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1. Summary. This paper is concerned with sequential minimax estimation of
the parameter (0 < 6 < ) of the density function (3.1) when the observations
are independently and identically distributed with this density, each observa-
tion costs the same amount ¢ > 0, and the weight function is as given in Section
2. A procedure requiring a fixed sample size is shown to be a minimax solution
for this problem.

2. Introduction. An important problem in the theory of statistical decision
functions® is that of minimax sequential estimation of the parameter of an
(unknown) member of a given family of distribution functions when the obser-
vations are taken on chance variables which are independently and identically
distributed and when the cost of taking »n observations is ¢n (with ¢ > 0) regard-
less of the way in which they are taken. This problem was solved for the case of
point estimation of the mean of the rectangular distribution from 8 — 3 to
9+ % (—o < @ < ), for weight function W(6, d) = (6§ — d)* by Wald [1];
the minimax sequential estimation problem for the normal distribution was
solved for a variety of terminal decision spaces and weight functions by Wolfo-
witz [2] (see also [3]); certain extensions and modifications of the results of both
of these cases were given by Blyth [4].

The present paper is devoted to a problem of sequential minimax estimation
for the case where the family of possible distribution functions consists of all
distributions for which the successive observations are independently and
identically distributed with rectangular density function from 0 to 6 (equation
B.1)foroeQ = {0]|0 < 6 < »} and where the cost of taking n observations
is en(c > 0) regardless of the way in which the observations are taken. The
object is to estimate 6, the terminal decision space being D = {d |0 £ d < »}.
The weight function is W (0, d) = [(6 — d)/6]*; i.e., the loss incurred by making
decision d when 6 is the true parameter is the square of the fractional error in
estimating 6. Thus, the minimax problem considered in this paper is that of
finding a sequential estimation procedure which minimizes sups{cEs(n) =+
E[(6 — d)/6"}. A word is in order concerning our choice of weight function.
The reason we do not study the problem for such weight functions as
|6 —d], (0 — d)? or [(6 — d)°/6] is that for such weight functions the
supremum of the risk over all 6 ¢ @ is infinite for every decision function, so that
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2 See Wald [1] for an exposition of this theory and an explanation of the nomenclature
used herein.
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every decision function is minimax. In addition, weight functions which depend
only on d/8 (such as [(8 — d)/6]") have a structure which essentially simplifies
matters when estimating a scale parameter. On the other hand, it does not seem
convenient in the present case to consider simultaneously a large class of weight
functions as was possible in the cases of symmetrical densities studied in [2] and
[4]. We therefore treat only one typical weight function here, noting that the
same method should be applicable to many others.

With @, D, and W(6, d) as described above, we shall prove that there is a
minimax solution for which a fixed number of observations is taken. Specifically,
the function r(m) of (3.20) (which is the constant risk corresponding to taking
a sample of fixed sample size m and then estimating 6 by the expression of (2.1)
with m for m) has at most two minima, (if there are two, they are for successive
values of m; moreover, there is only one minimum for all but a denumerable
set of values of ¢). A minimax decision function is given by taking m, observa-
tions ¥1, Y2, *** Yme, Where 7(mp) is the minimum of r(m) (if there are two
minima, at m and me + 1, one may randomize in any way between the decisions
to take mg or me + 1 observations); and by then estimating 8 by

mo + 2
mo + 1
if my > 0 (we replace me by my + 1 throughout (2.1) if the latter number of
observations is taken when there are two minima), and by O if my; = 0. The
risk corresponding to this decision function is then r(m,) for all values of 6 ¢ Q.
It follows, incidentally, that this decision function is uniformly best among all
cogredient procedures (see [4]). It is also a minimax solution for some related
problems discussed in Section 3 of [4].

