SOME RANK ORDER TESTS WHICH ARE MOST POWERFUL
AGAINST SPECIFIC PARAMETRIC ALTERNATIVES!

By Mivron E. TErrY
University of North Carolina and Virginia Polytechnic Institute

Summary. The most powerful rank order tests against specific parametric
alternatives are derived.

Following the methods of Hoeffding [4], we derive the most powerful rank
order test of whether N observations come from the same but unknown popula-
tion against the alternative that the observations Z,, - -+, Zx come from popu-
lations which have the joint density

N

1 1 T
HU\/z—ﬂ_eXP[— 2—02(25 — dit —ﬂ):l,

Tl

where d; , - -+ , dy are given constants, not all equal, and #/¢ is sufficiently small.
The test criterion was found to be ¢y(R) = > d:EZy,,, , where EZy; is the ex-
pected value of the ith standard normal order statistic and B = (ry, - - -, ry)
is the permutation of the ranks. The distribution of this statistic was shown to
be asymptotically normal providing the known constants d; , - -+ , dy satisfied
Noether’s condition [9].

The two-sample distribution is a special case, and the resultant statistic
¢i(R) is shown to be asymptotically normal. The approximation of the dis-
tribution of the ¢,(R) statistic to the distribution C(1 — ¥, —1 <z < 1,
is investigated. This statistic is then compared to the existing Mann and Whit-
ney U statistic. No method having been found for analytical evaluation of the
power of this test, the power was examined experimentally.

Tables are appended giving the exact distribution of the c;(R) statistic for all
possible subsample sizes whose total size is less than or equal to 10 together
with the corresponding Mann and Whitney U value. Table 2 gives critical values
of ¢;(R) for N < 10, p =< .10.

1. Introduction. The problem of testing whether two samples come from the
same population when either there are observed measurements and no assump-
tion about the functional form of the underlying distributions or there are only
ranks of the observations available has been treated by many statisticians.

H. Scheffé [12] gives an exhaustive and succinct review. of this problem to-
gether with brief descriptions of proposed solutions offered previous to 1943.
Included in Scheffé’s references are the well known “runs” test and the modified
likelihood ratio test of Wald and Wolfowitz [14], [17].

. 1This paper was presented at the Boston meeting of the Institute on December 26, 1951.
These results were included in the thesis submitted to the Dept. of Mathematical Statis-
tics of the University of North Carolina in partial fulfillment of the requirements for the
degree of Doctor of Philosophy, June 1951.
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A rank analogue to the standard parametric test was introduced in 1945 by
Wilcoxon [16], and a linear function of Wilcoxon’s T was proposed by K. K.
Matthen [7] in 1946 and its distribution and property of consistency shown by
Mann and Whitney [6] in 1947. Tables are given by Mann and Whitney [6] for
values of m, n =< 8. )

Implicit in the introduction to Tables XX and XXI of Fisher and Yates [3]
is a consideration by Fisher and Yates of rank order tests of the type discussed
and developed in this dissertation. W. Hoeffding [4] develops a general most
powerful rank order test, and this paper is an application of his results to spe-
cific problems, with various extensions.

2. Derivation of the statistic ¢,(R). Let Z = (Z,, - -+ , Zx) be a random vector
of N components with probability function P(S) = P{Z ¢ S}, and W be the set
of points (21, - -+ , zy) in N-dimensional Euclidean space where z; 5 z;, ¢ # j.
We shall consider only probability functions such that

2.1) P(W) = 1.

Define D, to be a class of probability functions P(S) which are invariant under
all the N! permutations of the Z; and H, to be the hypothesis that P(S) is in
D, . In particular Hy, may be the hypothesis that Z,, Z,, ---, Zy are inde-
pendent with a common continuous distribution.

Let R = (r, + -+, ry) be a permutation of the integers (1, -+, N). Let S(R)
be the subset of W where z; has rank r;, (z = 1, - -+, N). Let the integer ¢; be
defined by r;;, = 7, (¢ = 1, -+ , N). Then S(R) is the set where z;, < 2¢,, < -+
< 2y . The set W consists of the M = N! subsets S(R). For the probability
P(S(R)) of the set S(R) we shall use the short notation P(R). A probability
function P(8) which is in Dy will be denoted by P(S| Ho). Let H; be the hy-
pothesis that P(A) = Py(A4), a probability function of Z not in D, . Denote the

M permutations R by Ry, -+, Ry in such a way that
Pl(R,)gPl(RJ) ifi=1,~-,m;j=m+1,---,M.
Clearly, (R;, -+, Rn) determines a rank order test which is most powerful for

testing H, against Hy [4].

If the condition (2.1) is not satisfied, we may apply either of the following two
rules.

Rule 1. If n of the values Z , - - - , Zy are less than Z; , and m values are equal
to Z;, the latter values are assigned at random the ranksn + 1, --+ , n + m.
This is carried out for all Z; , and Z is treated as belonging to the corresponding
set S(R).

Rule 2. Let k be the number of sets S(R) which can be obtained by applying
1 to a given Z. If exactly &’ of these belong to the critical region, H, is rejected
with probability ’/k.

It follows from the definition of D, that

. 1
(22) P(R l Ho) = 7\71
for all R.
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Consider the alternative where Z;, «++, Zy have the joint density

N 1 1 .
(2.3) ,131 o/2n &P [— 35 (2 — dit — ) :I,
where dy, - - -, dy are given constants, not all equal, and £, n are parameters.
Then
@4 P® = [ fﬂ L ex [—_1_ (G — dit —n)? | dey- - d
) =l 0\/21r p 2g2 " ¢ n 4 A
21, <o <zey

The probability P(R) is independent of 7 and depends on 8 = £/¢ only. For if
we make the transformation

1 ‘ .
z’i=;(21'—77), ) (1’=1)"';N)’

the inequalities z;, < 2y, < * -+ < 2y are transformed into 2y< 2y < oo < 2hy.
Denoting P(R) by P(R, 5), and replacing z; by 2z; , we have

N
25) PR, = [ [T] s~ dio) de - dew,

i=1

2g, < e <ziy '
where
(26) 0 = sew (- %)
. z2) = ‘\/Zr exp é‘ .

