ESTIMATION OF A PARAMETER WHEN THE NUMBER OF
UNKNOWN PARAMETERS INCREASES INDEFINITELY WITH
THE NUMBER OF OBSERVATIONS

By ABramam WaLD

Columbia University

Summary. Necessary and sufficient conditions are given for the existence
of a uniformly consistent estimate of an unknown parameter § when the succes-
sive observations are not necessarily independent and the number of unknown
parameters involved in the joint distribution of the observations increases in-
definitely with the number of observations. In analogy with R. A. Fisher’s
information function, the amount of information contained in the first n observa-
tions regarding 6 is defined. A sufficient condition for the non-existence of a
uniformly consistent estimate of 8 is given in section 3 in terms of the information
function. Section 4 gives a simplified expression for the amount of information
when the successive observations are independent.

2. Introduction. J. Neyman has recently treated the following estimation
problem': Let X;, X,, - -, etc. be a sequence of independent chance variables
the distribution of each of which depends on some unknown parameters. Two
kinds of parameters are distinguished, structural and incidental parameters. A
parameter 6 is called structural if there exists an infinite subsequence of the
sequence {X;} such that the distribution of each of the chance variables in the
subsequence depends on #. Any parameter which is not structural is called
incidental. Neyman has considered the case when there are a finite number of
structural parameters, say 6;, -+ -, 6, and an infinite sequence {£}, (¢ = 1, 2,
- -+ ,ad inf.), of incidental parameters. He has studied the problem of consistent
and efficient estimation of the structural parameters and has obtained several
interesting results. He has shown, among others, that the maximum likelihood
estimate of a structural parameter 6 need not be consistent, even when consistent
estimates of 6 exist. Neyman has also given a method for obtaining consistent
estimates of the structural parameters. This method, however, is applicable
only under certain restrictive conditions.

In this paper we shall consider a more general case than that treated by Ney-
man, but we shall concentrate on one aspect of the problem, namely that of the
existence of consistent estimates.

Let {Xi}, ¢ = 1, 2, ---, ad inf.), be a sequence of chance variables, not
necessarily independent of each other. It is assumed that for each n the chance
variables Xi;, ---, X, admit a joint probability density function
Pa(®y, -+, Zn 0,8, -+, &) Where 6, £, £2, - - -, etc. are unknown parameters.?

1 Address given by J. Neyman at the meeting of the Institute of Mathematical Statistics
in Atlantic City, January, 1947.
2 While 6 is assumed to be a real variable, we admit #; to be a finite dimensional vector,
ie., & = (¢a, - . ., £i;) where k; may be any finite positive integer.
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We shall require that the consistency relations among the density functions
P1, P2, - - ,ete. be fulfilled, i.e.,

+o
) [ Poit dToss = Do,  (n=1,2, -, ad inf).

It should be remarked that it is not postulated that p, actually depends on all the
parameters that appear as arguments in p,. It is merely assumed that p,
does not depend on any parameter that does not appear as an argument in p, ,
i.e., p» does not depend on &; for any ¢ > n. It follows, however, from (1.1) that
if p. depends on a parameter £, then also p.. depends on £ for any m > n.

Neyman’s definition of structural and incidental parameters can be extended
to the case of dependent observations considered here by saying that the dis-
tribution of X; does not depend on a parameter ¢ if and only if the conditional
distribution of X; for any given values of X;, - -+, X;_; does not depend on &.
It is not postulated that each of the parameters & , &, - - -, etc. is incidental;
some of them may be structural. We shall not make an explicit distinction
between structural and incidental parameters, since for the purposes of the
present paper this does not seem to be necessary.

In this paper we shall deal with the problem of formulating conditions under
which a uniformly consistent estimate of 0 exists. A statistic £.(z, -+ , 2,) is
said to be a uniformly consistent estimate of 6 if for any positive &

(1.2 lim prob. {|t, — 0] < 6} =1
uniformly in 6 and the &’s.

In section 2 a necessary and sufficient condition is given for the existence of a
uniformly consistent estimate of 6. In section 3 the amount of information
supplied by the first n observations concerning 6 is defined. It is then shown
that if the amount of information is a bounded function of #» over a non-degener-
ate 6-interval, no uniformly consistent estimate of 0 exists. Section 4 gives a
simplified formula for the amount of information in the case when the X’s are
independently distributed.

