CONCERNING COMPOUND RANDOMIZATION IN THE BINARY
SYSTEM

By Jonn E. WaLsH

The Rand Corporation

1. Summary. Let us consider a set of approximately random binary digits
obtained by some experimental process. This paper outlines a method of com-
pounding the digits of this set to obtain a smaller set of binary digits which is
much more nearly random. The method presented has the property that the
number of digits in the compounded set is a reasonably large fraction (say of the
magnitude % or 1) of the original number of digits.

If a set of very nearly random decimal digits is required, this can be obtained
by first finding a set of very nearly random binary digits and then converting
these digits to decimal digits.

The concept of “maximum bias” is introduced to measure the degree of
randomness of a set of digits. A small maximum bias shows that the set is very
nearly random.

The question of when a table of approximately random digits can be considered
suitable for use as a random digit table is investigated. It is found that a table
will be satisfactory for the usual types of situations to which a random digit
table is applied if the reciprocal of the number of digits in the table is noticeably
greater than the maximum bias of the table.

2. Introduction and discussion. With the development of the theory of games
and the more widespread use of experimental methods for determining approxi-
mate distributions for statistics whose probability laws are difficult to obtain
analytically, a demand for large sets of random digits has arisen. The problem of
obtaining a set of digits which can be considered sufficiently random for the
situations to which it would be applied, however, is not an easy one. One approach
to this problem consists in obtaining a set of digits by some procedure and then
applying tests to this set of digits to determine whether it can be considered
satisfactory. Although appropriate choice of the tests may result in acceptance
of sets of digits which are suitable for certain special types of situations, this
approach is of a negative character and does not prove that a given set of digits
is sufficiently random; it merely indicates that this may be the case. What is
needed is a constructive approach to the problem, i.e., a method of constructing a
set of random digits which can be proved sufficiently random for most applica-
tions if certain intuitively acceptable conditions are satisfied. A step in this
direction has already been taken by H. Burke Horton in [1] and by H. Burke
Horton and R. Tynes Smith IIT in [2]. This paper presents what is hoped will be
another step in this direction.

In this paper, considerations will be limited to the case of binary digits. The
reasons for this are twofold:
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(a). The method used for compounding the digits yields a sharp upper
bound for the maximum bias of the compounded set (i.e., a bound that
the maximum bias could actually attain) only for the case of binary digits.

(b). Many of the experimental procedures for obtaining approximately
random digits consist in first producing binary digits and then converting
to another number base. Thus binary digits are produced directly.
Hence, to use the results of this paper, the only modification required in
these procedures would be to compound the binary digits before they
are converted.

Now let us consider some definitions: A set of random variables each of which
can assume only the values 0 and 1 will be referred to as a set of binary digits.
For convenience, each of the random variables making up a set of binary digits
will be called a binary digit; this is not to be confused with the value obtained
for the random variable. The absolute value of the deviation from % of the
conditional probability that a specified binary digit has the value 0 (or 1) is
called the bias of that digit for the given conditions on the remaining digits of
the set. The maximum bias of a binary digit is defined to be the maximum of the
biases of that digit with respect to all possible conditions on the remaining
digits of the set. The mazimum bias of the set is the greatest of the maximum
biases of the digits of the set. A set of binary digits is said to be random if its
maximum bias is zero.

The method used to prove that a set of compounded digits has a sufficiently
small maximum bias is somewhat similar to the situation encountered in mathe-
matics where one begins with certain axioms and then draws conclusions. If the
axioms are correct, the conclusions are necessarily valid. The first step in the
compounding procedure consists in obtaining a set of binary digits by some
experimental process (perhaps from a random digit machine which is based on
some physical principle). The experimental process is so chosen that there is no
doubt that the set of binary digits produced satisfies the two conditions:

(i). The maximum bias of the set is less than or equal to some specified
value a(<3).

(i1). The digits of the set can be arranged in a specified array which has the

, property that the rows of the array are statistically independent.
On the basis of these two assumptions (which play the same role as the axioms
mentioned above), it can be proved that the maximum bias of the resulting
compounded set of binary digits never exceeds a specified value which depends
on a. Moreover, the upper bound for the maximum bias of the constructed set of
binary digits can be made extremely small even for large values of «.

If the experimental process is suitably chosen, conditions (i) and (ii) can be
satisfied beyond any doubt. For example, let us consider 1000 people located in
different parts of the world and not in contact with each other. Let each person
flip an ordinary coin high in the air so that it will land on a flat hard surface,
record the result (say O for a tail and 1 for a head), and then repeat this procedure
until 5000 binary digits are obtained. If « is set equal to 3/10, condition (i) is
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obviously satisfied for the resulting set of 5,000,000 binary digits. Condition (ii)
evidently holds if the array is taken to consist of 1000 rows where each row
contains 5000 binary digits obtained from one person.