It is easily seen that P(R, &) has continuous derivatives of any order with re-
spect to 8. Hence we can write, for any positive integer k,

27 PR, = Nl—! [Co (R) + a1(R) % 4+ o +c(R) %l + 0(5k+1)]’

where

1o
N1

and 0(5"*") denotes a term of order 5**' as § — 0. We shall also write formally

_d'(P®,3)

dsn =0’

(R)

CONE PE,D) = 3 S a®

without considering the convergence of the series.
To obtain the coefficients c,(R) we shall expand the integrand in (2.5) in
powers of & and integrate term by term.
[ (n¢) )(—d;s g
(2.9) fle: — did) = 22 f—‘ﬁ)—(‘,—‘i:

7s=0 ni
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where f™(z;) is the n.th derivative of f(z;). Then

ﬁ,f(zi — o) = ﬂiofi‘_)_@ni'ia_L
© © (Lé) exp [Z m] .
(2.10) = Z coe Z =1 Hf(m') (Zi) d’.l"

710 av=0  mlmel e gyl il

— z.o: Z(n) T’ﬂ_’_ INI d:!cf(ns) (2) (:’;3)"’

7=0 H ‘m! i=1

where > represents the summation over all y, - -+ , gy such that n; = 0,
i=1,+--,N,and > 1% = n. Integrating the final form of (2.10) term by
term and comparing the resultant expansion with (2.8) we obtain

n!

eI @ =N [ [ Z0 - T -0" 5 doy - .

t=1
;!

2, <0<zt e
Consider the following transformation. Let z;, = Zi,i=1, -+, N, and now the
domain of integration will be (21 < -+ < zy). Since by definition ¢,, = 7, ¢ =
1, .-+, N, where r; is the rank of z; in S(R), wehavez; = 2, = 2,. Applying
this transformation to ¢,(R) in (2.11) and replacing 23 by 2;, we have

N

(2.12) ¢,(R) = N!f fz(") Nn! II (—d)™f"9C:,) doy « + - dew.
<oy g ;=

But

(2.13) 2@ = (—1)'Hy(2)f(),

where H,(z) is the nth order Hermite polynomial [1]. In particular, Hy(z) = 1,
Hi(2) = 2, Hy(z) = 2* — 1. Substituting the appropriate forms of (2.13) in (2.12)
we have

N

(2.14) ¢,(R) = N! f f > N”! 11 @ H,,G )i (2.) des - -+ dzw.

21<<2N A 7! =
=1

Let Zmi = Zyz < -+ = Zyy be the order statistics in a random sample
of N from a standard normal population. The joint frequency function of

Zyiy o, Zyy is NLYif(2), 2 < -+ < zy. Hence

(2.15) ¢(R) = E| 3™ N"! fId"fH,,,.(zm,.) .
, g "71! =
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In particular,
(2.16) c(R) = 1,

(2.17) a(R) = Ele d, E(Zx,,),

N 2 N
Cz(R) =K [Z d,' ZNT'-] — Z dﬁ ,
2 =1

(2.18)
- > X dd, E(Zwri Znry) — > d.

=1 j=1 =1

To the order of &°, P(R, 6) may be written as followsr
@19) PR, ) = [1 + ol +a® 5o+ 06) |

If 5 is positive and sufficiently small, the rank order test of size K/N'! which is
most powerful against P(S, 8) is determined by the K permutations R, 1 =
, K, for which ¢,(R) takes its largest values. Hence c¢i(R) is the desired sta-

tistic for the stated alternative with & positive and small.

3. Asymptotic distribution. It will be proved that under H, the statistic ¢i(R)
is asymptotically normally distributed as N — oo if the d; satisfy a certain con-
dition. The proof is based on a theorem of Noether [9] and an unpublished theo-
rem of Hoeffding which, together with its proof, is reproduced here by per-
mission.

A sequence of sequences Ay = (ay1, -+, axn), N = 1,2 - - is said to satisfy
Condition W if as N — o,

% 12: (ani — an)"
6. A s
[N Z (awi — aw) ]

i=1

= 0(1), r=34,---,

where @y = 1/N D_ii aw; [15]. Similarly a sequence of sequences satisfies
Noether’s condition [9] if

Slavi — ax) a4
(3.2) S lan — 2T o(1), r = 3,4,

Let Dy = (d)vl, e, dmv) and Hy = (th, SN hNN), N=12:-, be
two sequences of sequences of real numbers. Let (21, -+, zy) be the random
vector whose domain consists of the N! equally probable permutations of

(hbh y *t hmv), and let
Ly = dwixy + -+ + dyvaw,
I/N '_“ EO(LN)
VVo(Ly) ’

where Ey(Ly) and Vo(Ly) denote the mean and the variance of Ly .

Ly =
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Noether [9] shows that

HMZ

N
(3.3) Ey(Ly) = iz_:l hyi = Ndyhy,

k)
NE

(34) Vo(Ly) =

- ;_; (s — 3" 33 s = T’

and that if the sequence H y satisfies Condition W, and the Dy satisfies Noether’s
condition, Ly has a normal limiting distribution with mean 0 and variance 1.
The statistic ¢;(R) (2.17) can be written

N
1 (R) = Z; dzhr;,

where
(3-5) hi = hy; = E’(Zm).
(The d; = dy; may also depend on N; to simplify the notation we write d;, h;
for dw:, hyi). Under Hy the N! permutation of (hy, ---, hy) are equally prob-
able, so that ¢i(R) = Ly, with hx; defined by (3.5).

Hoeffding shows that the sequences Hy = (b, -+, hy) = (BZw, - -,

EZyy) satisfy Condition W as follows.
It is easily seen from the symmetry of the normal distribution that h; =

EZNi = _EZN.N+1—1' = - hn+1_,'. Hence
N

(3.6) > RE = 0if ris odd.
f=1

In particular Ay = 0. Hence it suffices to show that

1 N
N Z h2k
% ‘;l = 0(1) fork = 2,3, -
2
2]
If r = 2k is even, we have
. N N N
3.7) TR = 3 (B 5 3 B = B3 25,
t=1 =1 =1 1=1
and
(3.8) E> 7% = NEX®,

where X is standard normal. Equation (3.8) holds since a symmetrical function
of the order statistics is distributed as the same function of the unordered in-
dependent variables.
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If m = [N/2] is the largest integer < N/2, we have by Cauchy’s inequality

(3.9) ZN:h3-=2 XN) h2>——< Z h>——2-< ﬁ E'ZN.~>2.

