THE EXACT DISTRIBUTION OF THE EXTREMAL QUOTIENT

By E. J. GumBEL axp L. H. HersAcH

New York City and Columbia University

0. Problem. The only quotients considered up to now are those of two observa-
tions taken from different distributions. Instead of these statistics, we consider
the quotient @ of the extremes (henceforth called the extremal quotient) for
n > 2 independent observations taken from the same distribution. This quotient
of the extremes has sometimes been used by climatologists [3]. Since it is obviously
not affected by changes of scale, its use may be of interest in cases where the
scale plays no role. The sensitivity of the extremal quotient to changes in origin
is brought out by consideration of uniform distributions where the extremal
quotient for a nonnegative variate has just the opposite qualities of the extremal
quotient taken from a nonpositive variate.

The asymptotic distribution of the extremal quotient was given in a previous
paper [1]. However, the exact distribution of this statistic has never been studied
before.!

1. The distribution. Let f(z) and F(x) be the density and cumulative proba-
bility function of a variate X where —w; < X < ws. Let X, be the largest and
X, the smallest value in a sample of size n (n > 2). Then the extremal quotient
is Q@ = X,./X; . The exact cumulative probability function H(g) will be given in
terms of pseudo probability functions

Pi(g) = Pr{ 1<Q<g¢q, X2>0,
(1.1) B(g) = Pri—-1<Q<g¢q}, Xi<0, X.2>0,
P3(g) = Prf 0<Q<yq}, X L0

These would be cumulative probahility functions of @ if the extremal quotient
were restricted to the quadrant indicated by the subscript (see Figure 1). In
general the cumulative probability function is

JCI)Z(Q)r q S 0’
(1.2) H(q) = 1®:(0) + ®s(q), 0<qg<1,
9:(0) + ®5(1) + i(g), ¢>1

Integrating the joint density of the extremes,

(1.3) w@y, &) = n(n — Df@)F(@.) — F)]" [(@),
L The authors wish to take this opportunity to thank Mr. J. A. Greenwood, who con-

structively read a first version of this paper.
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over the shaded areas in the proper quadrants of ¥ igure 1, we obtain &(g),
®2(q), P3(g), which, when substituted in ( 1.2), yield after some simplification

0 .
= f / (F(gr) — F@)I"™ f(2) da, g <2 <o,
wa/q

w1

(14) H@p = Jc;» - [ [Flgz) — F@)]"™ f(z )dz, 2 <4<,

— Wy

s+ n [)‘“‘2 [[f’(x) — F (g)]"— f(x) dr, ¢<1,
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where
W5 = [1 - F<‘_;.)] 1 - FOF, a&=1-I[—FOT,

and w; > 0, we > 0.

It is to be noted that H(q) = ®:(q) or ®;(¢) according as the random variable
X is always positive or always negative. Thus the pseudo probability functions
&,(q) and ®;(q) may be real. Since

(1.6) (0) =1— F"0) — [1 — FO)"

can never be unity for finite n, ®(¢q) can never be a cumulative probability
function. But #,(0) — 1 as n — o if X can take positive and negative values.

xl'l

wo

>
X
1

Fic. 2. Area over which probability density w(zi, z.) is to be integrated if w2 > — ..

Thus, if » is sufficiently large, the extremal quotient may be treated as negative,
as was done in [1]. The speed with which the positive part of the distribution
of Q shrinks with even fairly small values of n may be seen in Figures 5 and 6.
For any initial distribution and sample size an indication of the error committed
by using H(q) = ®»(q) when w; > 0, w; > 0 may be found by seeing how close
the value of (1.6) is to unity.

If w is negative, and w, > —w;, then wy/—w; > Q > 1 (as in Figure 2),
and the probability function becomes

1= M/q{m ) [ PG — eI o fa) d

—w] z)

[1 - ()] +n [ ' [(F(gz) — P@)I™f(x) dr.

H(q)
(1.7)

I

il
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Similarly, if w, is negative, and —w; < w; < 0, then wo/—w; < @ < 1 and the
probability function is symmetrical to the previous case. These special cases
cover, for example, uniform distributions in the intervals 1 < z < 2 and
—-2<z< —1.

The extremal quotients @; and @, for two variates X, and X, which are
unlimited in both directions and possess mutually symmetrical distributions,
have probability functions H,(q,) and Hz(gz) which are linked by

(1.8) Hy(1/¢2) = 1 — Hy(qw).

2. Special cases. For a symmetrical limited distribution where w, = w, =
(say) and | X | < w we have

F(-0) =0, Fw =1 FO) =43 -2 =1,

and (1.5) becomes
a=[1-F/I"- %" e=1-@"
For ¢ = —1, 0, 1, the probabilities become
@y H-)=3-®" HO=1-@®"", HD=1-®"

Therefore the probable error about zero is unity, the median of the extremal
quotient for a symmetrical distribution converges toward —1, and zero is the
practical upper limit for large n.