The method of proof is to calculate a lower bound on the Bayes risk when
the a priori density on Q is given by (3.4). It follows from (3.24) that as the
parameter a of (3.4) approaches zero, the corresponding Bayes risk approaches
r(mo) ; hence, by an argument like that of [1], p. 167, the procedure described in
the previous paragraph is a minimax solution. The lower bound (3.24) is calcu-
lated in detail, since the necessary steps in its calculation differ somewhat from
those of [1], [2], and [4]. We also note that, in this case of estimating a scale
parameter, the tool used in [1], [2], and [4] of attempting to attain a ‘“‘uniform
a priori distribution on the real line” in the location parameter case is replaced
by trying to attain the “a priori density’’ 1/6. The proof is somewhat shortened
by restricting the positive range of N,(6) to values § < 1. This asymmetry
manifests itself in the fact that the estimator of (3.7) does not tend to a minimax
solution as a — 0.

The fact that A.(8) is positive only for § < 1 also shows that the fixed sample
procedure described above is minimax for the problem of estimating 6 when
the above setup is altered by making @ = {6 ] 0 < 6 < b}, where 0 < b < w:
the argument of Section 3 shows this for b = 1, and the result for general b = b’
follows immediately from the case b = 1 if one considers there the problem of

(2.1) max (Y1, =+, Ymo)
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estimating b’ from the sequence {b’'Y;} of chance variables. Similarly, by
considering for each value of ¢ in Section 3 the problem of estimating baé from
the sequence {baY}, one sees that our fixed sample procedure is also minimax
for the problem of estimating 6 when our original setup is altered by making
Q= {6]|b< 6 < »}. However, the given procedure is obviously not admis-
sible if my > 0 (or me = 0 in the second case): for example, a trivially better
procedure in the first case when m, > 0 is to estimate 6 by b whenever the
expression of (2.1) is > b.

Finally, we remark that the problem of estimating 6 for the case where the
fly; 6) of (3.1) is replaced by 1/(20) for —0 < y < 6, is obviously identical to
the one we consider: one has only to note that after n observations a sufficient
statistic is still given by (3.2) if only Y is replaced by | ¥ |for¢ =1, --- , n.
It is also of interest to note that our problem may be translated (by considering
T: = ¢ " ¢ = ¢°) into that of sequential minimax estimation of the parameter
¢ of the density e for t > ¢, 0 otherwise (—®© < ¢ < =), when the weight
function is W(¢, d) = (1 — ¢ “™")%

3. Calculations. For brevity, we shall throughout this section state the values
of density functions and discrete probability functions only over the domains

where they are positive. Let ¥y, Y, --- be a sequence of independently and
identically distributed chance variables, each with density function

3.1) fly; 0) = 1/6 0<y<o,
where 0 e @ = {60 < 6 < »}. Define

3.2) X, = max {Y;, -+, Y.}

Clearly, if observations 41, -+ , y» on Y1, --- , ¥, are taken, then X, is a
sufficient statistic for 8; i.e., for any a priori probability distribution on €, the
a posteriori distribution of 6 depends on y;, -+ , y, only through the value

z, taken on by X, . Thus, in constructing sequential Bayes solutions, we may
restrict ourselves to decision functions for which the (perhaps randomized) rule
for stopping and estimation depends, after n observations, only on z,. The
density function of X, is given by

n—1
(3.3) gn(; 0) = 7—1—3;”—, 0<z <o
For 0 < a < 1, we define
1 1
) o0 = ——— =, 9 < 1.
(3.4) Aa(6) og (1/a) 8 a<6<
If \,(6) is the a priori density function on € and y1, - - - , ¥ have been observed,
the a posteriori density of 8 given that X, = « is easily computed to be
nz" 1
(3.5) h,,(O[X,,=x)=-1—:—z;-é—;ﬁ, 2<0<1,

where z = max (a, ) and we note that P{z < 1} = 1.
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The a posteriori loss (excluding cost of experimentation) if one stops after n
observations and uses d to estimate 6, is

1 2
W, 2) = fo (”%’) ha(6| X = @) db

o) ()]
2(1 — 27 n+1 n+4+2 n+1 n+4+2/]

The unique minimum of W with respect to d is easily seen to occur for

_n+2 12"

(3.6)

(3.7) PR i
the corresponding value of W being
(38) O R G o) Sk A

m4+ 12 (1 —2z)(1— 22"

For n = 0, the integral in (3.6) must be altered by replacing k. by . ; the final
expression must be changed accordingly. Equation (3.7) then holds with z = a,
and (3.8) becomes 1 — 2(1 — a)/[(1 + a) log (1/a)].