=1 i=N—m+1 i=N—m+1 m \ t=N—m+1

Let F@o) = [ f() dy. Then forl<k<N—1,

> wzw= 3 N(Y 21) [a@r@ia - ron- e

ik 1 fmkt1 1 — 1

(3.10) -

=¥ [ o z

Since D I ("7HIF() 1 — F@)]" "7 is the remainder after % terms of

the binomial (F(z) 4+ 1 — F(z))"™, we may express [5] this remainder as the in-
complete Beta function

N — D! r@ L
k—DIN -1~ k)zfo T = ) .

(V7 @ - P,

Hence
N N ” (N — 1! F(z)
N[ A0 ==, e
Integrating by parts we obtain
ﬁ: EZy;
G12) |
&= 1)!(11\\77 ' 1)vf @V (F)* 1 — F)]" " da.

Since F(—2z) = 1—F(z) < 2" f(z) for # > 0, there exists a constant K > 0
such that

(38.13) flx) = KF(z)[1—F(x)] for all .
For let ¢ > 0; then

- AC))
=2 oy o) e

For z > ¢, f(z) > z[1—F(z)] = z[1—-F@)|[F(x)] = cF(z)[1—F(z)]; and by
symmetry the same inequality holds for z < ¢. Hence we can take K = min (¢, d).

3 N .
2, 0 2 K5y = k)’f f@F@IT - F@I"™ de

=KNi1-
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Whence from (3.9)

N 2
2o 2( (N = m)m> )
(3.15) ;hi=m(K————N+l z K'N,
where k' is a positive constant. Then by (3.7), (3.8) and (3.15),
(3.16) w2 (R TR S B = o),
1—1 =1

whence it follows that EZy, , « -+ , EZyy satisfies Condition W. By (3.3), (3.4),
and (3.5) we have

Eo(a(R)) = 0,

N N N
GID  Volel®) = B@®) = g 2 @m O LM
We now ebtain from the theorem of Noether:

TraEOREM. If the sequences (dy, -+, dw), N = 1,2, -+ satisfy Neother’s con-
dition, then under H,

a®) LB
V' Ey(ci(R))? /‘/""—__—“1 ; ( — d)? Z (EZwo)?

has a limiting normal distribution with mean 0 and variance 1.

4. Approximate distribution. Pitman [10], [11] has proposed the following
approximation of the distribution of a statistic of the type of ¢;(R) when the per-
mutations are equally probable. We now assume without loss of generality that
X i =4di = 0. Let

S ~ L ()

i N -
1/2&21& Z«fz (BZ,)*
=1 i=1 i=1 Te=l

We shall first show that the odd moments of ¢;(R), and hence those of r, are

zero. If R = (r1, - ,ry),let R =WN+1—=mr, -+, N+ 1—ry).Let hy =
EZy;, then —h; = hyy—:; and we have
N N
a(R) = X diby; = — O dihyssr; = —Ci(R’) for all R.
2=1 i=1
From the above it follows that
(4.1) a(R)* = — ¢ (R)*H.
. Hence

@) Bl@® = T a®™ = - g T @)
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Since summation over all R is equivalent to summation over all R’, we obtain

(4.3) Eo[a(R)* = — K?, a®)™ = —Eo[a(R)™,
« R’
and thus
(4.4) Efc(R)*™ =0,  E,(**™ =o.
It follows from (3.16) and from Pitman’s results that
1
2 —
45  E0) = o,
3 (N —2)(N —3) ks ki
49 B0 = o L e i )
where
1 o~ 2
b= g 4 4

ke = al [+ Zar-sV ! ()]

(N = DN — 2)(N — 3) o N \&@ZY )
and ks, k; are the corresponding functions of the h; (k; and k; are Fisher’s
k-statistics).

Since r has the form of a correlation coefficient, we have —1 < r < 1, and
E(*™**™) = 0, Ey(r") = 1/(N — 1). If thelast term in the square brackets of (4.6)
is small compared with 1, we also have Eo(r*) = 3/[(N — 1)(N + 1)] approxi-
mately.

The distribution with the frequency function

1
B(3, 3N — 1)

0, elsewhere

(1 — )" —1=z=1
4.7) g(x) =

has its odd moments equal to zero, and its second and fourth moments, respec-
tively 1/(N — 1) and 3/[(N — 1) (N + 1)].

For this reason the distribution g(z) may be a suitable approximation of the
distribution of r under H, . In Section 7 it is shown that, in the case where the
d; take on two values only (two-sample test), the approximation is satisfactory
even for small values of N. Since the distribution ¢g(z) may be a suitable approxi-
mation to the distribution of r, we can expect the Student’s distribution with
N — 2 degrees of freedom also to approximate the distribution of (r/4/1 — 72)
A/N — 2. Thus we can obtain the approximate critical values of ¢;(R) from the
t tables.

5. Two-sample statistic ¢,(R). Let Hy, be the hypothesis that two samples of
m and n observations come from the same continuous population. In this sec-
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tion the rank order test of H, will be considered which is most powerful against
the alternative that the two samples come from two normal populations with
common variance o and different means u;; and u1p with § = (u12 — w11)/o
sufficiently small.

The hypothesis H, implies that the joint distribution of the N = m + n vari-
ables is invariant under all permutations, and that P(W), the probability that
all N values are different, is one. Hence the assumptions about H, in Section 2
are satisfied. The alternative is a special case of the distribution (2.3) with

d‘i£+n="l.ly i:l’coo’m’
AnyiE + 1= me, J=1 - ,n.

