SOME SIGNIFICANCE TESTS FOR THE MEDIAN WHICH ARE
VALID UNDER VERY GENERAL CONDITIONS!

By Joun E. WaLsH
The Rand Corporation

1, Summary. Order statistics are used to derive significance tests for the
population median which are valid under very general conditions. These tests
are approximately as powerful as the Student t-test for small samples from a
normal population. Also the application of a test requires very little computa-
tion. Thus the tests derived compare very favorably with the {-test for small
sets of observations. Applications of these order statistic tests to certain well
known statistical problems are given in another paper [1].

PART I. RESULTS AND DEFINITIONS

2. Introduction. Consider » independent observations drawn from 7 popu-
lations satisfying the conditions (A):

1) Each population is continuous (i.e. its cdf is continuous).

2) Each population is symmetrical.

3) The median of each population has the same value ¢. (If the 509, point
of a continuous symmetrical population is not unique, the median ¢ of the popu-
lation is defined to be the midpoint of the segment of 509, values.)

It is to be emphasized that no two of the observations are necessarily drawn
from the same population. Significance tests are derived to compare ¢ with a
given constant value ¢ . A

A general method of obtaining one-sided and symmetrical tests is given in sec-
tion 8. This general method furnishes tests which have significance levels of the
formr/2", (r = 1,-.-,2" — 1). Each value of r can be attained for some one-
sided test. Unfortunately tests obtained by the general method are very difficult
to apply from a computational viewpoint. If n > 10, the number of computa-
tions required for the application of a test is prohibitive.

To overcome the computational difficulty involved in using the general method,
easily applied tests using order statistics are derived. These tests are based on
order statistics of certain combinations of order statistics of the n observations,
each combination being either a single order statistic of the n observations or
one-half the sum of two order statistics. The tests are invariant under permuta-
tion of the n observations and have significance levels of the form r/2",
(r=1,---,2" —1). Tablel contains a list of some one-sided and symmetrical
tests for » < 15 (21, -+ - , x» represent the n observations arranged in increasing
order of magnitude). Additional significance tests can be obtained by use of

Theorem 4 of section 6.

1 The results presented in this paper were obtained in the course of research conducted
under the sponsorship of the Office of Naval Research. This research was performed while
the author was at Princeton University.
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If a symmetrical population has a mean, the mean has the same value as the
median. Thus if each population from which an observation is drawn satisfies
the additional condition that its mean exists, the median tests derived in this
paper are also tests of the mean.

Although it is unlikely that conditions (A) are ever exactly satisfied in prac-
tice, these conditions appear to be approximately satisfied in many practical
situations. Moreover conditions (A) are of such a simple form that approximate
verification can frequently be obtained without an extensive investigation.

Certain of the order statistic tests are very efficient if the n observations are a
sample from a normal population. Efficiencies are listed for some of the tests in
Table 1. These tests are approximately as efficient as the Student ¢-test. (The
efficiency of a test, more precisely the power efficiency, is defined in section 3.)

The order statistic tests are competitive with the Student {-test. In choosing
between the two types of tests the following considerations may be of interest:

(a) The order statistic tests are valid under much more general conditions than
the t-test.

(b) The order statistic tests are almost as efficient as the {-test for small sam-
ples from a normal population.

(¢) The order statistic tests are more easily computed than the t-test.

(d) For the case of a sample from a normal population and near significance
the t-test gives more information than the order statistic tests.

In some cases a set of n independent observations satisfying only 1) and 3) of
conditions (A) can be transformed into observations approximately satisfying all
of conditions (A) by an appropriate continuous monotonic change of variable.
For example, replacing each observation by the logarithm of the value of the
observation sometimes results in a set of observations having approximately
symmetrical distributions. Since the transformation, say g(z), is continuous
and monotonic, the resulting observations will have median g(¢) if the original
observations have median ¢. Confidence intervals can be found for ¢ by first
obtaining confidence intervals for g(¢) on the basis of conditions (A) and then
inverting. Significance tests can be obtained from these confidence intervals.

The tests of Part I can be applied to furnish generalized solutions for several
well known statistical problems. Some of these applications are given in another
paper [1].

