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population are independent, the probability that a sample is within control
limits on both charts is the product of the probabilities: P.P.. Thus the
probability that a sample be outside of control limits on either chartis 1 — PP, .

The probability of the largest and smallest values both lying in the interval

(c—a)lo n
from —ctocis: Py = Pr(—¢c < S, L <¢) = [f o(t) dt] . Values of
¢

this expression with lower limit — « are given in table XXI of [8] for sample of
sizes 3, 5, and 10. For the purpose of comparing the charts, we choose ¢ so that
the probabilities of Type 1 errors areequal, thatis:1 — P1Py = 1 —Pzor P\P; = P;
when the mean is zero and the standard deviation unity. Substituting in this
equation and solving, we find: F(¢) = 0.5 + 0.5 (.9973P,)"'", where F(x) =

f o(t) dt. Forn = 3,c¢c = 2.99 and for n = 5, ¢ = 3.15.

Comparing P,P; with P; when the true values are @ and ¢ will then show the
relative power of the X & R charts and the L & S chart for detecting lack of
control.

Finally the charts are compared by finding the number (¥, for the X & R
charts and N; for the L & S chart) of samples which will detect lack of control
with a .99 probability under the conditions given above. This is done by
finding the smallest integer which satisfies the following inequalities: (PP <
.01 and P}* < .01. As may be seen from table II, under most conditions, the
L & 8 chart is nearly as good as the X & R charts for detecting lack of control.

—c—a)lo
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SUFFICIENCY, TRUNCATION AND SELECTION!
By Joun W. Tukey

Princeton Universily

1. Summary. The fact that the mean and variance were sufficient statistics
for a univariate normal distribution truncated at a fixed point was known to

1 Prepared in connection with work sponsored by the Office of Naval Research.
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310 JOHN W. TUKEY

Fisher by 1931 {2]. Hotelling [3] has recently observed the corresponding fact.
for the truncated multivariate normal distribution.

It is the aim of this note to point out that these are special cases of a general
result, namely: If a family of distributions admits a set of sufficient statistics, then
the famaly obtained by truncation to a fixed set, or by fixed selection, also admits the
SAME set of sufficient statistics.

2. Representation. The basic formal results about sets of sufficient statistics
are due to Fisher [1], whose arguments, with obvious modifications, establish
that families of distributions satisfying the usual conditions have sufficient
statistics. The converse was established by Koopman [4] for a reasonably wide:
class of families.

The usual condition can be easily handled and given wide application by
representing the family of distributions in a form suggested to the author by
Rubin, and aseribed by him to Cramér, namely:

dF (x| 0) = c(0)f(x | 0) du(z),

where z is a possibly multidimensional chance quantity (i.e. random variable),
6 is a possibly multidimensional parameter, c¢(6) is a positive real function of 8
which serves to normalize the distribution, f(z | 6)—the relative probability
density—is a non-negative real function of z and 6, and u(x) is a positive measure
function. In this representation the natural and sufficient condition that
{hi(x)} are a set of sufficient statistics for 8 is the existence of functions a;(6)
such that (cf. Koopman [4])

1) 210g/@1D) - 5 o).

When 6 is a vector, the derivative is to be interpreted as the gradient (a vector)
and the a;(8) are to be vector-valued functions of 8. We notice that this condi-
tion concerns only the relative density function.

3. Proof of result. Suppose the family F(z | 8) is truncated onto a Borel set.
E, this means that

Priein | e ) trnanted t0 ) = PER G B ATEID)

If ¢x(x) is the characteristic function of E, which is =1 for z in ¢ and =0
otherwise, and if

k) = Prizin B | F(z | 0)} = fEdF(xlo),

then the probability element of F(z | ) truncated to E is
c(6)/k(0)f(x | O)px(x) dulx) = '(0)f(x | 6) dv(x),
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where ¢’(0) = ¢(6)/k(6) and dv(z) = ¢z(x) du(z). Truncation has not changed
the relative density function, and the result follows from the form of (1).

Next suppose that, instead of accepting values with probability one in E
and with probability zero outside E, we select according to a fixed Borel function
¢(x), the chance of accepting a value x being ¢(z). The new family of distribu-
tions has the same sufficient statistics for the same reason.
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ON A PROBABILITY DISTRIBUTION
By Max A. WOODBURY

University of Michigan

1. Introduction. The problem treated is that of generalizing the Bernouilli
distribution to the case where the probability of success is not constant from trial
to trial but depends on the number of previous successes. The case where the
probability of an event depends on the number of trials is easily handled and
is not the case treated here. Several special cases of such a distribution have.
been worked out at one time or another. (E.g. C. C. Craig found the solution for
one such special case and thus called the author’s attention to the problem.)

The solution involves the Newton divided difference expansion of powers in a
form which can be utilized for computation if the number of trials is not too
large. In the case where the probabilities on a single trial are small an approxi-
mation, (similar to that of the Poisson distribution to the Bernouilli distribution)
can be found.

Applications can obviously be made to urn schema in which black balls are
replaced, but white balls are removed. Similarly, applications can be made to
the distribution of the number of plants in a given area.

2. Solution of the problem. Specifically the problem is as follows: “What is
the probability that in » trials of an event it will occur = times presuming that
the probability of the event on a given trial depends only on the number of
previous successes?”” Denote by P(n, z) the probability of z successes in n
trials and by p. the probability of the event after x previous successes. As