2. A necessary and sufficient condition for the existence of a uniformly
consistent estimate of 6. In deriving a necessary and sufficient condition for
the existence of a uniformly consistent estimate of 6, use will be made of some
results contained in a publication of the author [1] dealing with statistical decision
functions which minimize the maximum risk. In [1] it is assumed that the
domain of each of the unknown parameters is a closed and bounded set and that
P. is continuous jointly in all of its arguments. Thus, in order to be able to use
the results obtained in [1], we shall have to make the same assumptions here.
In what follows we shall, therefore, assume that each of the parameters 6, &,
&, -- -, etc. is restricted to a finite closed interval and that p, is a continuous
function of 2y, *++ , n, 0, &1, -+, &n.

Let [a, b] (@ < b) be the #-interval to which the values of 6 are restricted.
Clearly, if ti(x1, -+, xa), (n = 1, 2, .-+, ad inf.), is a uniformly consistent
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estimate of 6, then also £y is a uniformly consistent estimate of @ when ¢F = i,
whena < t, < b, tr = a when ¢, < a and {r = b when tn > b. Thus, without
loss of generality, we can restrict ourselves to estimates ¢, which can take values
only in the interval [a, b]. Uniform consistency of ¢, is then equivalent with the
condition

@.1) lim Bl(ts — 6)*[6, 42, -+, £l = 0

uniformly in 6 and the #s. For any chance variable w the symbol
E(u|6,%,%, - ) denotes the expected value of % when 0,% ,%, - are the
true parameter values.

In [1] a non-negative function W, , 6), called weight function, is introduced
which expresses the loss suffered when ¢, is the value of the estimate and 8 is the
true value of the parameter. The risk is defined in [1] as the expected value of
the loss, i.e., the risk is given by

(22) rn(oy El y Ty En) = E[W(tn I} 0) l 0} El y C Tty éﬂ]
If we put W(t, , 6) = (¢, — 6)°, we have
(2.3) (0, &1y vy En) = Elta — 0|0, £1, -+, £al.

It can easily be verified that Assumptions 14 in section 3 of [1] are fulfilled
for the weight function W(t., 8) = (t, — 6)>.* Thus, all results obtained in
[1] can be applied to the risk function given in (2.3). According to Theorem 4.1
in [1] the risk function given in (2.3) is a continuous function of 6, &, - - - , £
for any arbitrary estimate ¢, . We shall denote the maximum of (2.3) with re-
spect to 0, &, -+, & by ri[t.). Thus 7,[t,] is a functional which associates a
non-negative value with any estimate function ¢, .

It follows from (2.1) that ¢, is a uniformly consistent estimate of 6 if and only
if

(2.4) lim r,[t,] = 0.

For any 6 and for any n let F.(, -, . | 6) be a cumulative distribution
function of &, - -+, & . Let, furthermore,

(’n(xly ’xnlo)F'n)
(2.5) +o0 +oo .
= [ [ w08 gD dRAG, 60D,

We do not require that Fy, F, - - -, etc. satisfy the consistency relations, i.e.,

m Faya(6r, --+, Enpr| 0) is not necessarily equal to F.(&, ---, £ | 6).

Ent1=2

# In verifying Assumption 4, we may assume that p. is always > 0, since for any given
values 6, &1, . . ., £, we may restrict the domain of (zi, . . . , z.) to the subset of the sample
space where p. > 0.
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Hence, also the distributions g, do not necessarily satisfy the consistency rela-
tions. Clearly

. +o0 +oo
(2.6) Tn[tn] _2_ [ cee [ (tn - 0)2%1(1131 y Ty Tn I 07 Fn) dxl y "% dxn

for any 6 and any F,. Hence, (2.4) and (2.6) imply that if ¢, is a uniformly
consistent estimate of 6, then ¢, remains a uniformly consistent estimate of
also when ¢, is the distribution of X;, ---, X, for any arbitrary choice of F, .

