JOINT SAMPLING DISTRIBUTION OF THE MEAN AND
STANDARD DEVIATION FOR PROBABILITY DENSITY
FUNCTIONS OF DOUBLY INFINITE RANGE!

By MELvIN D. SPRINGER

U. S. Naval Ordnance, Indianapolis

1. Summary. The joint sampling distribution of £ and S is derived in integral
form for probability density functions of doubly infinite range. This derivation
is effected through the use of a transformation which transforms the sample
probability element f(z1)f(z2) -+ f(x,) dxy dxy --- dr, into the element

F@)f(@s) -+ f@na)f((nE — D 07% 2 = Q)/2)f(nE — D072 F @)/2) | J |
-d:cl dxz e d.’l?,,_2 dz dS,

where & = (1/n) 2r i, 8 = (1/n) 21 (x; — %)°, and J is the Jacobian
of the transformation. Bounds on z,,,r = 2,3, --- , n — 1, are established
in terms of %, S, and 2,_,_;,j = 1,2, ---,n — r — 1. The probability ele-
ment

F@)f(xe) -+ f@a2)f((n& — 207" @i £ ©)/2)f((n&
— 202 F 2)/2) | J| dry dxy -+ dzas dT dS

must then be integrated with respect to z,_, , 7 = 2,3, --- , n — 1, between
these limits to obtain F(Z, S) dZ dS, the joint probability element of £ and S.
These limits of integration of z,_,,r = 2,3, --- , n — 1 enable one to express
F(z, S) in terms of quadratures when f(z) is any probability density function
of doubly infinite range. To illustrate the method, F(Z, S) is obtained when
f(x) is the normal probability density function.

2. Introduction. It is well known that if random samples of n items are drawn
from a parent population, £ and S will be independent in the probability sense
if and only if z is normally distributed in this population [1]. Furthermore, if
the parent population is normal with mean m and standard deviation o, £ and
S are distributed jointly in accordance with

n™28"=2 exp { — (n/20?)[(Z — m)? + 82}
" (@=D/)_in (n 2— 1)

1 F(z,8) =
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This joint distribution for the normal function is often referred to as Helmert’s
distribution, since it was first established by Helmert [2]. Helmert arrived at
(1) through the use of a pair of linear transformations which transformed the
joint distribution of the individual errors of observation into a joint distribution
of sample mean error and standard deviation, plus dummy variables which
were integrated out over all possible values. Kruskal [3] has shown that Hel-
mert’s distribution may be obtained directly by mathematical induction. How-
ever, when sampling is extended to nonnormal universes, little seems to be
known about F(%, S) except for very small samples. Truksa [4] has expressed
F(Z;, Ss) in integral form and has applied “the concept of the probability of
passage” to obtain F (%2, Siy2) from F(Z,, S.), where %, and S, represent,
respectively, the mean and standard deviation of a sample of ¢ items and
where F(Z, , S:) is assumed to be known. A. T. Craig [5] has derived F(z, S) in
integral form when n = 2, 3, 4 for probability density functions of doubly in-
finite, singly infinite, and finite positive  range. Yet, for no probability density
function f(z) has F(£, S) ever been expressed explicitly in terms of quad-
ratures for the general case of samples of size n. It is the purpose of this
paper to derive F(Z, S) in terms of quadratures for any sample size when f(x)
is any probability density function of doubly infinite range. Whereas the pro-
cedure in [3] and [4] is to add one or two new observations and express the new
Z and S in terms of the old, whose distribution is taken as known, I shall employ
a transformation for fixed n and derive an integration formula, particularly the
limits of integration, inductively.

3. F(x, S) for probability density functions of doubly infinite range. Consider a
universe characterized by the probability density function f(z), — o < 2z < .
If n variates z;, ¢ = 1, 2, --- , n, are selected at random from this universe
the probability that they will fall simultaneously within the intervals dx; , ¢ =
1,2, ---, m, is given, to within infinitesimals of higher order, by

f@)f(we) -+« f(xa) dz1 ds - -+ dn .
Since nS? = X.r 27 — n&’ and ng = )i x;, we may eliminate z, in the first

equation, obtaining

n—1

(2) > 2+ vl — 2nduny + nln — )& — 08 = 0,

1
where w; = i «; . Solving this (symmétric) equation for z,; we have
(3) Tp1 = %(nﬁ — Up—g = Ql)y

where

n—r—1
@ Q= —r(r+1) > 2t — runo + 2rn&Un
4 1

—rmn —r— DF + (r + )ras.
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Thus we may employ the transformation 7':

T, =2z, t=12 :-,n—2
Tpy = 3(0E — Ung £+ @),
T, = 3(E — Up_ T Q).
Application of this transformation to f(z)f(zs) -+ f(x.) day dxs - - - dx, gives
f@)f(s) - -+ f(x,) day dos - - - dz,
G) = f@)f (@) - f@r)fGE — Uns £ W) G(NE — s F &)
- | J | dridas -+ dan_s dZ dS,
where | J | = | Jacobian of T | = n’S/9; . Evaluation of the multiple integral

f e [ f(xl) et f(xn—a)f(xn—2)f<%(na_: — Up— — Ql))

X fG(nZ — un—s + 9))20°S/U d2ss dns - - - dzy

over the range of the variables z;, ¢'= 1,2, --- , n — 2, yields the joint dis-
tribution F(z, S). It will be shown presently that the limits of integration of
Tnr in (6) are (0T — Upry £ Q) /(r + 1), 7 = 2,3, --- , n — 1. Before estab-

lishing these limits, let us consider an example.

