THE BASIC THEOREMS OF INFORMATION THEORY
By Brockway McMILLAN
Bell Telephone Laboratories

Summary. This paper describes briefly the current mathematical models upon
which communication theory is based, and presents in some detail an exposition
and partial critique of C. E. Shannon’s treatment of one such model. It then
presents a general limit theorem in the theory of discrete stochastic processes,
suggested by a result of Shannon’s.

1. General models of the communication problem.

1.0. Introduction. For the purposes of this exposition, information theory
is the body of statistical mathematics which has developed, largely over the
last decade, out of efforts to understand and improve the communications art.
We shall not attempt a history of this development, nor any detailed justification
for its existence, since either of these efforts would take us further into the tech-
nics of communication than is desirable in a short essay.

It suffices to say here that this discipline has come specifically to the attention
of mathematicians and mathematical statisticians almost exclusively through
the book [1] of N. Wiener and the paper [2] of C. E. Shannon.

In the remainder of this section we shall describe very broadly the kind of
problem to which these two works are addressed.

1.1. A simple model. The simplest mathematical model of the communication
problem is like the problem of parameter estimation. A parameter 6, usually
ranging over a fairly abstract or at least multi-dimensional domain, represents
the transmitted message. A variable, y, also fairly abstract in general, represents
the received message. In realistic situations the received message is seldom a
mathematically exact copy, or even an exactly predictable mutilation, of the
original transmitted message. Hence, y is represented as a random variable whose
distribution depends upon the parameter 6. The communication problem then
is: given a sample of one value of y, to estimate the unknown 4.

There are two reasons why this model may not seem at first look to be a good
one for the communication problem. One is merely that our most usual media
of communication, direct acoustic transmission of voice and the written or printed
word, are ones in which essentially exact transmission is possible and we are not
aware of the underlying statistical nature of the problem. This is clearly a mat-
ter of degree, however, and almost anyone can find in his own experience in-
stances in which the statistical aspect of the problem was evident.

Another apparent failing of this model is in fact real, and has led to refinement
of the model. There are communication problems, mostly in technical fields,
where it is realistic to assume that the recipient of ¥ has no a priori knowledge
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about the parameter 6. The usual situation in human experience, however, is
one in which there is a great deal of a priori knowledge about the possible values
of 6. There are simple experiments with mutilated text, spoken or written, which
will convince one that he can, and often does, exploit his own a priori knowledge
of language, speaker, and subject matter to assist in deciphering what he reads
and hears. A realistic model must include this possibility.

1.2. Stochastic transmitted message. It was Wiener who first clearly pointed out
that we may, and indeed often must, regard the transmitted message itself as a
random variable drawn from a universe whose distribution function reflects our
a priori knowledge of the situation. Cogent statements of this philosophy may
be found both in [1] and [2]. This leads us to a model in which we have two
abstract random variables, say z representing the transmitted message (replac-
ing the parameter 6), and y the received message. There is then a joint distri-
bution function for x and y which contains in it the complete mathematical
description of the situation. One ordinarily thinks of this distribution function
as being “factored” into an a priori distribution for z, representing the universe
of possible messages, and a conditional distribution for y knowing z, representing
for each x the universe of possible mutilations thereof.

In this second and more important model, one can still regard the communica-
tion problem as one of estimation: given the y value of a joint sample (z, ),
to estimate the z value. This view is particularly appropriate in discussing the
work of [1]. Here, the z and y are numerically valued time series and there is a
natural numerical way to measure the deviation between the estimated and true
values of z, namely, by the variance of estimate.

The statistician may alternatively wish to regard the communication problem
(in either model) as one of testing hypotheses. The observed y has a distribution
depending on the hypothesis “z;”’ the problem is to decide which z is obtained
at the time of observation. This view is more appropriate to the work of [2],
wherein the time series are abstract valued, and no natural measure of the
“wrongness” of an incorrectly adopted hypothesis is available. In the second
model, the a priori distribution for hypotheses = eliminates one kind of testing
error, so that in this model there is a simple criterion of performance, namely,
the total probability in the (z, ) universe of all events (z, %) in which the hy-
pothesis adopted is correct. The reader will observe this particular criterion in
sections 6 and 8.

The distinction between estimation, on the one hand, and testing among
many hypotheses, on the other, is not sharp. We shall use “estimation” as a
loose word to refer to the kind of model here set up for communication.

1.3. Peculiarities of engineering applications. Information theory is distin-
guished from a general study of models like these in two important respects. In
the first place, as noted, the random quantities « and y of interest are, naturally,
time series. Furthermore, the passage of time is explicitly recognized and the
“distinction between past events, which can be known, and future events which
cannot be known, is carefully observed.
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In the second place, the kind of question considered. in information theory,
particularly by Shannon, reflects the peculiar interests of communication engi-
neers. To illustrate this, we might go back to the jointly distributed abstract
variables z and y of 1.2 above and phe estimation problem there stated: given a
sample of one value of y, to estimate the corresponding x. Typically, a practicing
statistician facing this kind of problem will find himself confronted with a given
joint distribution function for the variables, or at least committed to choosing
one which he thinks is representative, and his attention is directed toward such
questions as the following. '

a. By what criterion shall various estimates of z be compared?

b. Given the criterion, what is the best estimate of z which can be made, and
how good is it?

¢. How do competing methods of estimating x compare with the best?

These questions of course appear in a communication context, too. The entire
effort of [1] is concentrated in this general area. It often happens, however, that
the communication engineer has a freedom that the statistician seldom has, that
of controlling, at least in part, the joint distribution with which he must deal.
How this comes about will be discussed in a moment. We can see at once, how-
ever, that his interest in question (b) above will then extend to asking, in addi-
tion, how he can optimize his best estimate over the additional freedom he has.

