R(1)+R2) + -+ R + Z,
where R(7) contains those (w1, « -, w,) in R for which o(w;) > o(w;) for all
J # 1, and Z contains the remaining (wy , - -+ , w,); which must involve at least
one tie p(w;) = @(wr), j # k. Since Z has probability zero, it will suffice to
establish the equality of the two calculations for sets of the form R(z), and be-
cause of symmetry we may restrict ourselves to sets of the form R(1).

Given an integer N, we decompose the range of ¢(w) into Nn segments of equal
probability, which we may do because the cumulative of ¢ is continuous. There
are then Nn values b, , (b, = — «, by, = + ®) such that

Pr {b < p(w) < b} = 1/Nn.
‘We now decompose our set R (which is of the form R(1) as follows:
R=Ry+ -+ Bu+ ¥,
where R; contains those n-tuples
(wy, -+, w,) for which by < o(wy) < b

and o(w;) < by_s for all ¢ > 1. The remaining set ¥ contains n-tuples where
the two largest ¢(w;), @ = 1 and 7 = 4,), belong to the same interval. The
probability of this is less than

n(n—l)(1>2<__}_
2 nN/) — 2N?
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as calculated from the known distribution. Calculating from the conditional
distribution, we find immediately a bound of

S{#) - Ct) ) - oY

= Wy vSoy

n—-l)

< %V}JI (4, (nN)

s
N’

where A, is a constant depending only on n. Thus, as N increases, the prob-

ability of the successive sets Y tend to zero—calculated either way. To show

the equivalence of the two calculations it is now sufficient to show that they

agree for the sets B, . But this is a case of (7.1) and the lemma is proved.
Now (7.3) follows by induction, applying (7.2) at each step.

8. Proof of theorems. We notice that Theorem B, is equivalent to Theorem
Amins1, since, according to (4.1) Snjns1 = Spi1.

We have only to prove theorem A .41, which we do by induction on m.
For m = 1, it is exactly Wilks’ [3, 1941] original one-dimensional theorem, and
is known. Let us assume it for m = k and demonstrate it for m = k 4 1, for
by induction this will complete the proof.

We mugst deal with the blocks S1, Sz, -« , Sk, Sk4+1 and Si41jn41, (notation
as in (4.1) and (5.1)). We need the obvious

(8.1) LEMMmA. Since the cumulative of ¢r41 ts continuous, the union of Spq
and Syi1jm41 differs from Siymq1 by a set of zero probability.

Hence _

Crjnt1 = Cr41 T Cryijnid -
Since we know from the induction hypothesis that ¢1, ¢z, -+, ¢ and Cijnya
have the correct joint distribution, we have only to show that ¢4 and ¢,
¢z, -+ , ¢ have the correct joint distribution. Fix ¢;, ¢z, -+, ¢ . Then
a1, az, + -, ax must be fixed, and so (7.3) applies to the n—k ws not dis-
carded after a1, az, - -+ , ax have been fixed. The conditional distribution of
¢r41 must be that of a fixed number (I — ¢; — ¢ — --+ — ¢), which is the
probability attached to Skja41 , times the coverage of one block based on a sample
of n—k, since the remaining n—k& w’s behave like a sample.

Consider the very particular case where w is uniformly distributed between
zero and one and ¢;(w) = w, all that we have said in the last paragraph applies
—the conditional distribution of ¢z given ¢, ¢z, -« - , ¢x is the same in the two
cases—hence the joint distribution of ¢;, ¢z, -« , ¢k, Cr1 is the same in both
cases—but in this very particular case the joint distribution is known to be
that required by theorem Axiijni1 .
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