One application occurs in cases where there is reason to believe that condi-
tions (A) are satisfied but there is no reason to assume that the populations from
which the observations were drawn are even approximately the same. Perhaps
the most common situation of this type is that in which the value of a certain
quantity is experimentally determined by several different methods, all of which
should theoretically yield the same result. Then there is no reason to believe
that all the experimental values have the same precision. It may be permissible,
however, to assume that each value is an observation from a continuous sym-
metrical population and that all the populations have the same median. Then
the order statistic tests can be used to test the true value of the quantity investi-
gated. For example, consider the determination of a specified physical constant.
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Various scientists obtained experimental values for this constant by several differ-
ent methods. If it can be assumed that each value is an observation from a
continuous symmetrical population and that all the populations have the same
median, the true value of the physical constant can be tested by applying the
order statistic tests to the totality of the experimental values.

3. Power efficiency of tests. A problem which arises throughout the paper
is that of determining how much information is lost by using some other test in
place of the most powerful test of a given hypothesis. The quantitative measure
of the amount of available information which is used by a test will be given as a
percentage and is called the power efficiency of the test considered.

In all cases investigated the underlying population is normal with unknown
variance and the hypotheses tested concern the population median (mean).
Then the most powerful test (one-sided or symmetrical) is the appropriate
Student t-test.

The procedure used to measure the power efficiency of a test is different from
the common method of measuring the efficiency of an estimate. The efficiency
of an estimate is obtained by taking the ratio of the variance of an efficient esti-
mate with respect to the variance of the given estimate (expressed as a per-
centage). The method of determining the power efficiency of a test, however,
consists in continuously varying the sample size of the appropriate most powerful
test (same significance level) until the power functions of the given test and the
most powerful test are equivalent in the following sense: The area between the
two power curves for which the power function of the most powerful test exceeds
the power function of the given test is equal to the analogous area for which the
power function of the most powerful test is less than that of the given test. (It
is assumed that the power functions of the tests can be made to depend on the
values of a single parameter.) The sample size (not necessarily integral) of the
most powerful test with equivalent power function divided by the sample size of the
given test 1s called the power efficiency of the given test (expressed as a percentage).

In obtaining power efficiencies in the manner defined above, the sample size
of the most powerful test is allowed to assume non-integral values. This fur-
nishes an interpolated measure of the same size of the most powerful test which is
power function equivalent to the given test. As pointed out above, the t-test
is a most powerful test for.the situations considered in this paper. A method of
computing power function values for ¢-tests having non-integral sample sizes is
given below.

The definition of power efficiency selected is very convenient from a computa-
tional point of view. Power function values for the {-test can be easily computed
through use of the normal approximation given in [2]. For the significance levels
considered in this paper, the normal approximation is reasonably accurate if
the sample size is not too small. In the remaining cases the approximation
underestimates some power function values and overestimates others. For the
situations investigated, however, the error introduced by this combination of



TABLE 2
Efficiencies and nower function values for certain order statistic tests

P Values of Power
A 1S f- .
Significance Test Sasxirgzle }E)ﬂr”l(jx iclagrlll(l:e Function
ciency | Level "o " oTs _19[6=18
%

¢ 4.9 .0625 | .337 | .755 | .964

1@ + 25) < oo 5 98 .0625 | .343 | .755 | .958

¢ 5.82 .0469 | .327 | .779 | .980

max[rs , (x4 + z5)] < o 6 97 .0469 | .334 | .779 | .972
¢ 5.88 .0312 | .244 | .682 | .951

L(zs + 5) < o 6 98 .0312 | .254 | .687 | .942

¢ 6.65 .0547 | .406 | .869 | .994

max[zs , 2(rs + z7)] < o 7 95 .0547 | .413 | .867 | .991
¢ 6.85 .0234 | .239 | .716 | .969

max|zs , (s + 27)] < o 7 98 .0234 | .249 | .717 | .962
¢ 7.55 .0430 | .395 | .882 | .996

max[zs , (zs + 2s)] < o 8 94.5 | .0430 | .404 | .879 | .993
¢ 7.85 .0117 | .174 | .650 | .956

max[rr, (@ + 2s)] < ¢o 8 98 .0117 | .185 | .656 | .949
t 8.64 .0215 | .302 | .839 | .994

max[zr , (x5 + 19)] < o 9 96 .0215 | .311 | .834 | .990
¢ 8.9 .0059 | .127 | .597 | .947