Next we note that when f(y; 6) is the density of each Y., the conditional
distribution function of X, given that X, ; = wu assigns probability mass u/6
at the point x = u and density 1/6 for u < z < 6. For n = 1, the distribution
of X, is of course given by the density f(x; ). We conclude that if A\,(8) is the
a priori density on €, the distribution of X; is given by the density

1 (1—-a
log (1/a) a
(1 —2)
log (1/a) z
and that (using (3.5) with n replaced by n — 1), for n > 1, the conditional

distribution of X, given that \.(6) is the a priori density and X, = u, is given,
if u £ a, by

ifz < q,

(3.9) n@ = [ 1 ON(0) 6 =

ifa <z <1;

n—1 1—a" u

PofX = uj = n l—a1 a
(3.10) m—-1 1—a" 1 <
n  1—a a u<zT=0
x| u) =

-1
n—1 1—2" ad"

n 1—a1 a7’ a<z<l

and, if w > a, by
n—1 1 —u"
n 1 — yr 1’
—1.1——:1:"'u"_1
1—wut o

(8.11)
, u<<zr <l
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where in each case P, is the probability mass at £ = » and p.(z | w) is the
density elsewhere.

Equations (3.10) and (3.11) yield for the conditional distribution of Z, =
max (X, , a) given that \,(6) is the a priori density and that Z,_; = v, for all
n>1,

n

OnlZ = v} = n 1=
(3.12) 11 I
n — -z 0
g2 | 0) = o s S e ) 1<z<l,

where again ¢, is a density and @, is the probability mass at z = v.

Let W,_1(v) be the conditional expected value of Wi*(Z.) given that \,(6)
is the a priori density and that Z,—; = v (where we define Z, = a). Using (3.8)
and (3.9), we have

Wo(a) = E{W{*(Z)}
a 1
= f*(a)fo p1(2) dz +_[l Wi*(2)pi(e) dz
(3.13a) 3 {(1 —a?)’ ta -2 dz}

= 1= 41og (1/a) (1 — @*) e 2(1 — 23)

3 I a-2)?
<1_410g(1/a)j; [; R za)]dz

3 1 ] 1
<1 - s (Vo) [l"ga -a- “)} < ‘g

Forn > 1, we have from (3.8) and (3.12),
Wn—l(v) = E{W:*(Zn) lv}

Wi¥®)Q.(Z = v) + fl Wi*(2)ga(z | v) dz
(n — 1)(n + 2)

T D =)
) {(1 _ vn+l)2 + vn_l 1 (1 _ zn+1)2 dz} '

(1 — vn+2) » zn(l — zﬂ+2)
The term in the last set of braces in (3.13b) may be written as

"I = o)l v — P — o™
(1 — 2)"+2)

—_ 1| 1 2(2 — 2 —z 1) '
I n—1
f ( _———.2) dz

_n—-l 1 _n—l_n—-l./‘1
>0 —v )+n——_1(1 ") — v2zdz

(3.13b) =1

1 —7)"—1—'-

(3.14)

__n S R R
—n_l(l ") — "1 = V).
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We conclude that, whenever n > 1,

n(n + 2)
(n + 1)
1 1

Swre T gm’

where in the last step we have used the fact that (n — 1)(n + 2)(n + 1) < %
if n = 2 and < 1 otherwise, that (1 — »*)(1 — ") < 2ifn = 2and £ 1
otherwise, and that if n > 1 we have v = » < (log 1/»)™". From (3.13a) and
(3.15), we have for all n > 0,

(m=Dr+2 Q-0

S AR e

Wn—l(v) < 1 -
(3.15)

1 1
mr D log (/)

Similarly, we have from (3.8) forn > 1,
m—Dm+1) 1=

(3.16) Wn—l(v) <

ok -1 _
W”_l(v) =1 > 1 — o)1 — o)
_ . (a=1Dn+1) "7 = o
(3.17) =1 o [1 T A= N"+1):|
1 1 1

1 n—1 > .
mTV 2 n?  log (1/v)’

and, for n = 1 (putting v = a),

20-a) ,__2
(1 + a) log (1/a) log (1/2) °

Combining (3.16), (3.17), and (3.18), we have for all m = 0,

(3.18) We*rw) =1 —

2m + 3 _ 3
(m + 1)2(m + 2)*  log (1/v)"

We now define, for all integers m = 0,

(3.19) Wi*@w) — Wa) >

1

(3.20) T(m) = cm + mz .