1.4. The additional freedom. The additional freedom enjoyed by a communica-
tion engineer is like the freedom granted the designer of an experiment. Typically,
technology provides the engineer with a communicating device or medium; a
random variable ¥ whose range Y represents, as above, the events which can
take place at the receiving point, and a probability distribution for y which
depends upon a parameter §. As above, the range © of 6 represents the possible
events at the transmitting point. In addition, one is given a quite separate
random variable z whose range X is the universe of possible messages with a
probability measure appropriate thereto.

No relation is yet specified between the message z and the “stimulus” 6 which
is applied to the communication medium, and it is here that the extra freedom
lies. Subject to limitations set by the necessary distinction between past and
future, one is free to choose a mapping function f(x) from X into 6, § = f(z).
This corresponds to choosing some kind of encoding or modulation scheme trans-
forming the original message into a form suitable for transmission.

To illustrate the effect of this, suppose that the distribution function of y has
a density p(8; y) with respect to some fixed underlying measure » in the y universe,
and that the distribution of z has a density o(z) with respect to some underlying
measure  in the z universe. Then if one fixes the relation above between x arid
8, the function o(x)p(f(z); ) in X ® Y represents the density of the resulting
joint distribution of z and y relative to the product measure u ® ». It is this joint
distribution with which the communication engineer works.

»To the practising engineer, the most interesting theorems of Shannon’s
paper relate to what can be achieved by varying the encoding process repre-
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sented by the function f(x). The strong theorems now known are all of an asymp-
totic kind.

1.5. Role of Fourier analysis. Even the casual reader will observe in [1], and
in the latter part of [2], a preoceupation with Fourier analysis. Tt may be well
to point out that this is a kind of accident; it happens that most practical com-
munication media are governed by linear time-invariant differential equations.
Hence, the first applications of information theory have been to systems which
are naturally best handled by the tools of Fourier or Laplace analysis.

2. Terminology and concepts.

2.0. Limitation to discrete model. We shall confine our attention to the first
part of Shannon’s paper [2]. This whole paper relates to the second model of the
communication problem described above, with an emphasis on the kind of ques-
tion discussed in 1.3. The first part of that paper is based on a fairly specific
kind of model. The stochastic processes which it admits are all derived from Mar-
kov processes having finitely many states. The auxiliary devices, encoders, etc.,
which are admitted are defined by similar constructions. We adopt the term
“finitary”’ to denote a restriction to these classes of objects without at this point
repeating Shannon’s definitions in detail. (There is a restriction, tacit in {2] but
nowhere made explicitly, to devices whose graphs have the property that the
terminal state of any transition is uniquely fixed when the initial state and the
letter emitted are given. For the present, we take “finitary’’ to include this
limitation.)

The central concepts of [2] may be introduced well enough here by a glossary
of terms. At this purely descriptive level, we may be quite general and admit
things which are not finitary.

2.1. Sample space and measurable sets. Let A be a finite set. We call such a set
an alphabet and will have occasion to introduce further alphabets A,, B, etc.
These are all abstract finite sets. An element of A will be called a letter of 4,
or simply a letter when no ambiguity results.

Let I denote the set of integers: I = (---, —1,0,1,2, --+).

Given an alphabet A, denote by A’ the class of infinite sequences

r = (""x—l,xo’xl,rﬂ:'”)

where each z, £ A, t ¢ I. Here z is an element of 47, and we call z, the letter of

x at time £.
A basic set (in A”) is a subset of A" obtained by specifying

(1) an integer n = 1,

(i1) a finite sequence ag, a1, * * * , as— of letters ax € A.

(ii1) an integer {, — o < { < .

The basic set resulting from this specification consists of all sequences z £ 4’
~such that

Tipk = Qg O§k§n—1
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Let F4 be the Borel field of subsets of A* determined by the basic sets.

2.2. Glossary. Our glossary nqw reads:

2.21. Information source. If u'is a probability measure defined over the Borel
field F, , the ensemble or stochastie process [A’, F, , u] is an information source.
Since the space A’ is fixed by the alphabet, and the Borel field F, is always that
determined by the basic sets, we can specify a source by the pair of symbols

(4, ul.

2.22. Stationary and ergodic sources. Consider a source [4, u]. Let T be the
coordinate-shift transformation defined as follows. If = (- - , 23, %, 21, -+ *)
then Tx = (---, 21, @, a1, -+ ), where x} = %;41, t £ I. Then T preserves

membership in F, (measurability). The source will be called stationary if (i)
below holds, and ergodic if (i) and (ii) both hold.

(1) If Se F., then u(8S) = u(T8).

(ii) If 8 = T8, then either u(S) = 0 or u(S) = 1.

2.23. Transducer. A transducer is characterized by two alphabets, 4 and B,
and a function r from A" to B': given z ¢ A, 7(z) ¢ B". A transducer differs from
a general functional relationship in that it cannot anticipate.

If 2 ¢ A" and z® £ A" and 4 is an integer such that

= z® fort < 4,
then
y = yP fort < &,
where
¥ = (), i=1,2

We can specify a transducer by the symbol [4, 7, B].

2.24. Channel or communication channel. A channel is characterized by two
alphabets A and B, and a list of probability measures vy defined over Fy, one
for each 6 ¢ A”. Here we have used 0 to denote the “parameter” in conformance
with an earlier notation.

Like a transducer, a channel cannot anticipate. That is, informally, if

¢Y) o0 = o fort < &,

we must have
@) | n(8) = n(S),

where »;(S) denotes the value of »(S) when 8 = 6, for any set S ¢ Fs which
depends only on letters occuring before ¢ + 1. More precisely stated, (1) must
imply (2) for any set S & Fp such that “y® = y{® for t < &, and y® £ 87
implies “y® ¢ 8.”

A transducer is a special case of a channel; it is a channel in which the received
gignal y is determined exactly by the transmitted signal 6.