max[zs , 3 + 29)] < o 9 99 .0059 | .137 | .599 | .935
¢ 7.5 .0547 | .450 | .910 | .998

x5 < o 10 75 .0547 | .454 | .901 | .995

t  9.65 .0107 | .227 | .790 | .991

max|zs, (@ + )] < ¢ | 10 96.5 | .0107 | .237 | .786 | .986
t 8.2 .0098 | .176 | .668 | .964

max[zy, 2(x1 + 70)] < ¢ | 10 82 .0098 | .191 | .677 | .952
t 8.9 .0059 | .141 | .621 | .954

T < o 11 81 .0059 | .152 | .634 | .942

¢ 11.22 .0102 | .277 | .870 | .998

max[zy, 2(@s + T)] < o | 12 93.5 | .0102 | .288 | .862 | .995
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70 JOHN E. WALSH

underestimation and overestimation tends to cancel out in the determination of
power efficiencies if the above area definition of equality of power functions is
used. Thus application of the normal approximation yields reasonably ac-
curate power efficiencies for the cases considered in this paper. Use of the
normal approximation furnishes an easily applied method of obtaining power
function values for ¢-tests having non-integral sample sizes.

Table 2 contains examples of the above described method of determining power
efficiencies. Here the power function values for the ¢-test were computed using
the normal approximation. Examination of Table 2 shows that the maximum
difference between corresponding power function values for the two types of
tests is small for all the cases considered there. This holds in the determination
of all the power efficiencies listed in Table 1.

Investigation indicates that the definition of power efficiency given here is for
all practical purposes the same as that given in [3].

For the situations considered in this paper, it is sufficient to restrict power
efficiency investigations to one-sided tests. Every symmetric test investigated
can be considered as a combination of two non-overlapping one-sided tests,
each having a significance level equal to half that of the symmetric test. Also,
from symmetry, these one-sided tests (each considered as a separate test) have
the same power efficiency. Thus it is an immediate consequence of the definition
of power efficiency that the symmetric test has the same efficiency as each of the
corresponding one-sided tests at half the significance level.

PART II. DERIVATIONS

4. Introduction. The purpose of the remainder of the paper is to present
derivations of the significance test results stated in sections 1 and 2. The first
derivations consist in obtaming confidence intervals for ¢ on the basis of -condi-
tions (A). Then properties of these confidence intervals are analyzed. Applica-
tion of the confidence intervals and their properties to significance tests furnishes
many of the results stated in sections 1 and 2. The remaining derivations are
concerned with efficiencies and the general method mentioned in section 2.

B. Derivation of confidence intervals. Let us consider » independent ob-
servations, each observation being drawn from a possibly different population.
Denote these observations by 1, - - - , ¥ and let the cdf of y; be given by F.,
(6 = 1,---, n). Furthermore let the n populations from which these n ob-
servations were drawn satisfy conditions (A). Then 1) of conditions (A) re-
quires that each F; is continuous, while 2) and 3) stipulate that

[Cari-o = [ G-, G=1om,

for all values of ¢ in the interval —o < ¢ < .
Let @y, - -+ , & represent Y1, -+ - , Ya arranged in increasing order of magni-

tude. Since the cdf’s are continuous, Pr(z; = z;; ¢ # j) = 0. For the situa-
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tions treated in this paper, it is sufficient to consider one-sided confidence inter-
vals for ¢. All one-sided confidence intervals derived have one of the forms

9@, -, 2a) < ¢,

h(zy, -+, za) > &,
where g and k are Borel measurable functions of z, , - - - , 2, such that
Prigy, -, 2) < ¢] = Prigl@r — ¢, +++ , 2. — ¢) < 0],
Prib(xy, -+ ,20) > ¢] = Prih(zs — ¢, ++« , Ta — ¢) > O].

Consider the additional condition

1)

(B) All populations are the same.

In terms of cumulative distribution functions, condition (B) requires that all
the-cdf’s F; are equal to some cdf F. A theorem will be proved which shows that
all confidence intervals of the forms (1) derived on the basis of both conditions
(A) and (B) are also valid if only conditions (A) necessarily hold; i.e. if

PT[g(C:C],,"',xn) <¢]=P

whenever z; , - -+ , Z, are order statistics of observations from populations satis-
fying conditions (A) and (B), then this probability expression also has the value
pif 1, -+, 2. are from populations necessarily satisfying only conditions (A).
Similarly for Pr{h(zi, -+, z.) > o).

