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1. Summary. Let ¢ be the true value of what is being measured and suppose
that the error of observation is a symmetric normal distribution of standard
deviation ¢. The “rounding-off”’ error due to the reading of measurements to
the nearest unit has a distribution and an expected value depending on ¢ and o.
It is shown that, for a fixed ¢ > 0, the expected value of the decimal correction,
r(t; o), is an analytic function of ¢ which is odd, of period 1, positive for0 < ¢t < 3,
and has a convex arch as its graph on 0 = ¢t = 3. Furthermore, if 0 < ¢ < %,
both 7(¢; ¢) and its maximum value, Max r(t; o), are decreasing functions of ¢.

t

2. Introduction. Let X be an error of observation and let ¢(z) denote the
density of probability of the distribution of X. In particular,

o0
1) [ o(z) dz = 1, where ¢(z) = 0.

If ¢ is any fixed number, the density of probability of the distribution of
X + tisolx — o).

Besides the “instrumental error of observation’”, X, there is another error, that
of the “rounding-off’’, which is carried along in the registration of the measure-
ments. It is introduced by the circumstance that, if --- , b, a are digits, and if
b denotes the last digit considered, then decimal fractions such as --- ba and
---ba --- are registered as ---bifa < 5and as --- b+ 1)if a > 5. Let
the unit, in which the measurements are expressed, be so chosen that the first
digit neglected becomes the first digit following the decimal point, i.e., that the
error of the “rounding-off”’ is between 3. Then, if ¢ denotes the true value of
what is being measured, the remark made after (1) shows that the probability that
the error of the decimal corrections be less than z is given by

o0

n—i+z
Z [~; ¢‘(u - t) du)

if |z | £ 4, whereas this probability is 0 or 1 according asz < — % or = > 3.

Since the last series can be written in the form
—itz o

0 —tx
@ X[ ewtn-ddu=[ X sw+n-dds (20,

Ne=—o0 4 N=—00

it follows that the density of probability of the error due to the decimal correc-
tions is

3) f:¢(x+n—t)if|x|<%,and0if|x|>%.

N ==—00
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Consequently, if r = r(t) denotes the expected value of the decimal error induced
on the “true’ value, &, of the observations, then

4) r() = -/l=l<§ z i oz + n — ) dz.

Formula (4) is known'. It is usually based on its intuitive interpretation which
results if, on the one hand, (4) is written in the form

®) w0 = [ s@ol — 1) da,
where
6) s() =zif -3 <2 < §and s(x) = sz + 1), —o <z < »,

and, on the other hand, the periodic function (6) is thought of as representing the
uniform distribution of the error of “rounding-off”’ over the arithmetical continuuwm

over a period,
Ix_n|<%, (n=0:d:1;"°):

on the z-axis. Needless to say, the specification of s(x) at the points x = n + %,
which are disregarded in the definition (6), is immaterial, since s(x) occurs in
(5) only as an integrable weight-factor, isolated values of which do not influence

the integral.
It follows at once from (1), (5) and the continuity (almost everywhere) of

(6), that r(t) is continuous.

3. Fourier analysis of 7(f). Since the Fourier expansion of the periodic fune-
tion (6) is

) s(z) = —x " nzz (-)*"n'sin2rz = s(@ £ 1) = -+, (lz|<3P),
it follows from (5) that’

® r(t) = —* é (=157 [ g(a) sin 2wn(e + 1) da

Hence, if the sine in (8) is expressed in terms of 2rnx and 2mwnt,

9) @) = — il (=1)"n""(an cos 2rnt + b, sin 2xni),

L F. Zernike, ‘“Wahrscheinlichkeitsrechnung und mathematische Statistik, ”’Handhuch
der Physik, Vol. 3 (1928), pp. 475-476.

2 In view of (1), the term-by-term integration leading from (5) to (8) is justified by the
fact that the partial sums of the series (7) are uniformly bounded. Correspondingly, the
above deduction of (9) and (10) from (4) is equivalent to an application of Poisson’s summa-
tion formula. In this regard, cf. A. Wintner, ‘The sum formulae of Euler-Maclaurin and
the inversions of Fourier and Mobius,”” Am. Jour. of Math., Vol. 69 (1947), pp. 685-708,
the end of §1 (p. 687) and its application on p. 697.
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where
(10) b, + ta, = [ o(x) exp (2rinx) dz, (n=12---).

Let it be assumed that positive and negative errors of observation, when of the
same magnitude, are equally probable, i.e., that ¢(z) = ¢(—x). Then (10)
shows that a, becomes 0. Hence, (9) reduces to

an "0 = = 5 (~1)"(e/n) sin 20m,
where
12) Cn =T j;w ¢(x) cos 2rnx dx = 2n £ .

Clearly, r(t) is an odd function whenever the density ¢(x) is even.