The ideal choice for a would be the actual maximum bias of the set of binary
digits obtained from the experimental process. Then the compounding procedure
for obtaining a set of digits with a specified upper bound for the maximum bias
would be simplified; also the number of digits in the compounded set would be a
larger fraction of the original number of digits. Invariably, however, the proper-
ties of the experimental process are not known with sufficient accuracy for
obtaining anything but a safe upper bound on the maximum bias of the set of
digits produced. This situation is analogous to that of estimating the length
of a stick which a very rough measurement has shown to be about 10" long.
Although one might be very hesitant to believe that the length of the stick lies
between 9.9” and 10.1””, the contention that the length lies between 57 and 15"
can be accepted with virtual certainty and any logical conclusions based on this
contention can also be accepted with virtual certainty.

Given the number of binary digits in a set and the maximum bias of the set,
is it possible to determine whether the set is suitable for use as a set of random
binary digits? An important consideration in answering this question is the use
that is to be made of the set of digits. This must always be taken into account
before the suitability of the set can be decided. For example, if no more than
1/1000 of the digits of the set are to be used for any particular situation, the
set might be satisfactory for the types of cases to which it would be applied;
on the other hand, the set might not be suitable for cases of these types if all the
digits of the set are used for each situation. This example calls attention to
an important point, namely that the suitability of a set of binary digits depends
on the number of digits in the set. Let a set have a fixed non-zero maximum
bias p. If the set contains a sufficiently large number N of digits, relations and
expressions involving the digits of the set can- be found whose probabilities,
moments, etc., can differ greatly from the values which would be obtained if the
relations were based on the same number of truly random binary digits. As a
specific example consider the relation

All the digits of the set have the value zero.

If the reciprocal of the number of digits in the set is of the same order of magni-
tude or smaller than the maximum bias of the set, the ratio of the probability
of this expression to its hypothetical value can differ noticeably from unity.
Thus, at least in certain special cases, a necessary condition for the suitability
of a set of binary digits is that 1/N > > p. This condition, however, is also
sufficient for most situations to which a set of random digits would be applied.
The approximate sufficiency of the condition is a direct consequence of the fact
that any set of N binary digits can be considered as a sample value from an
N-dimensional population consisting of 2" discrete points. The 1/N > > p
restriction implies that the probability concentrated at each of the 2" points is
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very nearly equal to the hypothetical value of (3)" for all possible conditions
on the remaining digits of the set.

The 1/N > > p condition is very satisfactory from the viewpoint of proba-
bilities. The probability of any relation based on a subset of the digits of the set
(possibly conditioned on other digits from tbe table) can be interpreted as the
sum of the probabilities of those points included in a certain region (defined by
the relation) of the N-dimensional probability space of the set of digits. By
expanding (3 & p)" it can be shown that the ratio of the probability of any
relation based on one or more digits from the set to the corresponding value for a
truly random set of digits will be very nearly equal to unity if 1/N > > p.

It is evident that the higher order moments of an expression based on one or
more digits of the set can differ noticeably from its hypothetical value even if
1/N > > p; any deviation from the ideal situation, no matter how small, can
become important for high order moments. For the first few moments, however,
deviations from the hypothetical values are not appreciable since these moments
are based on the probabilities at the 2" points in the N-dimensional probability
space and these probabilities are very nearly equal to the hypothetical value of
(3)" in all cases.

The above discussion shows that the values of N and p are sufficient to deter-
mine whether a set of binary digits is suitable for use as random binary digits
for a wide variety of situations. Analogous considerations apply for digits to any
number base.

A magnitude definition of the relation 1/N > > p is difficult to specify. If p
is the upper bound for the maximum bias of a set of digits obtained by the
compounding procedure outlined in this paper, however, it seems that a reason-
able condition would be that 1/N > 50 p. This condition implies that the
probability of any relation based on digits of the set can not differ from its
hypothetical value by more than approximately 49;. In most practical
applications the value obtained for p would be noticeably greater than the
true value of the maximum bias of the compounded set.