TuEOREM 1. Let Q(xy — ¢, -+, . — ¢) be a probability statement involving
Ty — ¢, -+ ,Tn — O, which defines a Borel measurable region R(zy — ¢, «+ + , %n —¢)
of the n-dimensional order statistic space. If

(2) Q(xl—¢)°'°yxn—¢)=p

whenever T, , + + + , T, are order statistics of n independent observations from popula-
tions satisfying conditions (A) and (B), then (2) also holds when z,, --- , z. are
order statistics of n independent observations from populations necessarily satis-
fying only conditions (A).

Proor. It is sufficient to consider the case in which ¢ = 0. Then, if condi-

tions (A) are satisfied, the joint probability element of =, , - - - , . is
dF (z, y "ty Tn) = Z dFl(xr(l)) cee an(xr(n))y

where the summation is taken over all permutations 7 of the integers 1, - -+ , n,

and F’s are cdf’s of symmetrical populations with zero median. Let R =

R(zy, -+ , %) be the region of the n-dimensional order statistic space defined
by the probability statement Q(z:, -, 2.). Then Theorem 1 stipulates that

(3) j;dF(xly°",xﬂ)=p
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whenever 41, -+ , ¥a are from populations satisfying conditions (A) and (B)
with zero median. In this case, however, each F; = F and (3) becomes
@ nt [ 1T aF@) = p,

where F is the cdf of a population satisfying conditions (A) and (B) with zero
median. Let

P = fI <i dFi(%))

=1 \ j=1

and define S% to be the sum of all terms in the expansion of P which contain a
specified a of dFy, - - . dF ., and no others; the particular set chosen is denoted

by B, where 8 = 1,---, (Z) Then
P = ﬂ'(xl,---,xn)+;s€._1+---+§js‘3.

Now consider any given S5 (i.e. a, 8 given). Define dH to be the sum of the
aof dFy, -+ , dF, pertaining to 8 plus any set of zero or more of the remaining
dF’s. Then no matter which of the remaining dF’s are chosen for dH, the sum

of those terms in the expansion of H dH (z;) which contain the particular set of
=1

a of dFy, --- , dF, is always equal to S% . Let

Po=2 <ﬁ dGi(wi)) )

B i=1

where dG”, equals the sum of the & of dF;, - - - , dF, pertaining to 8. Then from
the above and the symmetrical fashion in which the dF’s are treated,

Po=2 8 + KA X S+ - + K7 28,
[} [}
where the K (w = 1, - -+ , @ — 1), are constants.
Consider the case in which « = n — 1. Using the above expression for P,

P =dF(xy, -+, %) + Paa
+ (1 — K&2) ; St oo+ (1= KM XS

Repeating this procedure successively fora = » — 2,n — 3, - - - , 1 shows that
dF(xl, e ,xn) =P+ Cn—IPn—1+ ot +CIP1’

where the C,,, (v = 1, - -+ , n — 1), are constants.
Since each F; is the cdf of a symmetrical population with zero median,

Gfa = 1;, (sum of the a of Fi, - - - , F, pertaining to 8)



SIGNIFICANCE TESTS FOR THE MEDIAN 73

is also the cdf for a continuous symmetrical population with zero median. But
Pa = an (P—:> = " Z (H dGi(x,)/a) .
(21 B =1
Hence dF(zy, --- , z,) is equal to a sum of terms (multiplied by certain con-
stants) of the form

=1

where F is the cdf of a continuous symmetrical population with zero median.
Thus from (4) and the linear properties of the integral,

[dF(xl,"',xn) == p
B

if y1, -, yn are from populations necessarily satisfying only conditions (A).

Q.e.d.
Next confidence intervals of the forms (1) will be derived for ¢ on the basis of

conditions (A) and (B). Before stating the theorem on which these confidence
intervals are based consider the following definition of notation: For each per-
missible selection of 7 and j, the symbol

{4, 5} 1<i<j<n)
denotes an arbitrary but fized selection of one or both of the inequality signs

<, >. The selection of both inequality signs, denoted by S, has the interpre-
tation

WA

T; p=—0 <z < ©

@+2z)/2S¢=—o < (z:+2)/2 < .