We can specify a channel by the symbol [4, » , B].
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2.25. Stationarity. The concept of stationarity extends to channels and trans-
ducers. It suffices to define a stationary channel, a stationary transducer is a
special case. Referring to the definition of a channel, this channel will be called
stationary if, for any S & Fp, v(8) = vre(TS), where T is the coordinate-shift
transformation.

2.26. We have so worded the definitions above that all sources are ‘letter
generators’ producing one new letter for each unit of time, and channels and
transducers accept and produce one letter for each unit of time. In a careful
setting of the theory, one must account for the phenomena of compression and
expansion which appear when languages are translated. For example, a long
business message of fairly stereotyped form, when encoded for transmission by
cable, may appear in a form having many fewer letters or words than the original.
There are several ways of accommodating the mathematics to this situation,
but these details are unimportant in a first look at the subject and will be ignored
from here on. The fact of so ignoring them does not invalidate any theorem that
will be stated. It merely leaves a gap between these theorems and certain useful
interpretations of them.

3. Entropy. :

3.0. Eniropy. The terms defined in Section 2, suitably hedged, are the con-
cepts with which [2] deals. (For purposes of exposition, we have defined channels
and transducers quite differently from [2]. The disparity is largely but not en-
tirely verbal. (Cf. 10.2.)) The principal tool for their quantitative study is the
concept of entropy.

Let p1, P2, , Pn be a finite and exhaustive list of probabilities: p; = 0,
1415 n,p+ p2+ --- + p. = 1. The entropy of this list is defined to be

H(p, P2y **+, Pa) = —; p; log p; = Expectation (—log p).

It is by now traditional to use logs to the base 2 in this definition, but the choice
of base affects the value of H only by a constant factor. We shall use the base 2.

3.1. Marginal entropies. To change the notation slightly, suppose that o and
B run over finite index sets (alphabets) A and B, and that p(e, 8) is the proba-
bility of the joint event (a, 8). That is p(a, B) = 0, D _aea 2 gesp(e, B) = 1.
The entropy, of this list of probabilities is denoted by H(«, 8):

H(a, 8) = =22 22 p(a, B) log pla, ).

We can define also two marginal entropies

H(a) = —Z; ?:. p(a, By) log (; p(a, B)),
H@) = —; ; p(as, B) log (Za: p(a, B)),
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and two average conditional entropies
Hg(a) = H(a, B) — H(B),
Ha(B) =«H(a’ B) - H(a)‘

3.2. Average conditional entropy. These latter are called average conditional
entropies because of the following formula: fix 8 and consider the conditional
probabilities for the various a ¢ A. These are gs(e) = p(a, 8)/2 ap(01, B).
The entropy of this list is

~3 gs(a) log gsla) = r—}ﬂ—) > ple, ) log pla, 8)
(1) * :
+ ;——(;) ; (e, B) log %ﬁ p(as, B)

where r(8) is defined by (2) below.
This expression is the entropy of the conditional distribution of a when it is
known that a particular 8 has occurred. The a priori probability of this 8 is

) ; pleu, B) = 7(B).

To average (1) over all 8, we multiply it by (2) and sum over 8. The result is
seen to be Hg(a). This last entropy, then, is the average overall 8 of the entropies
of the conditional distribution of « when 8 is known.

3.3. Properties. Shannon [2] gives a fairly complete heutistic justification for
regarding the entropy of a list of probabilities as a measure of one’s a priori
uncertainty as to which of the possible events will actually occur in a given trial.
In the course of this demonstration, he introduces the most important mathemati-
cal properties of the H function. These are (i) its positivity, (ii) a kind of con-
vexity property implied by the convexity of the function —z log x, (iii) that
composition law which permitted the identification above of the average value
of (1) over B, with the earlier defined Hg(a), and (iv) H = 0 if and only if there
is exactly one event of nonzero probability.

The convexity.property (ii) mentioned above leads to the general inequality
Hg(a) £ H(a); that is, verbally, a condition (i.e. an a priori restriction on the
“freedom of choice’’) never increases an entropy. This statement must however
be taken only in the average sense in which it is stated: for any particular g,
the entropy of the conditional distribution of a bears no provable relation to the
marginal entropy H(a). It is only in the average over-all 8 that an inequality
obtains.

4. The entropy rate of a source.

4.0. Definition. So far we have considered the entropy of a list of probabilities.
The entropy rate of a stationary source [4, u] is most easily defined as follows.
Given r £ A, we use either of the bracket notations
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(1) (e, Teqa, o0y Tegnal, [ 8 + 0 — 157]
to denote that basic set 8 ¢ A’ which consists of all 2’ such that
Tpah = Tepn, 0=h=n-1,

The second notation will be used when it is to be emphasized that the basic set
depends upon a particular infinite sequence z.

The possible hasic sets (1), as x ranges over A’, or, alternatively, as the z,, ,
0 < h £ n — 1, range independently over A, partition A" into a™ measurable
subsets, where a is the number of letters in the alphabet A. These subsets repre-
sent all the possible sequences of n consecutive letters. They have the respective
probabilities

(2) /"([zt yTeg1, 00, xt+ﬂ—l])' *

Our stationarity assumption makes this list of probabilities independent of ¢.
There is then a unique number F, , independent of ¢, which is the entropy of this
list (2) of probabilities. We shall show presently that the limit
3) lim L1r,

n—w N
always exists. The value of this limit is defined to be the entropy rate of the
source [4, ul.

1.1. Interpretation. One cannot escape the heuristic meaning of this rate; one
considers the possible long sequences of text as his universe of events, and evalu-
ates the uncertainty F, of the outcome of a trial. This uncertainty is then pro-
rated among the n letters. These letters represent interdependent but possibly
not determinately related elementary events whose concatenation generates the
universe. The result, F./n , represents in the limit the average uncertainty per
letter generated by the source.