We note that #(m + 1) — r(m) = ¢ — @m + 3)/((m + 1)’(m + 2)%). The
function r(m) evidently has at most two minima (if there are two, they are for
consecutive values of m). Denote by m, the first integer for which r(mo) is a
minimum. Let ¢ (0 < ¢ < 1) be such that 3¢ < r(m; — 1) — r(mo) @Gf my = 0,
the last restriction is omitted). Let d = ¢ ¢ and @ = ¢ V/*. Let m; be the
smallest integer not less than 1/c.
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For any integer K > 0, if \,(6) is the a priori density we have (noting that
d> a)

G2) P(Xszd)=[ / " a5 O0) d i = [

_lg (/) 1-af
" log(1/a) ~ Klog (1/a) > ¢

We note that, after m observations (m = 0, 1, -- - , ad inf. and puttingv = a
if m = 0), any Bayes solution will certainly prescribe taking another observation
if W:,* (v) — Wa(v) — ¢ > 0, since this quantity is the a posteriori expected saving
over stopping after m observations if instead one takes one additional observa-
tion and then stops and makes the best terminal decision.

We also note that, since (log 1/a)™ = ¢ < ¢, it follows from (3.21) that,
when A,(9) is the a priori density,

1 : 1
P{log (I/Zz) < € fOI‘ 1= ]-, 2, oo ,mO + ml}' = P{Iog (1/Zm°+ml) < G}

1

=P{m <e1 = P{Xpptm, <d} > 1 — e
Since r(m — 1) — r(m) is a decreasing function of m(m > 0) and since

3e < r(my — 1) — r(my), we conclude that, if mg > 0, the event

1

IOg (I/Zmo+m1) <

entails the event (log (1/Z.,—1))™" < ¢ which entails 3(log (1/Zm,-1)~" <

r(mo — 1) — r(mo); or, equivalently, —3(log (1/Z:))™" + r(z) — r(z + 1) > 0

fort =0, 1, --- , my — 1. Finally, it follows from (3.19) that this entails the

event Wi*(v) — Wiv) —¢>0fori=0,1, --- , my — 1; and, for any Bayes

solution relative to N\,(f), this entails the event that at least m, observations

will be taken. Furthermore, the last statement is always true for m, = 0.

Similarly, we note from (3.17) and (3.18) that the event (3.23) certainly
entails the event W7 (@) > (1/(1 + ©)%) — 2efori =mg, mo+ 1, --+ , mg +
my . That is, if a terminal decision is made after exactly ¢ observations (2 = my,
-+, my + my), the total a posteriori loss plus cost of experimentation will be
> i+ /0 + 9% — 2¢ = emo + 1/ + mo)®) — 2e. Moreover, it follows
from the definition of m; that this last expression is less than the cost of experi-
mentation alone if more than my + m; observations are taken.

To summarize, then, the event (3.23) implies for any Bayes solution relative
to A.(8) that the experiment will terminate with a total a posteriori loss plus
cost of experimentation exceeding cmo + (1/(1 + mo)®) — 2e But it follows
from (3.22) that (3.23) occurs with probability >1 — e Since mec -+
(1/(me + 1)*) < 1, it follows that the Bayes risk relative to A,(6) exceeds

1— 2"

z log (1/a)

(3.23)

1 1
(324) (1 - G) <moc + m - 26) > moc + (mo_——l-—l)z — 3e.
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Since ¢ may be taken to be arbitrarily small in magnitude, we conclude (see
Section 2) that the fixed sample procedure described in Section 2 is indeed
minimax.
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