Since the maximum number of digits which can be taken from a table is the
total number of digits in the table, the above considerations suggest that a
random digit table should be constructed so that the reciprocal of the number of
digits in the table is noticeably greater than the maximum bias of the table.
Any table having this property would be satisfactory for most situations to
which it would be applied. :

Now let us consider two different compounding methods which produce sets
of binary digits with the same upper bound for the maximum bias. If the com-
putational difficulties of applying the two methods are of comparable magnitudes,
it seems reasonable to prefer the method which yields the larger set of digits.
For example, if the number of digits in the set obtained by the first method is
only 1/8 of the original number of digits while the number in the set obtained
by the second method is 1/3 of the original number, the second method would
seem preferable even if it required as much as 1009, more compl‘ltation.
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The compounding method presented in this paper has the property that the
number of digits in the compounded set can be held to a reasonably large fraction
of the original number of digits at the same time that the upper bound for the
maximum bias is made extremely small. The method presented by Horton in [1]
does not have this property. For example, let @« = 1/10. Applying Horton’s
method, when the compounded set consists of 1/8 of the original number of
digits the upper bound for the maximum bias is 12.8 X 10™". The example
presented in section 3, however, shows that a compounded set whose number of
digits equals 1/3 of the original number and which has an upper limit of 11.7 X
1077 for the maximum bias can be obtained using the method presented in the
next section. '

Although the compounding method outlined in section 3 is presented as a
series of steps, the value of a digit of the compounded set can be written as a
linear function (mod 2) of digits of the original set. This was not done in what
follows because of the complicated nature of the general form of such expressions.
In any particular case, however, these expressions can be written without much
trouble and the compounded digits computed from the original digits in a
single step.

3. Outline of compounding method and statement of theorems. This section
contains a description of the compounding method mentioned in the preceding
two sections as well as statements of the basic theorems concerning this com-
pounding method. Proofs of the results stated in this section are given in section 4.

Let us consider the array of mn binary digits

T, T12, *** , L1n
Tor, Taz, **° ,To2n

€Y

TmlyTm2y *°° 3 Tmn

which satisfies conditions (i) and (ii); i.e., the maximum bias of the set (1) is
less than or equal to o while a digit z,, is independent of a digit z,, if » = u
(if » = u, however, z,, is not necessarily independent of z.).
Let a new set of (m — 1)n binary digits
(2) Yii, (i=l)"')m—1;j=17""n)
be formed as follows:
Yij = Tmj + 2i; (mod 2),

G=1--,m—-1j=1,---,n)

Then the biases of the y;; have the properties

TaEOREM 1. Let U be a specified set of t — 1 of y1j, *** , Yi—1)i s YG41i, *** »
Ym-yi, 1 <t < m — 1), while V is a specified set of zero or more of the yyg’s
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with ¢ # j. Also let 0 consist of the set of integers such that p € 0 if yp; € U. Then,
if Yo = maximum bias for the set Tu1, **+ ,Tun, (w =1, +++ , n),

| Pr(y; = 0|U, V) — 3| <71 -'IIL(% - 7)/G + )]
/I + I1G = %)/G + 7l

for all possible selections of U, V and of the values for the digits of these sets.
CoroLLARY 1. If ezactly ¢ — 1 of 415, +, Y6-vi, Y6ni, =+ * » Yem—j have
known values, the maximum bias of the binary digit y.; is less than or equal to
ol = (4 — @Y/G + )V + G — 9Y/G + )
COROLLARY 2. The maximum bias of the set (2) is less than or equal to
ol = G —"/G+ )™+ G- " /G+ )™].

The basic operation in the method of compounding binary digits is outlined
in the procedure given for obtaining the y;; from the z,, . Let m = (1 + ¢) - --
(1 + tx). Then a set of ¢, - - - ¢txn binary digits can be obtained from the original
set, of mn digits ., by continually applying this basic procedure. The first step
consists in dividing the rows of (1) into (1 + &) - -- (1 + ¢x) sets each consisting
of (1 4+ t) rows in some specified fashion. Each of these sets is an array of
(1 + &) X n binary digits for which the rows are independent. Apply the method
used to obtain the y;; from the x,, to each (1 + #) X m array separately. Then
each array yields a set of fn binary digits and there are (1 + &) --- (1 + tx)
such sets. In each set arrange the {in digits into a single row in some specified
manner. This furnishes a new array of [(1 + &) --- (1 + tx)] X [tin] binary
digits for which the rows are independent. Repeat this procedure with respect to
t; thus obtaining a new array of [(1 + &) - - - (1 + tx)] X [titen] binary digits for
which the rows are independent; etc., until a (1 + fx) X (& --- tx—n) binary
digit array for which the rows are independent is obtained. Then form a set of
binary digits Yo, (g =1, -+« ,te;h =1, --- , & -+ tg_n), from this array in .
exactly the same manner that the y;; were obtained from the z.,. Then the
biases of the Y, have the properties

THEOREM 2. Let 8y, B1, -+ -, Bx be defined by B = a and

Bu = Buall — G — Bu)™/G + Bu-1)I/I1 + G — Bud)™/G + Bud)™],
w =1, ---_,K).
Then, if exactlyt — L of Y, <+, Y—yny Yo4n, ==+, Yign have known values,
(1 <t < tx), the maximum bias of the digit Yy, is less than or equal to
Braall — 3 — Bx—1)'/( + Bx—0)'l/[L + G — Bx—1)"/G + Bxr)].