For symmetrical unlimited distributions, F(w/q) vanishes for ¢ < 0, and the
probability consists of only two parts, namely

- —n [ F@ - F@I @ g<1,
(22) H(g = .
1—®)" +n ] [F@@) — Fa/Q1" @) dz, ¢ > 1.

To apply these methods, we consider first four cases of the uniform distribution
which give quite unexpected results. By virtue of the scale invariance mentioned
in Section 0, we set the length of the interval of variation equal to unity. The
first two cases f(z) = 1for0 <z < land —1 < 2 < 0 obtained from (1.4) are
summarized in Table 1. The respective distributions of the extremal quotients
for these very closely related distributions have characteristics which are di-
ametrically opposed. The asymptotic values of the medians are mutually
reciprocal, and the asymptotic distributions of the reduced quotients are the
second and third asymptotic distributions of extreme values [2].

The two examples show that the extremal quotient is very sensitive to opera-
tions like translation which, as a rule, have no influence on the distribution.

Consider now a uniform distribution where zero is within the domain of
variation of x.

(23) Fz) = w; + =, flx) =1, —w << w, w; + g = 1.
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TABLE 1
Ezxtremal quotients for two uniform distributions
Limits 0<z<1 -1<2<0
Cumulative probability H(g) . .. 1 =1/ 1 -1 - ¢!
Density h(g) . .................. (n—1) 1 — 1/q)~2q? n—1) 0 — g2
Rangeof ¢..................... g=>1 0<¢<1
Graph.......................... Fig. 3 Fig. 4
Influence of m.......... . .. ... density h(g) spreads density h(g) contracts
Mode........................... n/2 0
Median (for largen)............ (n — 1)/log 2 [log 2]/(n — 1)
Mean........................... does not exist 1/n
Moments ¢*. ................... do not exist /¢t
Reduced variate z.............. q/24 q/7
Asymptotic cumulative proba-
bility H(z) for n—o.......... ez 1 — ¢
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The general formulas (1.4) and (1.5) lead, after trivial calculations, to the
probability of the extremal quotient

of (1= g™ = 1, i<
—
(24) H(Q)= 1_w;‘__(1—q"—lwln, —wiSqSL
.
1 —wr [l — (1 —ghHT, 721

H('g:;)=w2~w'£, HO) = 1 — 03 — i, H(1) =1— wj.
—w
The density corresponding to this probability distribution is drawn for w; = 1,

wy = $andn = 2 to 5 in Figure 5.
As an example of a symmetrical limited distribution, we put w; = w, = %
These densities are drawn for n = 2, 3, 4 in Figure 6. The shapes of these two

series are, of course, completely unexpected.
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We now show how the methods have to be altered to cover the case where a
symmetrical unlimited distribution cannot be regarded as a single function,
as for instance in the so-called first Laplacean distribution, where the formulas
for the two symmetrical branches differ,

@5) f@@) = filz) = i€, F(x) = F\(z) = 3¢, z <0,
T f@) = fl@) =37, F@) =FkE) =1-47, 220
TABLE 2
Ezxtremal quotients for n = 2
Name Initial density f(x) Condition on x Density 4(g) Condition on ¢
Laplace e® 20 1/(2(1 — ¢)? g<0
te= x>0 1/[12(1 + @)% g>0
Exponential e x>0 2/(1 + ¢)? g1
d z2Z0 2/(1 + ¢)? 0<¢<1
. 20 (2K
Gamma, e~zz%1/1(k) z2>0 m g>1
Normal e’ 12/A/2n —0 <z < ® S —0 < g < ®
(1 + ¢%)
—log o2
Cauchy: Y@ + 23] | —w <2< » _“log @ —w < g< w
(1 — ¢%)

In formula (1.4), which is valid even if the functional form varies under the
integral sign, we haye to use f, and F. for positive values of x, and f, and F;
for negative values of x. Accordingly we have

0
L= @ = n [ [P - REM Y@ do, <0,

0
@6) H@={1-@"-n[ R - K@@,  0<q¢<l,

L=+ [ o - 1 ()] 50 o

It is easily seen that the middle term holds for ¢ > 0. Thus the probability
function and density consist of only two branches which join at ¢ = 0.

The degenerate case, n = 2, is shown for different initial distributions in
Table 2.

If, as in the case of the Cauchy distribution, the initial distribution possesses
no moments and does not vanish at z =0, the density of Q becomes infinite
atg = Oforn = 2.

¢> 1
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On the whole, the theory leads to surprisingly complicated results even for the
simplest distributions as long as the sample size is small.
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