Ifd = _n/(n+m):7’= 1)”"m;dm+i=m/(n+m))j = 1:"':”} then
=2 1id/N =0, )

£ = pe — ma,

muLy + Npre
5.1 = e T TP
( ) n m+n )
= _3;' — M2 — M1
o o :

Then, from (2.17),

a(B) = — 5 2 EZn) + 5 2 B @)

2
N7
-
N =

iM= i

EZx) + Z E(Zx.,)

t=m4-1

(5.3) =

= Z]. E(ZNrm+j)¢
j=

6. Asymptotic distribution of two-sample c¢,(R).
TureorEM. If H, s true, the variance of ¢i(R) s

(6.1) Voleu(R)) = N(N Z (EZx)

i=1

If there exist two constants k, k', 0 < k < k' < 1, such that k < n/N < kK
as N — o, then

a(R)
1/N(N -1 ; (BZw)"

has a normal limiting distribution with mean 0 and variance 1.
Proor. Relation (6.1) follows from (8.16) since

N 2 2
2 mn nm mn mn
Z dyi =

N
. _ _ mn
;dw_d")—m —(m+n)2+(m+n)2'—m+n N~
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By the theorem of Section 2 it now suffices to show that
Z dis
EaT
This follows from the relations

6.2) Z dvi = A

s = o(1), r=3,4,---

and
(6.3) Z dyi = m (——) + n< ) = N 'lnm" + (= 1)"mn'].
Hence:

N
2 dwi
= _
T2 = ”'(

AT
[Z d?v.-]
i=1
since the inequality 0 < k¥ < n/N < ¥’ < 1implies0 < 1 — ¥’ < m/N <
1-k<1.

7. Approximate distribution of two-sample c¢;(R). In Section 4 we have con-
sidered the approximation of the distribution under H, of

r/2 r/2
n%) + (=)'m (ﬂ%) = o(1), r=34, -,

CI(R)
r= N ¥
Zl di Zl (EZx)’
by the distribution (4.7). In the two-sample case
Cl(R)
r= mn <= i
1/ v 2 EZw)’
(7.1) =
1
Eo(rz) = N =1’
and
Eo("‘)

_ 3 I:l " (N 4 1) ((m -n', 6 ><'if _3W - 1))}
TN -1 3NN — 2)(N —3)\ mn N+1)\ui2 N+1/)
Thus when the second term within the square brackets is small compared with 1,
the distribution (4.7) can be expected to approximate the distribution of r.
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If X has the distribution g(z), (4.7), then X4/N — 2/4/1 — X2 has Student’s
t-distribution with N-2 degrees of freedom. Hence the latter distribution will
approximate the distribution of 74/N — 2/4/1 — r2. The ¢ approximation to the
critical values of ¢;(R) at the levelqa of the ¢i(R) test for given N, n, m, us is

(7.2) CLa = /‘/ ty—2.90 MNya
ty22e +m +n —2

where ty_s,2, is the tabular value of ¢ with N — 2 degrees of freedom at the level
2 in the Fisher and Yates Table III [3].

The ¢ approximation is very good for N as small as 6 insofar as comparisons
of fourth moments and critical values are concerned. Shown below are the
critical values, €1,., as obtained from the exact distributions for the level of
significance a =< .05 and from the ¢ approximation for the level @ = .05, together
with P{c (R) = cia}.

A comparison of critical values

Cl,a P{ei(R) Z c1,4}
N m n
Exact t Exact t
6 3 3 1.81 2.11 .05 .05
72 5 1.80 2.11 .05 .05
7 3 4 1.97 2.11 .057 057
8 3 5 2.12 2.08 .053 .053
8 4 4 2.27 2.15 .057 .057
9 3 6 2.33 2.17 .047 .047
9 4 5 2.42 2.29 .048 .056
10 4 6 2.54 2.40 - .048 .052
10 5 5 2.58 2.45 .048 .048

8. Exact distribution of two-sample c,(R) for small N. The exact distribution
of ¢1(R) has been computed for small values of N, n, m; N < 10 using the Fisher
and Yates tables [3]. These distributions are displayed in Table 1, and the
values of ¢;(R) and U (cf. Sec. 9) are shown for the xC, distinct permutations
of (T1, "y Tm, Y1, **,Yn), m + n = N. Since the probability of each such
permutation is 1/5C. , these probabilities are not explicitly stated in the table.
Since only the relation between z and y matters, we will replace each z; by a 0
and each y; by a 1, following the simplifying notation of Wolfowitz [14]. Each B
will thus be represented by a sequence of m 0’s and n 1’s. As the values of ¢;(R)
for N, m, n and N, n, m are symmetric, the table will show the distribution
for subsample sizes m, n; m = n. The probability under the null hypothesis
that a sample of m 0’s and n 1’s will give rise to a value of ¢;(R) exceeding or
equaling the tabulated value of ¢i(R) is given in Table 2 for values of p < 0.10,
and is available for tests of significance when 6 < N =< 10.
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TABLE 1
Ezact distribution of C1(R)

Exact distribution of ¢,(R) for distinet permutations of R, for given N, m, n; m < n,
together with corresponding values of Mann-Whitney U test [6]. The value of ¢;(R) is tab-
ulated under the column heading ¢, .

R C1 U R C1 U R C1 U R C1 U
N=2 m=1 001110 .64 3 0110110 .00 6 | 11000111 .47 6
01 .56 0 011001 .43 4| N=8 m=2 }0011101 .47 6
N=3 m=1 010110 .20 4 | 00111111 2.27 0 | 01110101 .42 7
011 .85 0 100101 .20 4 | 01011111 1.89 1 | 10110011 .23 7
101 .00 1| N=7 m=1 01101111 1.57 2| 01101110 .15 7

N=4 m=1 0111111 1.35 O | 10011111 1.32 2
0111 1.03 0 1011111 .76 1| o1110111 1.27 3 | 11001011 .15 7
1011 .30 1 1101111 .35 2 . 10101101 .15 7
N=4 m=2 1110111 .00 3 | 710101111 1.00 3 | 01111001 .10 8
0011 133 0| N=7 m=2 01111011 .95 4| N=8 m=4
0101 .73 1 0011111 2.11 0 | 310110111 .70 4 | 00001111 2.89 0
0110 .00 2 0101111 1.70 1 | 11001111 .62 4 | 00010111 2.59 1
N=5 m=1 0110111 1.35 2 | 01111101 .57 5 | 00100111 2.27 2
01111 1.66 O 1001111 1.11 2 00011011 2.27 2
i%ﬁ 053 ; 0111011 1.00 3 10111011 .38 5 00101011 1.95 3