4.2. Defining F, as an integral. We shall now prove the existence of the limit
(3). The proof follows Shannon’s in a different notation.

Given any z ¢ A', the basic set (1) defined by that x contains x. The probability
(2) then may be regarded as a step function of x, equal for each = to the prob-
ability of that basic set containing x which is specified by letter values at times
t,t+1,.---,t+4+ n — 1. In the same way, the definition

@ 7a@) = = < log u(l0, n — 1; 2]

defines a nonnegative step function of z. One verifies at once from the definition
of F, that

© 1P = [ f@) du@)

Regarding (2) and (4) as functions of z in this way permits us to phrase certain
key problems in the language of integration theory.
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4.3. Another definition of H. Consider now the special conditional probabilities

(6) p,.(x) _ ngx—n, Tnp1, *** 5 Ty, To]) n> 1.

I‘([x—-n’ B x—ll) ’ -
Again we use the device of repre'senting these as step functions of z. In words,
Pna(z) is the conditional probability of observing at time zero the letter x, of ,
when it is known that the letters occurring at times ¢ = —n, —n + 1, .-+, —1
are exactly those of z.
Define

go(z) = fi(x)

(M
ga(x) = —log pa(z), n=l

Then g.(z) = 0.
One verifies by direct calculation from (6) and (7) that

(®) Go = [ 0a(a) du@)

is the average conditional entropy of the rext letter when n preceding letters are
known. The inequality stated earlier, that adjoining a condition cannot increase
an entropy, can be used to show that the G, form a monotone sequence:

Gz2Gz2G=z---20

Therefore
9 lim G.=H

certainly exists. The verbal interpretation of G,, the average conditional en-
tropy of the next letter after a long segment of text is already known, suggests
that the limit H in (9) is again the average uncertainty per letter generated by
the source, that is, H is the entropy rate defined in (3). The proof in 4.4 below
that this is indeed so, proves the existence of the limit (3).

4.4. Identification of two definitions. By a direct calculation from the definitions

it is found that

1 N—-1
(10) @) = 5 2 g(T"2).
R N k=0
If one integrates this and uses the assumed stationarity of u, he obtains
1
(1) S = 5 G+ Gt o+ Ga).

Therefore Fy/N represents the first Cesaro mean of a monotonely convergent
‘sequence. It follows that the limit (3) exists and indeed is approached monotonely.
A further consequence of (11) is that Fy/N = Gy = H.
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5. The capacity of a channel.

5.0. Channel and source. We wish now to examine a stationary channel “driven”
by a stationary source. Consider a source [4, u], and a channel [4, » , B]. Denote
by C = A ® B the alphabet of pairs (a, 8), @ £ A, 8 ¢ B. Then C” is the class of
all infinite sequences

(o0 s @1y Y1),y (o, W0), (21 » Y1)y o0 0)

where 2, £ A, y: £ B, t ¢ I. In an obvious way we can also regard C' = A’ ® B’,
that is, as the class of paired sequences (z, y), z € A, y ¢ B". It is known that
the Borel field Fc is determined by the sets X ® Y where X eF,, Y e Fp.
We define a measure w for sets in F¢ by the formula

L i h(z, y) dw(z, y) = j; . du(z) /; : h(z, y) dv.(y)

valid for all positive measurable h(z, y). Here », is the measure over Fp which is
induced by the channel when the input sequence is z £ A",

The stochastic process [C”, F¢ , «] is now a source, which we denote by [C, w].

It is easily shown that if the original source [4, u] and the channel are station-
ary, then the source [C, ] is stationary. -

5.1. Marginal distributions. The source [C, ] represents the joint distribution
of z and y, of input to and output froi the channel. The source [4, ] represents
the marginal distribution of the input. The marginal distribution of the output
is represented by the source [B, 5], where the measure 4 over Fj is defined by

fB I' k(y) dn(y) = L , du(2) fa k() dvaly) .

‘This marginal source is staionary if [4, u] and [4, v, , B] are.

5:2. Causation. It is worth noting that the implication of causation in our
language here, as we speak of a channel driven by a source, results from the fact
that we consider the channel [4, » ,B] as a pregiven thing, existing independently
of any particular source [4, u]; this is the typical situation in the communica-
tions art. Actually, the joint process [C, «] is a completely symmetrical concept,
as to the roles of z and y, and one may consider, at will, the conditional prob-
abilities ».(S), z £ A”, S & F , the conditional probabilities of y-events, knowing
z, or the conditional probabilities, say, ,(U), y € B', U € F. , of z-events, know-
ing y. (Indeed, given the joint process, one will find that each of these condi-
tional probabilities ». , respectively g, , are measures for, respectively, almost
all z(u), almost all y(5).)

It happens that in most applications the », are pregiven, and the i, derivative.

5.3. Channel capacity. To use Shannon’s notation, let H(z, y) denote the en-
tropy rate of the source [C, w], H(z) the entropy rate of the marginal source
[4, ul, and H(y) that of the marginal source [B, 7). The quantity R = H (=) +
H(y) — H(z, y) is defined to be the transmission rate achieved by the source
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[4, u] over the channel [4, v, B]. The supremum or least upper bound of these
rates, as u is allowed to vary, is defined to be the capacity of that channel.

5.4. Interpretation. An intuitive interpretation of the rate H(zx) + H(y) —
H(z, y) can be obtained if we assume that the quantity H.(y) = H(z, y) — H(x)
can be given the same verbal interpretation when the z and y are stochastic
processes that it was given earlier when the random quantities involved were
drawn from finite populations. That it can, in the same limiting sense that the
entropy concept has been carried over to stochastic processes, is easy to show.
Foregoing this demonstration, we observe that B = H(y) — H.(y); that is, the
rate of transmission R is the marginal rate of the output, H(y), diminished by
that amount of uncertainty at the output which arises from the average un-
certainty of y even when x is known, that is, by H,(y), the average conditional
entropy of ¥ when z is known. In this verbal way, at least, R represents that
portion of the “randomness” or average uncertainty of each output letter which
is not assignable to the randomness created by the channel itself.