In particular, the mazimum bias of the entire set of Y ts less than or equal to
Bk - Also

Brall — (3 — Bx1)'/G + Bx) VL + G — Bx)'/G + Bx1)]

3) S?Ll-t-t)zr-x't;-z"‘tz -t o a . N
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The inequality (3) is frequently useful from a computational viewpoint.
Although the right hand side of (3) is usually noticeably greater than the left
hand side, in many cases this rough upper bound is itself small enough to show
that the upper bound for the maximum bias is of the desired order of magnitude.

If the set of compounded digits is to be used for a random binary digit table,
Theorem 2 shows that advantage can be taken of the position of the digits in the

table. Let M = ¢, --- tx_n and enter the values of the Yo, (g = 1, -+, tx;
h =1, ---, M), into the table in the order
Yll, Y12y M yYIM; YZI; cet yYZM; Yal, e 7thl, M ;thMO

Then, if a set of digits is taken from this table in consecutive order (¥Yy; follows
Yixu), the upper bound for the maximum bias of this set is dependent on the
number L of digits in the set. From Theorem 2, the maximum bias of a set of L
digits taken in consecutive order from a table formed in this manner is less
than or equal to

Brall — (3 — Bx)/G + Bx) VIl + (G = Brd)/G + Brd) ]

for values of L such that (¢ — 1)M < L < tM, where 1 < t < tx. Thus, if a
small set of digits is taken from this table in consecutive order, the upper bound
for the maximum bias of this set will usually be noticeably smaller than the
upper bound for the maximum bias of the table. Since many uses of a random
digit table require only a small fraction of the total number of entries in this
table, this property would seem to be desirable. It should be emphasized, how-
ever, that the maximum bias of a set taken from this table is always less than
or equal to Bx irrespective of the positions that the digits of the sets occupy in
the table. Thus nothing is lost by constructing the table in this manner but
something can be gained for small sets if the digits are taken from the table in
consecutive order.

Now let us consider situations in which it is required that the number of
digits in the compounded set is at least a specified fraction, say 1/C, of the
original number mn of binary digits. This requires that K and ¢, ---, ix be
chosen so that

oo te/(L+ 1) --- (14 t) > 1/C.

Also, for given values of K and C, it seems preferable to choose #, , - - - , tx so that
the value of Bx is at least approximately minimized. Examination of the results of
Theorem 2 indicates that a reasonable method of determining the values of
ti, - -+, tx with this in mind consists in first choosing ¢, as small as possible, then
(given the value of ¢ equal to its minimum value) choosing #, as small as possible,
etc. This method is also recommended by the fact that the resulting values of

ti, -+, tx are readily determined. The explicit procedure for finding ¢, , - - - , tx
is given by

THEOREM 3. Let the values of the integer K and the constant C (> 1) be given and
consider the integers t, , - - - , tx subject to the condition

oo te/(L+ 1) -o- 14 tx) > 1/C. *
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The minimum value of t, is the smallest integer satisfying
h>1/(C —1).
In general, 2 < w < K — 1, having already determined t, , --- ,t,—1 as their

minimum values, the value of t., s the smallest integer satisfying
tw > 1/[Ctl M tw——l/(]- + tl) e (]- + tw—I) - 1]-

Finally, given t,, -+, tg—1 as their minimum values, the minimum value of tx
18 the smallest integer satisfying

te > 1/[Ct - tea/(L + 1) =-+ (1 + tg) — 1].