‘ 11010111 .32 5
N=5 m=2 1010111 .76 3 | 11100111 .00 6 | 01000111 1.89 3
00111 1.66 O | 0111101 .59 4 | 11011011 .00 6 | 00011101 1.89 3
01011 1.16 1 1011011 .41 4 | 10111101 .00 6 | 00110011 1.65 4
01101 .66 2 1100111 .35 4 | 01111110 .00 6 | 01001011 1.57 4
10011 .50 2| 1101011 .00 5| N =8 m =3 | 00101101 1.57 4

01110 .00 3 | 1011101 .00 5 | 00011111 2.74 O
10101 .00 3 N=7 m=3 00101111 2.42 1 10000111 1.32 4
N=6 =1 0001111 2.46 0 | 00110111 2.12 2 | 00011110 1.32 4
%ﬁﬁ l-zz ‘1) 0010111 2.11 1 | 01001111 2.04 2 | 01010011 1.27 5
110111 '20 2 0011011 1.76 2 00111011 1.80 3 00110101 1.27 5
N6 m=2 0100111 1.70 2 01001101 1.19 5

001111 1.91 o | 0011101 1.85 3\ o1010111 1.74 3
010111 1.47 1 10001111 1.47 3 | 10001011 1.00 5
011011 1.07 2 0101011 1.35 3 | 00111101 1.42 4 | 00101110 1.00 5
100111 .84 2 1000111 1.11 3 | 01100111 1.42 4 | 01100011 .95 6
011101 63 3 0110011 1.00 4 | 01011011 1.42 4 | 00111001 .95 6
0101101 .94 4 01010101 .89 6

101011 .44 3 1001011 .76 4 10010111 1.17 4
011110 .00 4 01101011 1.10 5 | 10010011 .70 6
101101 00 4 0011110 .76 4 01011101 1.04 5 00110110 .70 6
N =6 m =3 0110101 .59 5 00111110 .85 5 10001101 .62 6
000111 2.11 O 1010011 .41 5 10011011 .85 5 01001110 .62 6
oo1011 1.71 1 1001101 .35 5 01100101 .57 7

010011 1.27 2 0101110 .35 5 | 10100111 .85 5
001101 1.27 2 01110011 .80 6 | 01011001 .57 7
010101 .83 3 0111001 .24 6 | 01101101 .72 6 | 10100011 .38 7
i 1100011 .00 6 | 10101011 .53 6 | 00111010 .38 7
100011 .64 3 1010101 .00 6 | 01011110 .47 6 | 10010101 .32 7
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R C1 U R C1 U R C1 U R C1 U
01010110 .32 7 | 010000011 1.49 5 | 001011011 2.12 4 | 001111010 .36 9
001000101 1.49° 5 | 000111101 2.06 4
01101001 .25 & | 000101001 1.49 5 100110101 .30 9
10001110 .05 7 | 000100110 1.23 5 | 010010111 2.06 4 | 010110101 .30 9
11000011 .00 8 001101011 1.85 5 | 011100101 .29 10
10100101 .00 8 | 000110001 1.22 6 | 010100111 1.79 5 | 100011110 .28 8
10011001 .00 8 | 000011010 1.20 & | 100001111 1.77 4 | 110001011 .27 9
001001001 1.19 6 | 001011101 1.76 5
01100110 .00 8 | 010000101 1.13 6 101001101 .27 9
01011010 .00 8 | 100000011 .93 6 | 010011011 1.76 5 | 011001110 .27 9
00111100 .00 8 001110011 1.58 6 | 011011001 .26 10
N=9 m= 001000110 .93 6 | 000111110 1.50 5 | 101100011 .09 10
001111111 2.42 0 | 000101010 .93 6 | 100010111 1.50 5 | 100101110 .01 9

010111111 2.06 1 | 001010001 .92 7 | 011000111 1.49 6
011011111 1.76 2 | 000011100 .84 6 110010011 .00 10
100111111 1.50 2 | 010001001 .83 7 | 001101101 1.49 6 | 001111100 .00 10
011101111 1.49 3 010101011 1.49 6 | 100111001 .00 10
000110010 .66 7 | 010011101 1.40 6 | 101010101 .00 10
101011111 1.20 3 | 001100001 .65 8 | 10Q100111 1.23 6 0101110101 .00 10
101101111 .93 4 | 001001010 .63 7 | 001110101 1.22 7
011110111 .92 4 | 100000101 .57 7 10011101 .00 10
011111011 .92 5 | 000101100 .57 7 | oto1ioo11 1.22 7 | &V =10 =2
110011111 .84 4 001011110 1.20 ¢ |0011111111 2.54 0
010000110 .57 7 | 100011011 1.20 ¢ |0L01111111 2.20 1
101110111 .66 5 | 010010001 .56 8 | 011001011 1.19 7 |0110111lll 2.20 2
110101111 .57 5 | 001010010 .36 8 | 010101101 1.13 7 |l00111111l 1.66 2
011111101 .56 6 | 000110100 .30 8 0111011111 1.66 3
101111011 .36 6 | 010100001 .29 9 | 101000111 .93 7
110110111 .30 6 001101110 .93 7 ?éié}?}}i} }:gg g
100001001 .27 8 | 100101011 .93 7 |y iiott 16 s
111001111 .27 6 | 010001010 .27 = 8 | 001111001 .92 8 |;oinnt 119 4
111010111 .00 7 | 001001100 .27 8 | 011010011 .92 8 |; 001001 104 4
110111011 .00 7 | 001100010 .09 9
101111101 .00 7 | 100000110 .01 8 | 010110101 .86 8 (1011101111 .88 &
011111110 .00 7 010011110 .84 7 |p111111011 .88 6
N=9 ms= 100010001 .00 9 | 100011101 .84 7 |1101011111 .78 5
000000111 2.99 O | 010010010 .00 9 | 011001101 .83 8 |1011110111 .62 6
000001011 2.69 1 | 001010100 .00 9 | 001110110 .66 8 |{101101111 .54 6
000010011 2.42 2 | 000111000 .00 9
000001101 2.33 2| N =9 m=4 | 100110011 .66 8 |0111111101 .54 7
000100011 2.15 3 | 000011111 3.26 O | 011100011 .65 9 |1110011111 .50 6
000101111 2.99 1 | 101001011 .63 8 |1011111011 .34 7
000010101 2.06 3 | 000110111 2.72 2 | 110000111 .57 & |1101110111 .28 7
001000011 1.85 4 | 001001111 2.69 2 | 100101101 .57 8 |1110101111 .26 7
000100101 1.79 4 | 000111011 2.42 3
000001110 1.77 3 010101110 .57 8 |1111001111 .00 8
000011001 1.76 4 | 001010111 2.42 3 | 011010101 .56 9 |1110110111 .00 8
010001111 2.33 38 | 010111001 .56 9 (1101111011 .00 8
000010110 1.50 4 | 001100111 2.15 4 | 101010011 .36 9 |1011111101 .00 8
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TABLE 1—Continued