Another observation here is also pertinent. Because of the symmetry of R in
z and y (which is more than a mere consequence of the notation!) we also have
R = H(z) — H,(x). This shows R as the rate of the original source diminished by
the average uncertainty as to the input z when the output y is known.

6. The fundamental theorem.

6.0. As justifying the theory. So far, we have introduced a list of what is
hoped are natural-seeming concepts, and have stated a few mathematical results
to help justify the rather picturesque language used in introducing them. The
concepts themselves can only be justified as objects worthy of mathematical
attention by the existence of theorems relating them. There is one such theorem,
the so-called fundamental theorem for a noisy channel ([2], Theorem 11), which
in itself performs this task completely. We shall quote this theorem and sketch
its proof. This will complete our general exposition and lead us to our general
limit theorem.

6.1. Tae TueorEM. The fundamental theorem relates to this question. Sup-
pose we are given a stationary channel with input alphabet 4, and a stationary®
ergodic source with alphabet A; . We are permitted to insert a stationary trans-
ducer [A4;, 7, A] between the source and channel, to create in effect, a new sta-
tionary channel with input alphabet A, . With this freedom, what is the opti-
mum transmission rate which can be achieved between source and output?

For the class' of finitary sources, channels, and transducers, admitted in the
model used in [2], this question is answered by Shannon’s theorem: Let the given
channel have capacity C and the given source have rate H. Then if H < C, for
any e > 0 there exists a transducer such that a rate R > H — e can be achieved.
If H = C, there exists similarly a transducer such that C 2 R > C — e. No
rate greater than C can be achieved.

« Actually, Shannon’s proof of this theorem proves the following more com-
plete result.
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TrHEOREM. Let the given channel have capacity C and the given source have rate H.
If H < C, then, given any e¢ > 0, there exists an integer n(e) and a transducer
(depending on €) such that when n(e) consecutive received letters are known, the
corresponding n transmitted letters: can be identified correctly with probability at
least 1 — €. If H > C no such transducer exists.

This statement is perhaps more satisfying to a statistician, in that the log-
arithmic quantities H and C appear only in the hypotheses. The conclusion is
then given in terms of the criterion of performance suggested in 1.2.

6.2. Interpretation. In the vernacular, this theorem asserts that if a channel
has adequate capacity C, an infinitesimal margin being mathematically adequate,
then virtually perfect transmission of the material from thesource can beachieved,
but not otherwise. Here, of course, we have used ‘‘virtually perfect’ to describe
transmission at a rate ’

(1) R=H—612H—é.

The sense in which this is to be interpreted as virtually perfect transmission is,
of course, an asymptotic one and refers to the rate at which certain probabilities
decay as the amount of available received text increases.

Engineering experience has been that the presence in the channel of perturba-
tions, noise, in the engineer’s language, always degrades the exactitude of trans-
mission. Our verbal interpretation above leads us to expect that this need not
always be the case; that perfect transmission can sometimes be achieved in spite
of noise. This practical conclusion runs so counter to naive experience that it has
been publicly challenged on occasion. What is overlooked by the challengers is,
of course, that “perfect transmission” is here defined quantitatively in terms of
the capabilities of the channel or medium, perfection can be possible only when
transmission proceeds at a slow enough rate. When it is pointed out that merely
by repeating each message sufficiently often one can achieve virtually perfect
transmission at a very slow rate, the challenger usually withdraws. In doing so,
however, he is again misled, for in most cases the device of repeating messages
for accuracy does not by any means exploit the actual capacity of the channel.

Historically, engineers have always faced the problem of bulk in their mes-
sages, that is, the problem of transmitting rapidly or efficiently in order to make
a given facility as useful as possible. The problem of noise has also plagued them,
and in many contexts it was realized that some kind of exchange was possible,
for example, noise could be eliminated by slower or less “efficient’ transmission.
Shannon’s theorem has given a general and precise statement of the asymptotic
manner in which this exchange takes place.

The statistician will recognize the exchange between bulk and noise as akin
to the more or less general exchange between sample size and validity or sig-
nificance.

1. The asymptotic equipartition property.
7.0. A Basic Lemma. The theorem quoted in 6.1 is termed fundamental in
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[2] because it answers a question which is clearly fundamental in the communica-
tions art, and because it defines the applicability of the central concept of channel
capacity. Many of the later results in [2] then concern the calculation of ca-
pacities for practical or interesting channels.

The proof of this fundamental thtorem rests directly on a lemma (Theorem 3
of [2]) which itself is a basic limit theorem in the theory of stochastic processes.
As a mathematical theorem, this lemma requires very little of the specialized
imagery of communication theory for its understanding. A mathematician,
therefore, is likely to regard it as the more fundamental element. A generaliza-
tion of it is the one contribution of the present paper.

7.1. Shannon’s form. The basic limit theorem, as given in Theorem 3 of [2],
asserts that the text from an ergodic finitary source possesses what we shall call
an asymptotic equipartition property. The basic sets

(1) [xo;xl,“' 73"—1],

as x ranges over A’ describe a partition of A, as we noted earlier: a partition into
a” events, each one of which is the occurrence of a particular string of n letters.
Shannon’s Theorem 3 asserts that, if H is the rate of a finitary ergodic source,
then, given ¢ > 0 and & > 0, there exists an no(¢, 8) such that, given any n = My,
the basic sets (1) above can be divided into two classes:

(i) a class whose union has u-measure less than e,

(ii) a class each member E of which has a measure u(E) such that | H + 1/n
log u(E)| < o.