It is to be noted that {r, s} is not necessarily equal to {%, j} unless r = ¢ and
s =J. .

TueoreM 2. Consider the probability statemen
®) Pri(m: + 2)/2 {1, j} ¢;1 < ¢ < j < nl.

Let this statement have the value q if z,, - -+ , x. are order statistics of a sample of
size n drawn from the uniform population with range —% to 3 (then ¢ = 0). Then
(5) also has the value q if ,, - - - , x. are order statistics of a sample size n drawn
from any population satisfying conditions (A) and (B).

Proor. Letyi, - -, y. be a sample of n values from a population satisfying
conditions (A) and (B) while 7y, - - - , . are the y¥’s arranged in increasing order
of magnitude. Then there is a monotone function = (see [4]) such that = (2) will
have the same cdf as y; — ¢ if z is from a uniform population with range —3 to 3.
Since the y’s are from a symmetrical population, —7(z) = 7(— 2). Letz; —¢ =
w(2;), (¢ = 1,---, n), define the z;. Then
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Pri(z: + z))/2{3, j}¢] = Pr((x(z) + 7(2) {3, j}0]
= Prix(z){s, j} — w(z))].
From the monotone and symmetrical properties of the function ,
Prlx(z){, j} — 7(2;)] = Prin(z){s, jlw(—2,)]
= Prlz:{s, j} — zil.

By hypothesis this last expression has the value ¢, thus completing the proof.

Many of the probability statements of the form (5) have zero probability.
For example, Priz; > ¢,2: < ¢, -+ ] = 0. Also many selections of the symbols
{1, 7} result in equivalent probability statements. For example

Pr(zm S ¢, 22 < ¢) = Pr(z: < ¢, 22 < &).

An immediate consequence of Theorem 2 is that one-sided confidence inter-
vals can be obtained for ¢ by choosing any specified subset of (z: + z;)/2,
(1 £t < j < n), and considering an arbitrary but fixed order statistic of the
values of this subset. For example, consider the subset consisting of x.—; and

(xn—2 + 2.)/2. Then
Primax[z.—1, (@a—2 + 2.)/2] < ¢} = Prl(z; + z,)/2{1, j}¢l,

where

(i, j <ifeitheri=j=n—1; ori=n—2, j=mn
5, j} =
’ S otherwise.

In general, the confidence coefficient of any one-sided confidence interval
formed by considering a certain order statistic of a specified subset of (z; + z;)/2,
(1 £ i £ j < n), can be expressed as a sum of probabilities of the form (5),
where {7,j} = S if (x; 4+ x;)/2is not included in the specified subset, (¢ < j).

It is usually preferable to select the subset of (z: + #,)/2, 1 < ¢ < j< n),
in such a way that no two of the elements chosen necessarily have an order
relation.

Satisfactory two-sided confidence intervals can usually be obtained as combina-
tions of one-sided confidence intervals.

6. Confidence coefficients. The purpose of this section is to show that all
the confidence coefficients for one-sided confidence intervals derived on the basis

of Theorem 2 are of the form /2", (r = 1,---, 2" — 1). Also a method of
determining confidence coefficient values for one-sided confidence intervals is
developed.

First a theorem will be presented which shows that each of the one-sided con-
fidence intervals derived in the preceding section has a confidence coefficient of
the form r/2", (r = 1, -+, 2"— 1). On the basis of Theorem 2 it is sufficient

to prove:
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THEOREM 3. Let 2y, - -+ , %, be the ordered values of a sample from the uniform
population with range —% to 3. Then

Pr{(z; + 2,)/2{,j} 0;1 < i < j < n] = r/2"

where r has one of the values 0, 1, «++ , 2", (The symbol {1, j} is defined in section
5).
SkeTcH OF ProoF. This theorem is proved by investigating how the hyper-
planes
@i+ =) =0 1 <7235 <m0,
intersect the n-dimensional order statistic space for the particular population
considered. It is found that each relation of the form

defines a region of the n-dimensional order statistic space which consists of a
certain number r of n-dimensional “basic’ cells each of which has an n-dimen-
sional, “volume” equal to (3)". A detailed proof of this theorem is given in

[5].

