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Introduction. Mehler has shown that the two-variate probability density
function (pdf) for correlated variates, each of which has a marginal Guassian
distribution, can be expressed as a series bilinear in Hermite polynomials:
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Kibble [5] has extended this result to any number of variables and noticed a
small difference between the generalization and the particular case due to Mehler.

It is known that Mehler’s series is not an isolated result, there being a similar
series bilinear in Laguerre polynomials, discussed by Hardy [3], Watson [6],
and Kibble [4], and series bilinear in certain other other polynomials, discussed
by Campbell [2], and by Aitken and Gonin [1]. All these results can be generalized
for any number of variables in much the same way as Kibble has generalized
Mehler’s result. These generalizations are contained in Krishnamoorthy’s
thesis “Multivariate Distribution Functions” (in the library of the University
of Madras). In the present paper the generalization involving Laguerre poly-
nomials is given.

1. Notation and summary. It was shown by Kibble [4] that a two-variate
distribution function, in which each of the variates z;, ¢ = 1, 2, has the fre-
quney function

_ x?—le—q
(1.1) #(z;) = T

may be represented by
2 4
¢ (x1)p(22) [1 + % Li(z1, p)La(zz, p) + Wp—p—-l-l) Ly(zy, p)Lo(22, p) + - - '],

where L.(z, p), p > 0, is the generalized Laguerre polynomial of degree r satis-
fying '

(Y et
(1.2) L.z, p) = rlL&¥ ™ (2) = T

1 Sections 1 to 4 of this paper, deriving the distributions, were written by the first author;
Section 5, on the convergence of certain series, was contributed by the second author.
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It is the object of this paper to extend Kibble’s result to n variables, assuming
(i) that the variates have each a marginal Gamma-type distribution given by
(1.1) with the same parameter p; (ii) that the variates have Gamma-type dis-
tributions with different parameters. The extension in case (i) appears in (3.7)
and that in case (ii) appears in (4.1). The convergence of series obtained in
either case is established in Section 5.

An outline of the procedure followed may be given thus. We obtain, in (2.2),
the moment-generating function (mgf) for the joint distribution of &; =
32}, 0 = 1,2, ---,n), where each z; has a normal distribution with zero
mean. From this we get the mgf for the distribution of the sums of squares in
a sample of m from a normal correlated n-variate distribution, and thence, in
(2.3), a possible mgf for an n-variate distribution in which each variate has a
Gamma-type distribution. Finally we obtain from (2.3) the n-variate distribu-
tion in (3.7) by a process which is essentially the inversion of the Laplace trans-
form,

(13) 1-a~ (1 = a>' = f: ¢ f(x, p) dz,

where

f,(x,p) =M@, p(r) i p(p'l‘ 1)'(p+'r—— l).

p(r)

It will be noticed that (1.3) is true for r = 0 if we define (as we may) Lo(z, p) = 1,
p* =1

2. An mgf for an n-variate Gamma-type distribution. Let || p;; || defined by

1 P12 et P1n
P p22 ccc Pon

Wessll = =~ ’
Pnl Pn2 ***  Pan

where p; = pji, be a positive definite matrix. Then the normal correlated
n-variate distribution having zero means and || p;; || for its variance-covariance
matrix is given by

' ij |4
(2.1) dF = I Ll expy —3% Z I’y x,x,} dxy dxz c -+ dxa
(2 )*" =1
in the usual notation, where || p*’ || is the inverse of || pi; || . Denoting the mgf
for a distribution of & ,7 = 1, 2, - -+ , n, having any pdf, by

G(a17a21 te ;an) =E {exp Zaifi}:

“ we find that, in the case £ = %a% where z; have the joint distribution (2.1),
the mgf is
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Gi(al’ Qz,y * " 1an) =E {exp%zaiﬁ}

|
(2m)tn

f exp {—3 D, (0" — 8ij )i x;) dF,

*

where —0 < z; < ©0,t=1,2,:++,n, f - -+ d% denotes an integration with

respect to all z;, and §;; is the Kronecker delta defined as zero if ¢ ¢ j and
unity otherwise. Therefore