That is, this theorem asserts the possibility of dividing the long segments of
text from a finitary source into a class of roughly equally probable segments plus
a residual class of small total probability. ‘

7.2. Stronger form. Let us introduce here the step functions f,(r) defined in
(4) of Section 4: f.(x) = —1/n log u ([0, n — 1;z]). In terms of these, the pos-
sibility of dividing the long segments of text into the categories (i) and (ii) above
is easily seen to be equivalent to the assertion that the sequence (f(z)) converges
in probability to the constant H.

We shall say that a source [A, u] has the asymptotic equipartition property,
AEP, if the sequence (f.(z)) converges in probability to a constant.

Shannon’s Theorem 3 then asserts that a finitary ergodic source has the AEP.
We shall improve this in Section 9 to read as follows.

TueoreM. For any source [A, ], the sequence (fa(x)) convergesin L mean (u).
If [A, p] is ergodic, and has rate H, this sequence converges in L' mean to the constant
H.

Since L' convergence here implies convergence in probability, (a fact easily
proved,) we have the

COROLLARY. Every ergodic source has the AEP.

These are the limit theorems mentioned in the Summary. As we shall see in
Section 8, they permit extending Shannon’s fundamental theorem, 6.1, to other
than finitary sources.
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7.3. Interpretation. Returning to 7.1 and the description there of the AEP,
we see that most of the probabihty must be accounted for by the aggregate (ii)
of “likely” long sequences. That is, if the source has the AEP, there are, for
large enough n, 2"* likely basic sgts [z, - - - , ., roughly equally probable,
accounting in the aggregate for all but a small fraction of the total probability.

7.4. Another corollary. The proof in [2] of the fundamental theorem uses also a
consequence of the AE property. We examine this consequence briefly.

Consider a.stationary source [4, u] and a stationary channel [4, v, B]. Sup-
pose that both [4, u], and the joint process [C, ] which results when this source
drives the channel, have the AEP. We can write

- ;-])-,log w([0,n — 1; $]®[0,~n e )

2 .

? = - 21 w(0,7n — 1;2)® [0, n — 1; y)]
n »([0, n — 1;2])

Our hypothesis that the joint process has the AEP now implies that the left
member of this equation converges in measure to a constant, namely the entropy
rate of the joint process, H(z, y). (Here the notation is misleading. In H(z, y),
the z and y are labels merely. Equation (2) involves z and y as specific variables.)
Also by hypothesis the second term on the right converges in probability to
H(z), the entropy rate of [A, u]. It follows then that the first term on the right
converges in probability also to a constant, which constant must then be H.(y),
by 5.4.
Now the first term on the right of (2) is

— 2 log u(0,n — 1;2).

® = 2l0g e (10,7 — 1;4),

where the argument of the logarithm is the conditional probability of [0, n — 1;y]
knowing that [0, » — 1; z] has occurred. We have therefore proved the following.

CoroLLARY. If [A, u] and [C, o] have the AEP, then the functions (3) converge
tn probability to a constant.

8. Proof of the fundamental theorem.

8.0. Introduction. For simplicity, we do not examine the question of ergodicity
and consider only the most interesting of the cases cited in the statement of the
theorem (6.1), that in which we are given a finitary source [4, , u] of entropy rate
H and a finitary channel [4, v, B] of capacity C > H, both stationary. Our
problem is then, given ¢ > 0, to exhibit an n(¢) and a finitary transducer [4, , 7, 4]
such that, when the given source drives the channel through this transducer it is
possible at the receiver, given n(e) consecutive received letters, to identify the
corresponding n(e) transmitted letters correctly with a probability exceeding
1 — e Here the probability is not conditional (i.e., not given the received letters)
but in the universe of joint events at transmitter and receiver.
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We shall review Shannon’s argument. He does not supply detailed epsilontics
here, and we shall not either. Generally, the manner in which they could be sup-
plied is evident enough, though at one point we must consider a detail. (My
efforts to make them simple have so far failed, however.)

8.1. The “likely” events. The channel [4, », B] has capacity C = H + 2,
say, where v > 0. There, therefore, exists a source, say [4, u*], which achieves
over this channel a rate

1) R*>2C—~v=H++.

We will use asterisks to denote quantities referring to this source. Let H* be the
entropy rate of [4, x*], and let [C, w*] denote the joint process of input (z) and
output (y) when [4, u*] drives the channel. For a simpler notation let K* = H} (z),
the average conditional entropy of input to [C, w*] when output is known. Then
by definition (5.3)

(2) R* = H* — K*.

We now invoke the AEP for the processes [4:, u], [4, u*], and [C, w*]. For
large n there are roughly 2™ equally likely basic sets [0, n — 1; w] from [4, , 4],
call these the likely outputs of [4;, u). Similarly there are roughly 2" equally
likely basic sets [0, n — 1; z] from [A, u*], the likely outputs of {4, u*]. Further-
more, consider the possible basic sets [0, n — 1; y] at the output of the channel.
With the exception of an aggregate of these of small total probability in [C, w*],
the conditional probabilities in [C, w*] of the [0, n — 1; z], knowing [0, n — 1; ],
are such that roughly, there are 2"*" equally likely [0, n — 1;z] for each [0, n — 1;
yl, call these the lil-ely antecedents to [0, n — 1; y].

In each of these definitions the “likely” objects in sum exhaust most of the
probability. In particular, the likely antecedents of [0, n — 1; y] exhaust most
of the a posteriori probability in [C, w*] of the basic sets [0, n — 1; 2] when
[0, n — 1; y] is known. Let us use the word “package’’ to mean ‘“‘the aggregate
of likely antecedents to a given [0, n — 1; y].”