Next a method will be developed whereby confidence coefficient values can
be determined for any one-sided confidence interval of the form
(6) 3@ + 23) {3, 5} ¢, @<L <.
For this purpose it is sufficient to derive a procedure for determining the con-
fidence coefficient of any confidence interval of the form
@ max [certain subset of 2(z; + z;);1 <7 < ‘j < n] < ¢.

The confidence coefficient of any one-sided confidence interval of the form
min [] > ¢ can be obtained by symmetry. The confidence coefficient of any
other one-sided confidence interval of the form (6) can be found by expressing
the value of

Pr [3(z: + =) {1, 5} ¢

as a sum of terms of the form Pr{max [] < ¢} or as a sum of terms of the form
Pr{min [] > ¢}. That thisis always possible for one-sided confidence intervals
of the form (6) is shown by direct application of the results of page 17 of [6].

It is not difficult to show that any one-sided confidence interval of the form
(7) can be expressed in the form

max {z(n — k), 3le(n —k + 1) + 2(a — mp — k + 1)), ---,
3lz(n) + z(n — m)]} < ¢,

where

x(i)=x,~, (2 = 1;"’1 n):
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and my , - - , m; are k integers such that
n=m>me> - >mg > 0.

This is done by choosing &k, m, , - - - , my so that the two confidence intervals are
equivalent.

Thus it is sufficient to prove the following theorem:

TaeoreM 4. Let (1), - - - , z(n) represent the ordered values of n independent
observations drawn from populations satisfying conditions (A). Choose a set of k
integers my, - -+ , my such that

n>m>mg> e >m > 0.
Then the one-sided confidence interval
max {z(n — k), ifxn —k+ 1D+ x(n —me — k+ 1)}, -+,

®)
@) + z(n — m)]l} < 4,

where a term of the form 3[x(n — h+ 1) +2z(n —my — b+ 1)}, (h = 1,--- , k),
is to be deleted if*n — my, — h + 1 = 0, has the confidence coefficient

2‘"[1+m1+ Z(m1—21)+ ﬁmfz(ml—’h—%)

$a=1 {ymal
(9) mp_1—ik—1 ma=€a—: - —ik_1
-+ Z E Z (ml_'l:l—"'—"l:k..l)].
$p_1=1 ip_g=l i1=l

SkETcH oF Proor. It is sufficient to consider the case in Which the n observa-
tions are a sample from the uniform population with range —3 to 7 (then ¢ = 0).

Let us consider the region of the n-dimensional order statlstlc space defined by
(8). This region can be considered as an intersection of n-dimensional regions
each of which is completely defined by a certain region in an z; , z; plane
(1 £14<j < n). Also the n-dimensional “volume” of this region equals the
value of the confidence coefficient of the confidence interval (8).

By Theorem 3, the intersection region of (8) consists of a certain number of
“basic” cells, each of n-dimensional ‘““volume” (3)". Theorem 4 is proved by
developing s method for finding the number of “basic” cells in this intersection
region on the basis of the corresponding regions in the z; , z; planes. It is found
that the intersection region consists of

mo—ig— =ik

mp
14m4 -+ > - (my — 4y — <o+ — G41)
ip_1=1 ip=1
“basic” cells. A detailed derivation of this expression is given in [5].
Now consider some examples of the application of Theorem 4. Let n = 11,
= 11, my = 5,mz = 2. Then, by Theorem 4, the one-sided confidence inter-

val
max [zs, 3(@s + 1), 3(T0 + 25)] < &

2 For the trivial case in which & = n the value of (9) is unity.
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has a confidence coefficient equal to 103/2". If n = 12 instead of 11, the con-
fidence coefficient would be 103/2" while the confidence interval becomes

max [Ze , (w0 + 28), 3(Tu + 26), 3(z2 + 71)] < ¢.

As another example, let » = 11 and consider the confidence interval.
Max [z, 3(xs + 27), 3(@10 + 25), 3(@2n + 24)] < ¢.

Here k¥ = 3 and comparison with (8) shows that this confidence interval satis-
fied Theorem 4 with m; = 7, my = 5, ms = 2. Thus it has a confidence coeffi-
cient equal to 51/2".