(22)  Gylor,on, -+ yan) = | p7 | p7 — bijos | = | 855 — pijeus |7,

provided that || p* — 8;;a; || is positive definite. It follows that the mgf for the
distribution of the sums of squares in a sample of m from a normal correlated
n-variate distribution is obtained by raising the expression in (2.2) to the mth
power, and furthermore, that the replacement of m/2 by p leads to a possible
mgf for an n-variate distribution in which each variate z; has the frequency func-
tion (1.1). Therefore a possible mgf for an n-variate Gamma-type distribution
defined as above 1s obtained from (2.2) when —% in the power on the right side of
(2.2) 7s changed to —p. The expression for the mgf is
Gplon, 0a, -+ 5 an) = | 8i5 — pijas |~
l—a —puas -+ —pan [ 7

—prz 0 l_az sos = Pon Oy

(2'3) —PI1n ] T P2n 02 cee 1 — O
1 —pifz ccr —pBal”
‘ _Pmﬁl 1 e _mnﬁn
- {(l—oq)(l—a,)...(l_an)}—p . . ’
—pinPr —pmBs e 1

where 8; = a;/(1 — a3), %2 = 1,2, -+, n. It is convenient to write (2.3) in the
form

G(al)a27 T 1“")
={l—-a)l —a)- 1 —a)}"{gB,B, B8}
where g(81, 82, *** , Bx) is the determinant of 8’s in (2.3).

(2.4)

3. A series for an n-variate Gamma-type distribution. Expanding the g in
(2.4) by Maclaurin’s theorem for a function of »n variables, we get
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g(ﬁl, 62, cee ,ﬂn) = go+ (;ﬂt‘ %'>go

@3.1) .

1 o\ 1 )
+§<Zz:ﬁ'ﬁ> go+"‘+;£-!(’_213€5/—3-;> go,

where go = ¢(0, 0, - -+, 0) and (Z; 8:(3/8:)) g is the result of first expanding
(Z B8:(3/0B.))" regarding the operators 3/48; as algebraical numbers, then giving the
operators their proper roles in the expanded form of (T 8;(9/98;))", and finally
putting 81 = B, = .-+ = B, = 0 in the partial derivatives of ¢ which we get
when the expanded form is applied to g.

Clearly the expansion of g(8:, 82, **+ , 8s) in (3.1) does not contain terms

linear in the @’s or terms such as f* --- B¥* -+ - with any p; > 1. In fact
0 0 :-- 0
9 —p21 - 0
Jo = 17 5%‘(: = : : = O’
— Pin 0 .- 1
where, of course, the partial derivation is performed before we put g, = 8, =
v+ = B, = 0; and similarly dgo/38: , 8¢o/3Bs, * - , 3go/3Bn are all zero, so that
(231 0/0B:)g0 = 0.
Further
0 — P12 0--- 0
—pz 0 0--- 0
62 go f)n . 0 P12
—— = = . —01,2 Say,
91 9Fs pz2 O
—P1n  —P2n 1
3 0 p2 pus
a go = - = —
96:08,98;  |°* 0 pu Cus say,
pis ps O
0 p2 *** pPin
an P12 0 P2n
go = (—1)" . . _
0B10Bs - -+ 9Bn (=1 L Crs...n say.
Pin Paon oo O
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Hence (3.1) can be written
gBr, Bey -5 Ba) =1 — (2 Cy BB+ 2. Cin Bi Bi Bu
1<J i<i<k

+ + -+ CignB1B2-- Ba=1— Bray.

Using (3.2) in (2.4) and expanding (1 — B)~” formally by the binomial theorem,

we get
Golan, @z, ++yan) = {1 —a)(l — @) -+ (1 — @)}

33) .{ip(p+ 1) - -(p+r—1)Br}= septD - (p+r—1) p+
0 0

r! r!