8.2. Marked basic sets. The nub of Shannon’s proof lies in the fact that the
packages are so small that it is easy to find 2" of them which are disjoint. In-
deed, suppose one designates, “marks,” 2"” of the likely basic sets [0, n — 1; 2]
from [4, u*], doing so at random. Then the probability that a particular [0, n —
1; 2] be marked in this process is 2"*~#". Consider the 2"** likely antecedents of
some [0, n = 1; y]. The conditional probability that two or more of these get
marked, knowing that one of them is marked, is of the order of

2'nK‘.2'n(H—H‘) — 21»(11—12') é 2—-1:7’

by (1) and (2). This probability may be made small by choosing a large n.

8.3. Distinguishability a posteriori of marked inputs. Conceptually, we now
have this situation: some 2" basic sets [0, n — 1; 2] have been specially marked.
Given a [0, » — 1; y], the received message, and knowing in addition that a
marked basic set [0, n — 1; x] has been transmitted (has occurred) there is but
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a small conditional probability, in the joint universe of [C, w*] and of random
markings, that either of the following events has occurred.

(i) The actual [0, n — 1; z] which occurred is not a likely antecedent of [0,
n— 1;yl; .

(i1) The actual [0, n — 1; z] which occurred is a likely antecedent of [0, n —
1; yl, but there are other marked [0, n — 1; x] in the same package.

Theré is now virtual certainty in the joint universe of [C, w*] and random mark-
ings that the actual [0, n — 1; z] is a unique marked likely antecedent
of [0, n — 1;y] when we know [0, » — 1;y] a priori, and that a marked [0, n — 1;
x] is transmitted. That is, by making a marking at random, one is almost certain
to have chosen a limited vocabulary of 2"" basic sets [0, n — 1; ] which are
almost certain to be distinguishable a posteriori, knowing [0, n — 1; y].

8.4. The transducer. The next step is deceptively simple. One shows easily
that, given a marking, a finitary transducer can be described which maps the
2" likely [0, n — 1; w] from [4;, u] on to the marked [0, n — 1; 2] from [4, u*].
When one drives this transducer from [4,, u], the likely output basic sets
[0, » — 1; x] are just those which were marked. Therefore, when one operates
the channel from [4;, p] through this transducer he has essentially only the
vocabulary of marked basic sets appearing at the input to the channel. Let us
call the resulting joint process of input z to, and output y from, the channel the
source [C, w]. This source itself depends on the marking.

If the probabilities sketched in 8.3 can be relied on for this new situation, it is
evident that we have described a transducer, depending on a random marking,
which, when [0, n — 1; y] is given, permits the correct identification of the
[0, n — 1; z] which occurred in all but a set of cases of small probability (a
posteriori, knowing [0, n — 1; y]) in the joint universe of random markings and
events in [C, w]. We can assume that for all likely [0, n — 1; 2] the input [0,
n — 1; w] which produced it is unique. Then the average, over the joint universe
of markings and events in [C, w], of the probability that the actual [0, n — 1; w]
which occurred is not the one determined by this procedure is small. By the
Tchebycheff inequality, then, all but a small fraction of the markings will describe
transducers which make the probability of misidentifying the actual [0, n — 1;
w] stmultaneously small for all but a small fraction of the [0, n — 1; y].

8.5. Critiqgue. This argument shows that it is somehow easy to describe a
transducer which will make the probability of error small. There is, however, a
gap in the argument. The probabilities calculated in 8.3 were based on [C, w*].
In 8.4 we used these as though they applied to any [C, w] which might arise when
a marking had been made. If they are both ergodic, and this we are tacitly as-
suming, w and w* are either identical or else each assigns unit probability to a
null set of the other. (This is almost trivial to prove. To my knowledge it was
first explicity noted by G. W. Brown.) The probabilities in 8.3 are based on rela-
tions which hold only almost everywhere in [C, »*], and therefore, possibly, at
most on a null set in [C, ]. This point is not touched on in [2].

In 10.1 we shall show that finitary channels have a kind of continuity which
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permits passage from [C, w*] to [C, ], when = is large enough, without serious
modification of the probabilities. Shannon’s argument is then valid, though in:
complete, for finitary channels. Indeed, it is valid for any channel having this
kind of continuity, but I have not yet found a satisfying formulation of the
property or isolation of the class.’

9. The limit theorem.

9.0. Introduction Thissection is devoted principally to the proof of the theorem
quoted in 7.2, which has as a corollary that every ergodic source has the AEP.
We recall the definitions of 2.1 and 2.2, and use the following notation.

Given any fixed z £ A’, The symbols [t,t + n — 1;z], [z:, - - - , Teyna] denote
that basic set which consists of all 2’ ¢ A" such that 2142 = zeys, k= 0,1, -+,
n— 1.

Given a source [A4, u], the symbols f f(x) du(x), f f du, denote integration
over the space A’. Integration over a measurable subset S & A’ is denoted by

one of /; f(x) du(z), fs f du.

Following [3], we append “(u)”’ to a statement which holds almost everywhere
with respect to u, or to a statement involving mean convergence relative to u.

9.1. The Theorem. Given the source [A, u] we define the following step func-
tions of z £ A”.

_ u(l—n,0;2))

w(z) = S D2 nl,
Pa(®) w([—n, —1;2])
(1) po(z = u([zo));
gn(z) = — log pa(2), n z 0;
falz) = — %log 10, n — 1; z]), n 1.
The function p,(z) is the conditional probability that the letter which occurs
at time ¢ = 0 is z, when it is known that the letters between time { = —n and
t = —1 are also those of the infinite sequence z. The definitions of ¢.(z) and

fa(z) need no comment. They are related by the important and easily verified
formula

N-1

@) @) = 3 2 oT'z).
k=1
What is now to be proved is the
THEOREM. For any source [A, u], the sequence (f.(x)) converges in L' mean
(). If [A, u] 2s ergodic, the limit of this sequence is almost everywhere constant and
équal to H, the information rate of [A, u).
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9.2. Proor. The proof of this theorem requires the following intermediate
results.