Theorem 3 shows that each one-sided confidence interval developed on the
basis of Theorem 2 has a confidence coefficient of the form r/2", (0 < r < 27).
The question arises as to whether the one-sided confidence intervals defined by
Theorem 4 have confidence cocfficients which attain each of the values 1/2%,
2/2", --+, (2" — 1)/2". That this is not the case is proved as follows: The
totality of different confidence intervals of the form (8) is equal to 2" — 1. This
is shown by counting how muny ways the integers my , - -+ , m; can be selected
subject to the conditions n > my > me > -+ > mi > 0. It is easily seen that

there are <Z> possible ways. Summing over the possible values of & yields

2™ — 1. This figure is increased to 2" if the confidence interval z, < ¢ is also
included. Examination of (9) shows, however, that two different selections
of my, my, ete., will result in the same value of (9) for more than one case.
Thus the one-sided confidence intervals of Theorem 4 do not have confidence

coefficients which attain each of the values 1/2%, ---, (2" — 1)/2".
Although the class of one-sided confidence intervals defined by Theorem 4 do
not have confidence coefficients which attain each of the values 1/2%,2/2", -- -,

(2" — 1)/2", they do have another property which is important from a practical
point of view: If a certain confidence coefficient can be obtained for a particular
value of n, then this confidence coefficient can also be obtained for all greater
values of n. This result is a consequence of the following theorem:

TureoreM 5. Let (1), - - -, z(n) be the ordered values of n independent observa-
tions drawn from populations satisfying conditions (A). Then if a confidence in-
terval of the form (8) has the confidence coefficient e for a certain value no of n, it is
always possible to obtain another confidence interval of the form (8), which has the
confidence coefficient e for the value ny + 1.

Proor. Letm,, --- ,my be the integers corresponding to the given confidence
interval of form (8). These integers satisfy the condition

g > my > mg > - my > 0.

Let no be replaced by no + 1 and consider the new set of integers (mu + 1),
(mg + 1), ---, (m + 1), 1. Evidently

no+12m1+1>’>7nk+1>1>0.
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Hence these integers can be used to define a confidence interval of the form (8).
Also it is easily verified that

ma+1

14 (m+ 1)+ 2 i+ 1 - )
G-
mit+l mgtl—ig—+ - v mif_y
+o 2 > a1 =4y — e —ihy)
$k—1=1 $pm=1
1 mp—l—iy motl—ig—:co—ig
+ X X e 2 m—l—d— e =)
=1 tp_1=1 t1=1
m2 my
= 2[1+m1+ Z my —3)+ - + E
i1=1 [yART ]
mo—sg - —fk-1
) (ml—il—""""'ik_l)].
=l

Thus the new confidence interval has the same confidence coefficient as the given

confidence interval.
From symmetry considerations, the one-sided confidence interval

min {z(k + 1), 3lz(k) + z(me + K)], -+, 3lx(@) + z(m + DY} > &,

where a term of the form i[z(k) + z(mx + A)], (h = 1, - -- , k), is to be deleted
if my + b = n + 1, has the same confidence coefficient as the one-sided con-

fidence interval (8); i.e. its confidence coefficient is given by (9).

7. Efficiency of some tests based on conditions (A). Let us consider the case
in which the n observations used for a test are a sample from a normal population
with unknown variance. The purpose of this section is to investigate the effi-
ciency of some tests based on conditions (A) for this special case.

The method used to obtain efficiencies is outlined in section 3. Only one-sided
and symmetrical tests are considered. For this purpose it is sufficient to limit
investigations to one-sided tests of ¢ < ¢o.

If the subset of %(z; + z;), (1 < ¢ < j < n), chosen for a test is not of one of

the forms

(a) x:
(b) 3(x: + =z5), @ <3);
(C) Zj, ‘2]‘(13; + xk)y (7‘ < J < k):

the determination of power function values requires a numerical double or higher
order integration. Such numerical integrations are extremely lengthy. For
this reason only one-sided significance tests based on subsets of the forms (a) - (¢)
will be investigated.
Let the normal population have variance o’ and consider one-sided tests of
¢ < ¢ based on subsets of the form (a). Then
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Power Function = Pr (z; < ¢y)

=Pr(””‘:“’<¢°:”’)=2

P=1 s'(n s)!