For each n let C..(60, &1, - - - , £.) be a joint cumulative distribution function of
0, &1, -+, & . If this is regarded as an a priori distribution of 6, &, - - - , &, ,
and if our aim is to choose ¢, so that

E(t, — 0)°
2.7 Feo +eo \
=f [ (tn—o)pn(xl,"',$n|9,51,".‘,£n)d0nd1‘1"'dxn
is a minimum, then the best choice of ¢, is to put it equal to the a posteriori mean
value of 9. Let t:(xl y ***, &n ; Cn) denote the a posteriori mean value of 6

when C, is the a priori distribution, i.e.,

[ opate, - malo, g, - 8 de,

28)  talm, e, w3 Cl) =
fpn(xly "',xnle,fl “')Eﬂ)dcﬂ

where the integration is to be taken over the whole domain of the parameters
0;‘ &1, , & . Let, furthermore, 7,[C,] denote the value of (2.7) when ¢, =

ta(21, *++, Za; Cn). According to Theorem 4.4 in [1] there exists a particular
distribution C? , called a least favorable distribution, such that
(2.9) ACAERA Y
for all C.,. Let
(2.10) (@, -, %) = (@, 2,05 C0).

It follows from Theorems (4.5) and (5.1) in [1] that for any estimate ¢, we have
(2.11) rlt] Z mltal = 7a(Ch).

Hence, a necessary and sufficient condition for the existence of a uniformly
consistent estimate of 4 is that
(2.12) lim 7[C%] = 0.

Let Fu(ti, - -, £.|0) denote the conditional cumulative distribution of
&1, -, & for given 6 that results from the joint distribution C,(6, & , - - - £,)
and let Fo (£ - - - , £ | 6) correspond to C(0, &, - -+ , £). Clearly, any uni-
formly consistent estimate of 6 with respect to pa(z1, -+, #a |6, &1, -+, &)
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is a uniformly consistent estimate also with respect to g.(zi, --+, . | 6, Fn)
for any F,. On the other hand, if g.(z;, -+, . | 6, F) admits a uniformly
consistent estimate of 6, equation (2.12) must hold and, therefore, p.(z;, - - ,
Zn| 0, £1, -+, &) admits a uniformly consistent estimate of . Hence we
arrive at the following theorem:

THEOREM 2.1. A necessary and sufficient condition that

p"(xly"’)xﬂIO’EI,“"Eﬂ)

admit a uniformly consistent estimate of 0 is that g.(x1, -+ , 2, | 6, F,) admit a
uniformly consistent estimate of 0 for any arbitrary choice of F, .

3. Amount of information contained in the first n observations concerning
the parameter . We shall make the following assumptions:

Assumption 1. The first two derivatives of pa(z1, -+, za |0, &1, -, &)
with respect to 6 exist.

Assumption 2. We have

+0 +00 |
3.1) f Max | -7 | dxy dz, < ©
— S, 0 a0
and
L) ] a2p
(3-2) .[—w e [w Moax '50—2* dxl e dx,, < ©
for any n.

Assumption 3. The integral

) 0 A2
‘[ f ) log.gqn(rrl,aa2 ’x"lo’F")q,.(xl,---,x,.lG,F,.)dxl---dx,.

exists for any 6, F,, and n where ¢, is defined by (2.5).
Since

0°log g _ 1. (dlog q,.)z
a6

and since, because of Assumptions 1 and 2,

. mazq"d viedes =0
— e —ao?o?x‘l =0

we have

[ "8 log g

3 Qn dxy <+ dy

° 2 79 10g ¢, \
_—.[_w..-./_.w ( ) q”dxl...dx”_
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Let

(34) cal0) = g}.}”.b.{ [ - ) f_ (" og "") Jdzy - d:v,,}.