R C1 U R C1 U R C1 U R C1 U
0111111110 8 (0101111110 .66+ 8 (0110001111 1.92 6 |1010011011 .84 9
N =10 m =3 0111011101 .66 9 (0010111101 1.92 6 |0101110101 .82 10
0001111111 3.20 O (1011100111 .50 9 |0100111011 1.92 6 |0110101101 .80 10
0010111111 2.92 1 |0111110011 .50 10 [0011101011 1.76 7
0011011111 2.66 2 (1011011011 .46 9 1100010111 .78 9
0100111111 2.58 2 0101100111 1.70 7 1001011101 .78 9
0011101111 2.42 3 [0111101101 .42 10 |1001001111 1.66 6 (0101011110 .78 9
1101010111 .40 9 |1000110111 1.66 6 |1001011110 .78 10
0101011111 2.32 3 (1110001111 .38 9 (0001111110 1.66 6 (1011000111 .62 10
0011110111 2.16 4 |1100111011 .38 9 (0110010111 1.66 7
0101101111 2.08 4 (1010111101 .38 9 . 1001110011 .62 10
1000111111 2.04 3 0101011011 1.66 7 (0011110110 .62 10
0110011111 2.04 4 (0110111110 .38 9 |0011011101 1.66 7 |0111010011 .62 11
1011101011 .22 10 |0100111101 1.58 7 |1010101011 .60 10
0011111011 1.88 5 (1101100111 .16 10 (0011110011 1.50 8 |1100100111 .54 10
0101110111 1.82 5 (0111110101 .16 11 (0110100111 1.42 8
0110101111 1.80 5 (1001111110 .12 9 1001101101 .54 10
1001011111 1.78 4 0101101011 1.42 8 |0101101110 .54 10
1001101111 1.54 5 |1110010111 12 10 (0011101101 1.42 8 |0111001101 .54 11
1101011011 12 10 {1001010111 1.40 7 |0110110101 .54 11
0111001111 1.54 6 (1011011101 .12 10 |1010001111 1.38 7 (0101111001 .54 11
0110110111 1.54 6 [0111011110 .12 10 |1000111011 1.38 7
0101111011 1.54 6 |1100111101 .04 10 1000111110 .50 9
0011111101 1.54 6 | N=10 m =4 |0010111110 1.38 7 [1100011011 .50 10
1010011111 1.50 5 (0000111111 3.58 O (0110011011 1.38 8 1010011101 .50 10
0001011111 3.32 1 (0101011101 1.32 8 |0110011110 .50 10
1001110111 1.28 6 |0001101111 3.08 2 |1001100111 1.16 8 [0111100011 .38 12
0111010111 1.28 7 (0010011111 3.04 2 (0111000111 1.16 9
1010101111 1.26 6 (0001110111 2.82 3 1011001011 .34 11
0110111011 1.26 7 0101110011 1.16 9 |1010110011 .34 11
0101111101 1.20 7 |0010101111 2.80 3 |0011110101 1.16 9 |0011111010 .34 11
0100011111 2.70 3 [0110101011 1.14 9 (1101000111 .28 11
1100011111 1.16 6 |0011001111 2.54 4 |1010010111 1.12 8 |1001110101 .28 11
0111100111 1.04 8 |0010110111 2.54 4 |1001011011 1.12 8
1011001111 1.00 7 |0001111011 2.54 4 0101110110 .28 11
1010110111 1.00 7 0011011110 1.12 8 [0111010101 .28 12
1001111011 1.00 7 (0100101111 2.46 4 (0101101101 1.08 9 (1100101011 .26 11
0011010111 2.28 5 (1100001111 1.04 8 (1010101101 .26 11
0011111110 1.00 7 |0010111011 2.26 5 [1000111101 1.04 8 |0110101110 .26 11
0111011011 1.00 8 (0101001111 2.20 5 (0100111110 1.04 8
1100101111 .92 7 |0001111101 2.20 5 0110111001 .26 12
0110111101 .92 8 0110011101 1.04 9 |1100011101 .16 11
0111101011 .76 9 (0100110111 2.20 5 |1010100111 .88 9 |1011010011 .08 12
1000011111 2.16 4 (1001101011 .88 9 |0111100101 .04 13
1011010111 .74 8 |0011100111 2.04 6 |0011101110 .88 9 (1001101110 .00 11
1010111011 .72 8 |0011011011 2.00 6 |0111001011 .88 10
1101001111 .66 8 (0101010111 1.94 6 1110000111 .00 12
1100110111 .66 8 0110110011 .88 10 |1101001011 .00 12
1001111101 .66 8 (1000101111 1.92 5 |0011111001 .88 10 |1100110011 .00 12
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TABLE 1—Continued