Now consider the general situation encountered in -the application of the
compounding process outlined above. Here the values of «, C are given and it is
required to choose K and ¢, - - - , tx so that the upper bound for the maximum
bias of the compounded set of ¢; - - - txn binary digits ¥ is less than or equal to a
specified value b. The following procedure furnishes a method of solving this
problem:

Let K = 1, obtain ¢, according to Theorem 3, and then compute 8, . If 8, < b, a
solution has been obtained. If 8, > b, let K = 2 and repeat the procedure to
obtain B, . If 8 < b, the values of 4, t: and K = 2 are a solution. If 8, > b,
repeat the procedure for K = 3; etc. In practical situations, the value of K is
usually bounded (e.g., by independence properties of the original set of digits).
If Bx is still greater than b for the maximum permissible value of K, no solution is
obtained. This means that either b must be increased or 1/C decreased or both
if a solution is to be found. In many cases, a large amount of computation can be
avoided by using the inequality (3). For marginal situations, however, a solution
may be missed by using (3) instead of computing B« .

Ezxample of method. The following table represents an example of application
of the above method:

a = 1/10 1/C = 1/3 b=2X10"*
K=1 t=1 B =2X10"
K=2 ti=1 =2 B < 16X 10°
K=3 t=16=3 t= B; < 1.04 X 107*
K=4, ti=1, =38, t =10, t, = 44 B:s < 1.17 X 107"
Thus K = 4,4 = 1,t = 3, 3 = 10, {; = 44 is a solution.

4. Derivations. The purpose of this section is to furnish proofs of the results
stated in the preceding sections.

4.1 Proof of Theorem 1. Let us consider the conditional probability that an
arbitrary but fixed y;; has a specified value when the values of a fixed subset of
zero or more of the remaining y’s are known. For convenience, assume that yu
is the binary digit considered and that the values of yu , ya, *+*, ya (Where ¢
is a fixed integer such that 1 < ¢t < m — 1) and a set S are given while the
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values of the remaining y’s are unknown. Here 8 represents an arbitrary but
fixed set of zero or more of the y;;’s for which j > 2 while ¢ = 1 has the inter-
pretation that.none of the ¥, , (¢ > 2), are given. Let

Pr@m =0]8) =3+ awn and Pr(za = b |8) = 3 + a,
k=1, 0.

Then, using the independence conditions satisfied by the z’s,

PT(yu = bllyzl =by, " ,Yn = bt;S)

[Ha+e+T6-w]|/[H6+w+lae-w]

]

=t e[l +e -6 -a]/[[6+w+16-w]

= % + [23} 5.
Now |6|=(1 — P)/(1+ P)if 0 £ P < 1andequals (P — 1)/ + P) if
t+1
P> 1,where P = [] (3 — &)/ + ai). Let v, be the maximum bias for the
k=2

set of binary digits w1, ++*, Tun, (w = 1, -+, m). Then it is easily seen that
t+1 t+1
mox (31 < [1- TG -w/G+w]/[1+ 16 -wa+w].

Thus
IPT(yu = b]lyzl =by, ,Yan = bt;S) —%I

<u[1-T6-w/a+w]/[1+16-wa+w]

for all possible selections of b, , --- , b; and all possible selections of S and the
values for the digits of 8. It is to be observed that this inequality is valid for ¢ = 1.

Evidently this result can be modified to apply to an arbitrary y;; for which
t— lof yaj, *++, Yu-vi, Y6+0i, *** » Ym—1); have given values. This obvious
modification results in Theorem 1.

4.2 Proof of Theorem 2. By Corollary 2, the maximum bias of the [(1 + &) -+
(1 4 tx)] X [t:n] array is less than or equal to 8, . In general, 2 < w < K, by
Corollary 2 the maximum bias of the [(1 4 tp41) -+ (1 + tx)] X [& - twn)
array is less than or equal to 8, . Finally, by Corollary 1, if exactly ¢ — 1 of
Y, -+, Yoon, Yoior, +++, Yign have known values, (1 < t < tx), the
maximum bias for the binary digit Y is less than or equal to

Brall = (3 — Brx)'/G + Bx) VI + & — Bx—0)'/G + Bx—)'l.
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The inequality (3) is an immediate consequence of the relation
Lol =G —a)/G+ )Vl 4+ G = a)/G + )] < 2sd.
4.3 Proof of Theorem 3. From the given condition
te 2 1/[Ct -+ - txs/(L + &) -+ (1 + txa) — 1]
From this inequality for tx it follows that
Cty oo tga/(L48) ++» 1+ txgy) —1>0.
Thus
trs > 1/[Ct ++ - txa/(L 4+ 1) -+ (1 — txa) — 1].
In general, 3 < w < K — 1, given
tw > 1/[Ct oo+ tua/(L 4 #1) =+ (1 4 twa) — 1]
it_follows that
Ctyovetoa/(Q+8) oor (14 2uy) =1 >0
whence
twm1 > 1/[Cty « o« tua/(L 4 1)) <o+ (1 + tp) — 1].
Finally
L >1/(C —1).
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