4. The normal distribution. To illustrate the method, we shall derive F(z, S)
for the normal distribution with mean m and standard deviation o. This entails
evaluating (6) for f(z) = (1/0(2r)!) exp { —3(z — m)?/c*}, the limits of integration
of z,,,r =2,3,---,n — 1, having been specified at the close of Section 3.
Upon employing the relationship (which is easily verified)

2

2
U = %ﬁ—z Qmi1 — m(m + 2) {xn_m_l + ——— (Un—m—2 — nI) }

+2

and evaluating a few of the integrals in (6), it becomes evident that after r
integrations we have

Pz, 5) = S exp( =4/ — m)* + s?iw:rf%)
0’"(21!’)",2(7' + 1)(r—l)/2(r _'i_ 2)r/21"( 3 )

X f/ / Q::i n——r—2 e dx2 dxl )

the limits of integration having already been stated. To establish (7) by mathe-
matical induction, assume that (7) results after r integrations are performed in
(6), where r is any integer from 1 through n — 3. Carrying out the next integra-
tion, we obtain in a very straightforward manner (7) with r replaced by r + 1.

™
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Thus, if (7) holds for r integrations, it necessarily holds for » 4 1 integrations.
But it is easily verified that (7) holds for r = 1; therefore, it holds when r =
2,3, .-+ ,n — 2. Lettingr = n — 21in (7), we have the well known joint sam-
pling distribution of # and S for the normal universe, namely, (1).

6. Limits of integration of the variables. It remains to prove that the variable
Zn_r is restricted to the closed interval

(9) <nx - Up—r—1 — Qr NT — Upn—r—1 + Qr>,

r=23--,n— 1L

r+1 ’ r+1
To accomplish this, we again resort to mathematical induction. To expedite
matters further, let us agree that when Q4 ,m=12---,n — 2, is involved

in this discussion, it shall be regarded as a quadratic function of £,—m—; . Bearing
this in mind, we note that the discriminant of ©, is @541 . We note further that
since z,—; is necessarily real, the inequality

(10) Q=0

must be satisfied. Clearly, a necessary and sufficient condition that (10) be
satisfied is that the discriminant of 97 be nonnegative. That is, for a given Z
and S, thez;,j = 1,2, ---, n — 3, must collectively satisfy the condition

(11) @ 20,
in which case condition (10) will be fulfilled if and only if .

nt — Up—3 — Q, < NT — Un—3 + Q,

3 é Tn—2 = 3
Similarly, condition (11) is met if and only if Q3 = 0. This restricts z;, j =
1,2, ---, n — 4, to values which collectively satisfy Q; = 0, in which case
nrt — Upg — 93 < Tos < nt — u,._4+93-
4 - - 4
In general, since the discriminant of Q7_;is Qf , if 21, @2, - - - , ZTa_, satisfy the
condition
(12) 0,20, r=23--,n—1,
%1, %, " , Tnr1 must necessarily fulfill, collectively, the condition Q=0
whence
nt — Up—r—1 — Qr < Tnr < ng — Un—r—1 + Qr
r+1 — - r+1

That is, if condition (12) obtains when r = p, it necessarily holds when r =
p + 1. But condition (12) must hold when r = 2; therefore, it must hold when
r=3,4, --,n — 1. This confines z,—, , 7 = 2,3, --- , n — 1, to the closed
interval (9). Finally, since @%_; = n’(n — 1)8* = 0, all the intervals (9) exist
in the real domain.
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Although the joint sampling distribution of Z and S is given by (6) for any
probability density function of doubly infinite range, it may be necessary to
resort to numerical integration or other approximate methods to evaluate the
multiple integral (6) when n > 3.

The distributions of & and S taken singly are, of course,

(13) 0@ = [ Fz 9 as,
and
(14) h(S) = f " Pz, 8) di.

The question naturally arises as to whether a similar method may not be
used to determine the joint sampling distribution of & and S for probability
density functions of singly infinite range. Actually, the procedure here described
may be modified, particularly with respect to the limits of integration of (6),
to obtain F(Z, S) for probability density functions of singly infinite range. This
modification, necessitated by the restriction of z;,¢ = 1, 2, --- , n, to non-
negative values, considerably complicates the derivation of F(Z, S). Since the
results are quite lengthy they will not be presented here, but will be discussed
in detail in a later paper.
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