4. The normal case. Suppose that ¢(x) is the density of a symmetric normal
(Gaussian) distribution. Then, if ¢ is the positive constant representing the
standard deviation of the errors of observation,

(13) (@) = (2rd") "} exp(—1a’/a?) 0 <o < »).
It is clear from (5) and (6) that
(14) r(t) — s(@) if ¢ — 0 in (13).

Actually, all that (14) says is a triviality, according to which the total error
becomes the decimal error when the measurements become infinitely sharp.
In this limiting case, that is, if #(t) = s(¢), it is seen from (6) that the graph of the
periodic function r = r(¢) is piecewise linear, and therefore discontinuous.

If ¢ = 0is replaced by 0 < ¢ < o, the jumps of r(f) at ¢t = n — % disappear
(cf. the end of §3) and, as will be proved below,

@) r(t) is an analytic function which s odd, of period 1, and positive for 0 < t < %
(hence negative for —% <t < 0), and

(IT) the graph of r = r(t) over the fundamental interval 0 < ¢t < % is a convex
arch, no matter what the value of o in (13) may be.

Since r now depends both on the “true’’ value, ¢, of the observations and the
“precision’’, ¢, of the measurements, let r be denoted by r(¢; ). It will be shown
that

(1) Max r(¢; o), where the Max refers to ¢t while o is fixed, s a decreasing function
of o, where ¢ varies on the half-line 0 < ¢ < «; and that, on the same half-line,

(i) r(t; o) is a decreasing function of o at every fixed t contained in the funda-
mental region 0 < t < %.

All of this seems to be clear for physical reasons. Actually, it is easy to give
examples of distribution laws distinet from (13) for which the above assertions
become false.
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5. The d;-function. As is well-known,
_[ exp (—32%/d%) cos ux dx = (2ra®)? exp (—40* D).

Hence, the value of the integral (12) is ¢"', if ¢ is an abbreviation for

(15) g = exp(—27°d").
Consequently, if 7(¢, ¢) is defined, in terms of the above r(¢; ), by placing
(16) r(t, @) = r(t; o) in virtue of (15),

then (11) shows that®
17) rt, @) = —m Z (—1)"n' g™ sin 2rnt
=1
Tt will be noted that the range, 0 < ¢ < o, of the standard deviation is mapped
by (15) on the range
(18) 0<g<l],

and that ¢ decreases or increases according as g increases or decreases.
Let partial differentiations with respect to ¢ and ¢ be denoted by primes and
subscripts, respectively:

(19) I = of/et,  f.= df/dq.
Thus, from (17),
(20) () = =2 2 (=1)"g" cos Zmnt
and, as easily verified from (17),
(21) 1oty @ = (— 4mq) 71", @)

Let 0(t, q) be defined by
(22) 0t q) =1+ 2 Zl q" cos nt

(so that 6(t, g) is, in the main, the elliptic theta-function usually denoted by
ds). It is known that

(23) 6, q) >0

and that*

(24) 0'(t, q)<01f0<t<1r (hence, (¢, q) > 0if — 7 <t < 0).
The above assertions will be deduced from these facts.

3 Cf. F. Zernike, loc. cit.
4 For a simple proof, cf. A. Wintner, “On the shape of the angular case of Cauchy’s dis-

tribution,” Annals of Math. Stat., Vol. 18 (1948), pp. 589-593, §6.
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6. Proof of (I)-(II) and (i)-(ii). First, it is seen from (17) and (22) that

(25) (i, q) =1 — 602wt — =, q).
Hence,
(26) (¢, q) = — 270'(2xt — =, Q).

If (26) is compared with (24), it is seen that
27 (g <0if0<t<3 (hence, 7''(t,q) > 0if — 3 <1 < 0).

Consequently, (I) and (II) follow, since, in view of (17),

(28) T(:l:%, Q) =0= 7'(0, q)'
Next, (21) and (27) imply that
29) rt,q) > 0for0 < t < 3.

Hence, (ii) follows from the fact that ¢ is a decreasing function of o.
As to (i), let ¢ = t(g) denote that (unique) ¢-value on 0 < ¢ < 3 at which
r(t, q) assumes its maximum value, say r‘; so that

(30) r = r(9), 9, 0 <tg <.
Clearly, ¢t = t(q) is the only ¢-value on 0 < ¢ < % for which
31 r(t,q) = 0.

Since (¢, q) possesses continuous partial derivatives with respect to ¢ and g,
and since (27) implies that its partial derivative with respect to ¢, namely, r"’ (¢, ¢),
does not vanish at ¢t = t(g), it follows that the solution ¢ = t(g) of the equation
(31) possesses a continuous derivative. Hence, the function (30) possesses a
continuous derivative with respect to g, namely,

art di(g) ,
(32) i =" (t9), @ a0 + r(t(9); 9)-
But since ¢ = #(g) is a solution of (31), the identity (32) can be reduced to
g
% = 1, ), 0 < ) < 3.

Consequently, (i) follows from (29), since ¢ is a decreasing function of .