(3.2)

where
={(1 —a)(l — o) -+ (1 — a)} "B

Expanding B" by the multinomial theorém, we can express By as a finite sum
of the form

=110 - a0 (SEg gz - )
- 2K {H a0 (25)7)

where K is a polynomial in Cij, -+, Ciz...n , and a1, -+ - , a, are nonnegative
mtegers of which not more than n — 2 are zero.
It is now plain from (3.4) and (1.3) that B} can be expressed as a Laplace

transform:

(34)

Br = / eEa.‘x.' ZK Hfa; (x"y p) dj’
05z S® =1

of which the determining function is

(35) 2K gfa.- (@i, p) = d(x)d(s) -+ $lwn) 2K H1 La';ﬁ:f )

(3.6) = ¢(x.)¢($2) e ¢(x”) {12<J Czj L(xn p) L(x;; p)

L(xlyp) . L(xnyp)}'
p ?

+ o+ Crn

where {- - -} is a symbol for the rth power of a multinomial, in expanding which
we suppose that

. {L(x, p)}"‘ {L(x, p)}" _ {L(x, p)}"'+”
p P p
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for all positive integers m, n, and after expanding which we set

fits )" Lata
P - p(m) *

Finally we can replace B} in the series of (3.3) by its determining function in
(3.6) and obtain the form

o () .
$a)o@) -+ ¢lz) DL {52; ¢, Lanp) Ls.)

P
L(zi,p)  L(za, p)}'
p ’

where ¢(x;) is defined by (1.1), for a distribution function having Gy(ey , o2,
-+, ay) defined as in (2.3) for its mgf. The convergence of series (3.7) is proved,
with a certain restriction on the p’s, in Section 5. Consequently, with this restric-
tion as regards convergence, we can take (3.7) to be an n-variate distribution func-
tion tn which each variate x; , v = 1, 2, --- , n has the distribution function ¢(z.)
i (1.1).

Remark on the series (3.7). If there are only two (’s present in any term of
(3.4), this being their least number possible, they will be raised to the same
degree r, and therefore the corresponding term of (3.5) will have Laguerre
polynomials of the same degree r. If, however, more than two §’s are present
in a term of (3.4), their degrees may be different and consequently also the de-
grees of the Laguerre polynomials in the corresponding term of (3.5). Hence
the n-variate Gamma-type distribution symbolically denoted by (3.7) has the
property that (i) any term in its expansion involving two variables contains
Laguerre polynomials of the same degree in those variables, while (ii) a term
involving more than two variables may contain Laguerre polynomials of dif-
ferent degrees in the variables. It is known [5] that an analogous property is
possessed by the extension to n variates of Mehler’s series in Hermite poly-
nomials.

3.7)
+ b + Cl!&--n

4. A generalization of Section 3. If we take instead of the mgf in (2.4) the
more general mgf

Q=)™ (1 =)™ s (1= an)™{g(Br, B, -+, B}

and repeat the reasoning of Section 3, we shall obtain, in the symbolic notation
of (3.7), the following series (whose convergence is established in Section 5 under
the condition on the p’s already referred to):

& ) s . N .
$(@)$(x2) -+ d(za) 2o B,— {Z Cis Ll . p) Lz . m)
0o T i<J p' Dj

L(zy, p1) L L(z,, pn)}'
[ 4! Dn ’

(4.1)

+ -+ Cu.
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9 z? e

4. ) =" ;) = e .
(4.2) o(x:) o) i=12-,n
This series, under the condition which secures its convergence, may be regarded as
an n-variate distribution function tn which each variate x; , ¢ = 1, 2, --- , n has
the distribution function ¢(x;) of (4.2).

6. Addendum: the convergence of the series in (3.7) and (4.1). The object
of this addendum is to establish, under a suitable condition, the convergence
of the series in (3.7) and (4.1) The proof of the convergence depends on the fol-
lowing lemma.