(V@)1 = NE)™

where
= (¢o — ¢)/o, N@) = \/27_‘[ e dy.

The power function values listed for the test z; < ¢ in Table 2 were computed
from the above expression. The corresponding values for the {-test were com-
puted from the normal approximation given in [2].

For subsets of forms (b) and (c) the expression for the power function is more
complicated and will not be either derived or stated here. For any particular
case, however, a simple analysis will yield an expression for the power function
which requires only a first order numerical integration. General expressions
for the power functions when the subsets are of the forms (b) and (c) are stated
and derived in [5].

Table 2 contains power function values and efficiencies for several tests based
on subsets of the forms (b) and (¢). The power function values were computed
by approximate integration (Simpson’s rule, etc.). The {-test power function
values were obtained by using the normal approximation. The power efficien-
cies listed in Table 1 for tests which do not appear in Table 2 were computed in
[5], where a table of power function values is also given.

Examination of Table 2 shows that many of the tests formed from subsets of
types (b) and (c) are very efficient for small values of n. The efficiency appears
to decrease as n increases. Also the efficiency of a test depends strongly on the
subset of 3(z; + z;), (1 < 7 < j < n), used to form the test. For example,
et n = 10. The test

Accept ¢ < ¢o if max [y, 1(x1 + 210)] < o

1
has a significance level of approximately .01 but an efficiency of only 829.
However the test

Accept ¢ < o if max[zs, 2(xs + Z1)] < o

also has a significance level of approximately .01 but an efficiency of 96.59,

An approximate set of rules for picking subsets which result in efficient tests
of ¢ < ¢o is suggested by the results of Table 2. Let z(3y), - -+, z(¢;) be the
order statistics which make up the elements of the particular subset of 3(z; + z;),
(1 <1 < j < n),tobeused for the test. The approximate rules are

1. Use the maximum of the values of the elements of the subset.

2. Choose 73, - - - , %, so that max(s;, --- , %,) = n and min(z;, --- , %,) is as
large as possible subject to the restriction that the test is to have a signifi-
cance level of a specified order of magnitude.

Symmetry considerations furnish the corresponding set of rules for obtaining
efficient tests of ¢ < ¢ .
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Other tests at approximately the same significance levels but not based on sub-
sets of the forms (a)—(c) are undoubtedly more efficient than many of the tests
considered in Tables 1 and 2 (particularly for the larger values of n). Computa-
tional difficulties, however, prevent consideration of more general situations.

8. A general solution.? A general method of obtaining one-sided tests of
¢ < ¢oand ¢ > ¢y, also symmetrical tests of ¢ ¢, , on the basis of conditions

(A) is the following:
Let 41, - - - , ¥ be n independent observations drawn from populations satis-

fying conditions (A). Let

2 =1Y; - o (Z=1,---,n).
If the null hypothesis of ¢ = ¢, is satisfied, each z; is an observation from a popu-
lation satisfying conditions (A) with zero median. Consider the 2" sets of values
obtained by the transformations

2;‘—)6('i)z.', (’l: = 1,---,n).
where ¢(¢) is one of the signs + or —. Form the mean of each of the 2" sets of
values. Then it is readily seen, from conditions (A), that the probability that
Z(= T zi/n) is less than the (r 4+ 1)th largest of the 2" means has the value
r/2" when the null hypothesis is true. Similarly the probability that Z is greater
than the (2" — r)th largest of the 2" means is equal to 7/2" if the null hypothesis
of & = ¢y is satisfied. Thus the test

Accept ¢ < ¢oif Z 18 less than the (r + 1)th largest of the 2" means.

is a one-sided test of ¢ < ¢ with significance level equal to r/2". Likewise the
one-sided test

Accept ¢ > ¢ if 2 18 greater than the (2" — r)th largest of the 2" means.
has the significance level r/2". Consequently the symmetrical test

Accept ¢ = ¢ if Z is either less than the (r + 1)th largest or greater
than the (2" — r)th largest of the 2" means.

has a significance level equal to 2r/2".

The application of any of the above tests requires the computation of the 2"
means and a determination of where Z falls in the ordering of these means, If
n = 5, only 32 means need be computed. If n = 10, however, 1024 means must
be computed. Evidently this test is too cumbersome to apply except for very
small values of n.
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