R o U R ea U R ¢ U R o U
1011001101 .00 12 (0010011101 2.04 6 |0100011110 1.16 8 |0011100110 .50 11
1010110101 .00 12 [0011001011 1.88 7 0011110001 .50 12

0010110011 1.88 7 (0101100011 1.04 10 [0111000011 .50 12

1001111001 .00 12 |0101000111 1.82 7 |0011100101 1.04 10
0111001110 .00 12 |0001110101 1.82 7 |1010000111 1.00 9 (1010010011 .46 11
0110110110 .00 12 1000110011 1.00 9 [0011011010 .46 11
0101111010 .00 12 |{0100101011 1.80 7 |1001001011 1.00 9 [0110100101 .42 12
0011111100 .00 12 {0010101101 1.80 7 0101101001 42 12
1000010111 1.78 6 0011001110 1.00 9 [1001010101 .40 11

0111011001 .00 13 {0001011110 1.78 6 |0010110110 1.00 9
N =10 m =25 0100011101 1.70 7 |0001111010 1.00 9 |0101010110 .40 11
0000011111 3.70 O 0110010011 100 10 [1000101110 .38 10
0000101111 3.46 1 {0011010011 1.62 8 |0011011001 1.00 10 |1100001011 .38 11
0000110111 3.20 2 (1000100111 1.54 7 1010001101 .38 11
0001001111 3.20 2 [0001101110 1.54 7 |0101010101 .94 10 |1000111001 .38 11

0001010111 2.94 3 |0110000111 1.54 8 |0100101110 .92 9
0101001011 1.54 8 (1000101101 .92 9 |0110001110 .38 11
0010001111 2.92 3 0110001101 .92 10 |0100111010 .38 11
0000111011 2.92 3 0100110011 1.54 8 (0100111001 .92 10 [0010111100 .38 11
0001100111 2.70 4 [{0011001101 1.54 8 0110011001 .38 12
0010010111 2.66 4 (0010110101 1.54 8 0110100011 .76 11 [1010100011 .22 12

0001011011 2.66 4 |0001111001 1.54 8 |0011101001 .76 11
1000011011 1.50 7 {1001010011 .74 10 |0011101010 .22 12
0000111101 2.58 4 0011010110 .74 10 |1001100101 .16 12
0100001111 2.58 4 {0010011110 1.50 7 [1010001011 .72 10 |0101100110 .16 12
0010100111 2.42 5 |0100101101 1.46 8 0111000101 .16 13
0001101011 2.42 5 |{0011100011 1.38 9 |0010111010 .72 10 |0101110001 .16 13

0010011011 2.38 5+ |1001000111 1.28 8 (0101100101 .70 11
0061110110 1.28 8 (1001001101 .66 10 |0110101001 .14 13
0100010111 2.32 5 1000110101 .66 10 [1001001110 .12 11
0001011101 2.32 5 |0101010011 1.28 9 |1100000111 .66 10 |[1000110110 .12 11
0011000111 2.16 6 |0011010101 1.28 9 1100010011 .12 12
0001110011 2.16 6 |1000101011 1.26 8 (0101001110 .66 10 |1010010101 .12 12

0010101011 2.14 6 0010101110 1.26 8 {0100110110 .66 10
0010111001 1.26 9 {0001111100 .66 10 |0110010110 .12 12
0100100111 2.08 6 0110010101 .66 11 {0101011010 .12 12
0001101101 2.08 6 |0110001011 1.26 9 |0101011001 .66 11 (0011011100 .12 12
0000111110 2.04 5 |0101001101 1.20 9 1001011001 .12 12
1000001111 2.04 5 0100110101 1.20 9 (1000011110 .62 9 [1100001101 .04 12
0100011011 2.04 6 |1000011101 1.16 8 |1001100011 .50 11 |0100111100 .04 12

9. The ci(R) test compared with Mann and Whitney U test. The two best
known rank order tests now in current use for testing whether two samples come
from the same population are the Mann and Whitney U test [6] and the Wil-
coxon T test [16]. These two tests have been developed to test the null hypothesis

_that the sample (21, -*+ , Zm) comes from the same population as the sample
(#1, *+* , ya) with cdf F(£) against the alternative that the cdf of (y1, -, ¥a),
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TABLE 2
Critical values of ci(R)

Listed below are the critical values of ¢;(R) tabulated as ¢; for the two-
sample case for values of N, m such that 6 < N =< 10,1 < m < [N/2], together
with the probability (p) of exceeding this value on the null hypothesis, where
p < .10.

N m a P N m a P N m [ P
6 3 2.11 .050 9 2 2.42 .028 10 3 3.20 .008
1.71 .100 2.06 .056 2.92 .016
1.76 .083 2.66 .025
2.58 .033
7 2 2.11 .048 9 3 2.99 .012 . 2.42 041
1.70 .095 2.69 .023 2.32 .050
2.42 .035 2.16 .058
7 3 2.46 .029 2.33 .048 2.08 .067
2.11 .057 2.06 .071 2.04 .083
1.76 .086 1.85 .083 1.88 .091
1.79 .095 1.82 .100
8 2 2.27 .036 9 4 3.26 .008 10 4 3.32 .010
1.89 .071 2.99 .016 3.04 .019
2.69 .032 2.80 .029
8 3 2.75 .018 2.42 .048 2.70 .033
2.42 .036 2.33 .056 2.54 .048
2.12 .054 2.15 .063 2.28 .057
2.04 .071 2.12 .071 2.20 .076
1.80 .089 2.06 .087 2.04 .086
1.85 .095 1.94 .095

8 4 2.8 .014

2.59 .029 10 2 2.54 .022 10 5 3.46 .008
2.27 .057 2.20 .067 2.92 .028
1.95 .071 2.66 .040
1.89 .100 2.58 .048
2.32 .067
2.14 .079
2.08 .087

G(¢) have the relation F(¢) > G(§) for every £ The U test has been shown to be
equivalent to the Wilcoxon T test [6]. In fact Mann and Whitney show the
following linear relation between the U statistic and the T statistic:

9.1) U=mn+ in)(n+1) — T.
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The U test has been defined by Mann and Whitney as follows. In an ordered
sample of m x’s and n y’s, let U count the number of times a y precedes an z.
If P(U < U) equals o under the null hypothesis, the test will be considered
significant at the significance level « if U < U and the hypothesis of identical
distribution of z and y will be rejected. Wilcoxon’s T is the sum of the ranks in
the sample of n observations.