LemMA. In the symbolic notation of (3.6), for r > 1

{L(x, p)}' _ | Lz, p) {K(x, prTY 0 <p <y
P o K(z, p), P23

where K(z, p) is a constant depending on x and p.
Proor. From the well known result T'(z + a)/T(z) ~ 2" as * — «, where
a is a constant, we get

p” _plp+1) - ptr—1_ Tp+n
. ] T(p)T(r+1) TI(p)
From a formula of Fejér [7], Hille [8] has deduced that

Lz, p) 1 4 0-bie-b [ (1 p— 1)]
52 ey \/;e 2 r cos .2\/7'—:1: T Z+ S

asr — o,

(5.1)

+ 0 [r*(p'-”], r— .
Combining (5.2) with (5.1), we conclude that

Lz, p) | _ | L:(z, p)/r! 41
(5.3) ‘7(—’_)—‘ = 7)/7'—! < A(x, p)?‘ ) r> To,
where A(z, p) is a constant which depends on z and p. Further, once r, is fixed,
(5.4) L';‘f") P < B(x,p), r<rm,

where B(z, p) is also a constant which depends on z and p. Equations (5.3)
and (5.4) together yield the result stated in the lemma where K = max (4, B).
TrEOREM. The series in (3.7),

(r) (r)
P, _ P _ L(z:, p) L(z;, p)
2. TTE= 2 W{ZC'J T T p

+ - 4+ Ciseen L(x"p) e L(x”’p)l

p p )

s absolutely convergent provided that

+ 2 Thanks are due to Dr. P. Kesava Menon and Prof. C. T. Rajagopal for helping to settle
certain points of detail.
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(5.5) UEZICijI+;¢'CSjkI+"'+|C],23...n|<1.
) L
Proor. We have, in symbolic notation,

AR W {Ce,- L(z:, p) L(z;, p)}m {c,., . L(=, p) L(=}, p)}"”'
P P P P

. {c Lz, p) L(x..,m}'""
* 123¢+en b p )

where one at least of the suffixes 7/, j/ is different from ¢, j (similar statements
being true of the C’s with 3, 4, - - - suffixes), and

r!
=
mae!l mg! + -+ myl’

(5.6)

Ama,m - my 4 my+ ee +oma =

First suppose that p > %. Then (5.6) gives, by virtue of the lemma,
(5.7) l tr l S E)\,,.,,,,.;,...,,,.,K(xl ) p)K(x21 p) } , )
oo K@, p) | Cop |™ | Cor |™ + ¢+ | Crapeewn [™

Therefore, writing
x = max (K21, p), K@ ,p), -+, K@n, D)}
we get from (5.7)
|t | € €"Zhmy, mpseerma | Cig |™2 | Corge |™ + o+ | Crggeeen |™
=k"Z|Ci| + 2| Cige| + +++ + | Crpeen ) =4«"0".

And so @®/r) |t | < u, = @ /r)«"s", where Zu, is known to be convergent
for ¢ < 1, and hence Zp(')t,./r! is absolutely convergent for ¢ < 1.
In the case p < %, it is obvious from the lemma that
(r)

(r)
p' l t| <o = p' K”?‘“H)"a",
r! r:

where

. p(r) 1r / " t(G—p)n
v'/'=[—r'—] x"'I:r '] c—casr— o,

Consequently, by Cauchy’s root-test, Zv, is convergent for ¢ < 1, and so again
Zp®t,/r! is absolutely convergent for ¢ < 1.

A sufficient condition for the convergence of the series in the theorem, stmpler in
form than (5.5), is

(5.8) Np* < 1,

where N is the result of replacing every one of the p’s in the C’s by unity and p* i3
the maximum of the terms in the p’s when we omit the numerical coefficients of the
terms.
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A sufficient condition for the convergence of the series (4.1) is again either (5.5)
or (5.8) since, arguing exactly as above, we find that

n r)
| the (r + 1)™ term of the series (4.1) | < IT ¢(xy). _p;_'_ R
“ fm=] .

where the summation in the power of r is for all p; which are less than 3.

Note. The case n = 2 makes the series in the theorem identical with a series
obtained by W. F. Kibble [4] for a two-variate Gamma-type distribution.
Kibble’s proof of the convergence is, however defective® since he assumes that

Lr(xy P) ~ Lr—l (xy P)
p(r) p(r-l)

’ r— x,

is a consequence of (5.2). .
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