Clearly c.(8) = 0. We shall now show that
3.5) Cas1(8) = ca(6) forn =1,2, ---,ad inf.
In fact, we can write

_62 Iog Qn+l(x1, oo ’xn+1l0, Fﬂ+1) _ 02 log q'n(xl) M ,xnlay F:)
862 902

(3.6) .
_ o IngnH(xn-!l I Ty, ,a, 0, Fn+1)
062

where Fr, = Hm Fan(f, -, £nsa|0) a0d fara(@asa |21, o+, Tn, 6, Fu)

Ent1=0

is the conditional probability density function of X, given the values of z;,
- , T, and assuming that the joint density function of Xi, .-+, Xay is given
bY qns1(Zi, 5 Tns1 | 6, Fnyr). Since c.(8) < expected value of

_ 6210gqn(x1r tt ,$n|0,F:)
062

2
and since the expected value of — 3_%2]_’,11 is = 0, inequality (3.5) must hold.

In analogy with R. A. Fisher’s information function, we shall call ¢, (6) the
amount of information contained in the first » observations regarding 6. We
shall now prove the following theorem:

THEOREM 3.1. If lim c,(6) < ¢ < o« over a finite non-degenerate 6-interval I,

then there is no uniformly consistent estimate of 9.
Proor. If for any n, c.(8) < ¢ < » over the interval I, for each n there exists
a distribution F,(¢, --- , & | 6) such that

0= _‘[“’.” [”alegq"(xld "'yxnloyFn)
= w 362

3.7)
° qﬂ(x]-’ .”)xnloyFﬂ)dxl e dxn § C+1

for all n and for all #in I. Let t, be any estimate and let

b = Bt —0) = [ [ (= Oaaler, -+, 76, F) day - da,
3.8) e

=/ -..‘[- tnq”(xl,--~,x,,|0,F,.)d:z:1-~-dx,.-0.

db.(0)

st .
3 exists and is

Since ¢, is bounded, it follows from Assumptions 1 and 2 that
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a continuous function of . According to a theorem by Cramér [2] we have

)
I U D 36
39 B, — 60} = Lo L, = 0gn dos - do, 2 > %

for all 6 in I. Thus, in order that lim E({, — 6)* = 0 uniformly in 6, we must

N=00

have

' . dba(8) _
(3.10) lim =55~ =

uniformly in 6 over I. Let I be the interval ranging from g to h (g < k). From
(3.10) it follows that

(3.11) lim [b,(h) — ba(g)] = g — h.

Nxacd

-1

Hence
h)?

lim inf max b, @) = L=

n=ow 0 in I 4

Since E(t, — 6)° = [b.(0)), E(t. — 6)* cannot converge to zero uniformly in 6
and Theorem 3.1 is proved.

4. Formula for c.(0) when p,(v1, -+, 2. |0, &, -+, £) is equal to ¢ (z;

[0, &) ea(22 |6, £2) -+ on(an | 6, £a). Let gi(wi |21, -+, @1, 6, F,) be the

conditional probahility density of X; given ;, - -, z;; when the joint density

function of @1, - -+, . is given by qu(x1, -+, 2. | 6, F.), ¢ < n). Clearly,
(8 log q,.) _ - <62 log gi)

(4.1) E <__602 = ; B~ )

Now

o

42) gil@ila, -, 20,0,F) = f ei(xi | 6, &) dH (& @, -+, @eq, 6, Fu)

where H;(¢; |21, -+, 2iz1, 0, F,,) denotes the conditional cumulative distribu-
tion of §; given &y, -+ - , xia , assuming that F.(&, - - - , £, | 0) is the joint cumu-
lative distribution of &1, -, £ and pa(@1, -+, 2a | 6, &1, -+ -, £,) is the joint
density of X1, - -+, X, for any given values of 6, &;, - -+ , &, .

It follows from (4.2) that

40 A2 .
- [ 9 };;g gi gi dx; Z ¢q:(6)

= g.lb. J_ .[ :°° [:62 log [ :°° @i 0, &) dCi(&) j—.: " dC,-] dz‘}

(i) L a6°
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where C;(£;) may be any cumulative distribution of £ . Hence

43) g1b. [-E ("’2 Jog g)] = cail®)

and, therefore,
(4.4) cn(8) = Z_‘,l cail6).

The quantity c,;(6) is simply the amount of information contained in the ¢th
observation alone. Thus, formula (4.4) says that if X;,---, X, are inde-
pendent, the total information contained in the first n observations is equal to
the sum of the amounts of information contained in each of these observations
singly.
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