The ci(R) test is generally more sensitive than the U test or the equivalent T
test, for in many permutations where U(R;) = U(R;), ai(R:) # a(Rj), © #~ 7,
with the result that although

P{U = U(Ry)} = P{U = U(Ry},
P{a(R) Z a(R)} = P{a(R) 2 a(R)}, ¢ #J.

The most powerful test is not difficult to compute, as it involves at most n addi-
tions or subtractions of numbers readily accessible in the Fisher and Yates tables
[3]. Table XX tabulates for N < 50 the positive values of EZy;.

There is a very close dependence between these two statistics, as a scrutiny
of Table 1 will show. For all N < 8, m = 1, U is a nonincreasing function of c; ,
and for all N, m = 1, U is a strictly decreasing function of ¢; . In general, how-
ever, there is no such functional relationship. We shall now derive the cor-
relation under H, between the U and the ¢; statistic.

By definition [3], the correlation plc;(R), U] can be written

Ey[ci(R)U]
9.2) ola(R), Ul = VO

Since there is a linear relation [6] between the Mann and Whitney U and Wil-
coxon’s T, to wit: U = mn + im(n + 1) — T, it follows that

(9.3) Vo(U) = Vo(T),  Eo(c(R)U) = —Eo(c(R)T),

where T is the sum of the ranks of the sample of n observations. We shall use
Wilcoxon’s statistic to evaluate Ey(c;(R)U). Now

0.4) Bla(®T) = 4 3 ( b3} Ezm..) ( b3} r,-),

t=m+1 j=m+1

where D, denotes the summation over the yC, distinct combinations. Consider
an r; = k fixed. Then the coefficients, EZ y,; , of k in the summation occur y_;C,—
times if ; = k, and y_sC,_» times if 7, k. Since D iy kEZy,; = 0, the coeffi-
cient of & reduces to (y—1Cno1 — ~x—2Cn_2)EZy; . Hence it follows that

E@RT) = - (yoaCocs — woCos) > BE(Zn)
(9.5) v

N
mn
= ]—V_(m k; kEZNk.
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Now

(9.6) o
=NWN —1) [ "f (x)F(z) dx,

after interchanging the order of summation and integration and using the
well known properties of a binomial. Integrating the right-hand side by parts
we have

00 Zimm =N -1 [ yere =00
Now

©8) V) = V1) = 22D,

[6] and

(9.9) Voleu(R)) =']%2—1»

where u; = E(EZ vi)’/N. Since Eoc;(R) = 0, the covariance of ¢,(R) and T is
equal to Ey(c,(R)T). Hence

mn
2V

_ _ /3 =1
@10 o= — ya Exum i =y
2N —1*

It Has been shown in an unpublished paper of W. Hoeffding that

N
lim Z; (EZy)?/N = 1, and hence lim p = —/3/% = —0.9772050.
Thus there is not a linear functional relationship between these two statistics.
We do, however, note that, for any given N, p is independent of the subdivision
of N into groups of m and n, m + n = N.
Numerical values of p can then easily be computed using Tables XX and XXI
of Fisher and Yates [3]. From numerical calculation, | p| > .99, N < 15.

10. The power of the c;(R) test. Since no method has yet been found for
evaluating analytically the power function of the ¢,(R) test, the power of the ¢,(R)
test has been investigated by drawing two random groups of samples of size
N=8m=4n=4ford =0,.1, .2 3, 4.5 6.7 8.9 10,12 1.5, 2,
2.5, 3, 4. The samples were drawn by selecting 100 groups of eight pairs of digits
except the pair 00 from the Fisher and Yates tables of random numbers [3].
These pairs were uniformly distributed over the range 1-99. These 800 pairs of
two-digit numbers were then transformed into standard normal deviates
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using the relationship F(x) = [ f(x) dx, where F(x) = (.01) (Ny), N: =

1,--,99.

The first four pairs in each gréup became the y sample and the last four
pairs became the z sample. Then a constant, §, was added to each value of y
and the ¢;(R) test carried out. The results were plotted as number of times the
H, (Section 5) was accepted per 100 against 8, and a smooth curve fitted to the
pairs of points.

Neyman and Tokarska [8] give tables of the power function of the one-tailed
Student’s ¢ test for levels of significance « = .05 and .01. Although the sampling
procedure yields the approximate power function for & = .057, and the Neyman
and Tokarska power function is given for « = .05, geperal comparisons can be
made on the evidence of shape. No attempt is made to compare actual values.

We can place confidence limits on 8(8), the actual value of the power, and eval-
uate the reliability of the sampling estimates of 8(5). Let M be the total number
of observations and s the number of observations that lead to rejection. Then
s has a binomial distribution with parameters M and 8(8), and E(s) = MB((8);

V(S) = MB@E)(1 — B()).
——
///

o =

ot
N

0.6
\

POWER
04

Nl A
o /
o )
o 0.5 1.0 1.5 2.0 25 3.0
]
Fig. 1

For large M, (s — MB(8))//B(®)(1 — B(6))M ~ M (0, 1) and we have as con-
fidence limits on B(3) at the level « [1]

s+%ti—ta/‘/s(1—%)+%ti
M+ 8

(10:1)

s-l—%t‘il-i-zta ,‘/s (1 - -Zf-l-) + 1482

< 86) =
= B0) = T E
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Figure 1 shows the power curve of the one-tailed ¢-test and that of the ¢; test;
959, confidence bands for the true power of the ¢, test are shown.

Curve ¢ is the power curve of the one-tailed t-test with 6 d.f. such that 8(0) =
.05. Curve ¢;(R) is the power curve«of the ¢;(R) test with N = 8, m = 4, n =4
at the .057 level, together with the confidence band on the true power of the

Cl(R).

Acknowledgement. The author wishes to acknowledge the valuable help of
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