(i) The sequence (p.(x)) converges almost everywhere (u).

(ii) BEach g.(z) ¢ L'(s), and the sequence (ga(x)) converges in L' mean (u).

These will be established in 9.3"and 9.4, respectively. Granted the second of
them, the theorem to be proved follows easily, as we now show.

We have g.(x) ¢ L', and lim, f | g — g|dp = 0 for some function g ¢ L'

Then the mean ergodic theorem (e.g., [4], equation 2.42) implies that
> ¥+ g(T*x)/N converge in L' mean to an invariant function h(z) =
h(Tz). When p is ergodic h(z) = H, a constant, almost everywhere.

By (2) of 9.1

flfzv —h|de £ fllﬁg[gk(T"x) — g(T* )] ‘dn(;:)

+[]3E oro) - o) | duta)
1 N—1 .
= Z f | gu(x) — g(x) | du(z) + f lﬁlf:(),g(T z) — h(z) | du(z).

In the second inequality we use the stationarity of x to obtain the first term.
This term represents the first Cesaro mean of a sequence which by hypothesis
has zero as a limit, hence it has also the limit zero. The second term also goes to
zero as N — «, by the mean ergodic theorem. We conclude then that f, — h
in L' mean, and that f, — H in L' mean when u is ergodic. We identify this
constant H with the entropy rate of [4, p] in 9.4.

9.3. First Lemma. We now prove that the sequence (p.(x)) converges almost
everywhere (). For any given set D ¢ F 4 define, in analogy with 9.1, (1)

I‘([ —n, =1 13] n D)
palm D) = =, =152 "
this is the conditional probability of D knowing #_n , Z_n41, - =+ , T-1. It is a re-
sult of Doob [5] that such a sequence of conditional probabilities is a martingale
(positive and bounded) and converges almost everywhere

Given a ¢ A, let D, denote the basic set of all z & A’ with 2y = a. Given any
z ¢ A’, the value of pa(z) is one of the numbers p.(x, D.) obtained as « ranges
over the finite set A. Therefore

(3) | Pa(@) — Pm(@) | = ,,‘\:4 | Pa(z, Do) — Pu(®, Da) |,

v

1:

)

because the left member is, for each z, one of the summands on the right.

Except for z in a certain null set (1), each term on the right of (3) converges
to zero as m and n goto infinity, by theresult of Doob quoted above. By (3), then,
the sequence p.(r) converges almost everywhere (u), say to p(x).
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It follows at once that the sequence g.(z) = —log p.(x) converges almost
everywhere to g(z) = —log p(x), if we admit convergence to + =.

9.4. Second Lemma. We must now show that g.(z) ¢ L! and that the sequence
gx(x) converges in mean (u). The,integrability of the g.(z) is simple to establish
directly, but will follow automatically from stronger results which are needed
later. We need a uniform bound for the contribution of the “unbounded part”’

of g, to the value of f gn du. We shall therefore show that

@ [ onins 0wz

uniformly in n, where 4, is the set of z’s such that ga(z) =
Let En. x be the set of z’s where

) K £ gu(z) <K + 1.

Let B denote a typical basic set [—n, —1; z]. Given a ¢ 4, let D, , as before,
be the basic set of all z such that x, = «. By its definition, g.(z) is constant over
each BAD,, in fact, it has there the value — log[u(BAD.)/u(B)]. Hence g.(x)
is measurable.

Let a be the number of letters in the alphabet A. There are altogether finitely
many, namely a™*, sets BAD, covering A’. Since g.(z) = 0 everywhere, we
have

A" =U U BAE, x.

B K=0

For fixed n, K, let D® range over those D, such that BAD, x & ¢. Then the step
character of g,(z) implies that BAE, x = Upx BAD*. Therefore

© [ =3[ g
BAEs K DK JBADK

and, furthermore, over any BADY, (5) holds. Therefore —log{u(BAD)/u(B))
= K, or u(BAD®) £ 27%u(B). From (6), then,

[ geds < 3 (K + D2TuB) < alK + D2W(B).
BAEnK DK
We have then that
™ [ et=] gd<®&+02"
En K B BAEnK
since 9_u(B) = 1. The right member of (7) is the Kth term of a convergent series

and is mdepender_lt of n. Since A, = Uxsy Bnx, (4) follows at once.
That g, € L! follows by summing (7) over all K = 0. This summation gives a

" uniform bound, say 8, for f gn du. Define g=(x) = inf (ga(x), L), g"(z) = inf(g(x),
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L). Then lim, g=(z) = ¢g"(x), (4), and this convergence is dominated by the inte-
grable function L. Hence

(8) lim,,f lgn —¢" | du =0,
and ¢” ¢ L. Furthermore
() fg” dy = lim, fg,'{ du = lim sup, fgn du = 6.
By (9) and the definition of the left-hand side,
[odu=tim [g ausp
whence g ¢ L'. Furthermore ‘
(10) tim [ (g = ¢"du=tim; [ (9 — " du = 0.
We have now
flg,.—glduéfly,.—yﬁldu+f|gﬁ¥ngdu+f|g‘—gldu.
The first term on the right is dominated by
f; i gn dpe
where A, is the set over which g,(z) = L. By (4) and (8) therefore,
0§1imsup,.flyn-gldu é 0(L2‘L)+f|yL—y|du.
We let L — « and use (10) to conclude that lim, f |gn — gldu = 0.

This establishes the mean convergence of the sequence (ga(x)).

It was shownin 4.3 that the entropy rateof [A, u] is lim,_., f g» du. From what
we have just shown, lim,_. f gndp = f g du. In 9.2, h(z) is defined as the limit
of 1/N 2-¥= g(T*z) and we know by the ergodic theorem then that f hdu =

f g du. When u is ergodic h(z) = H, a constant, almost everywhere. Therefore

H=fHdp=fhdu=fgdp=1imfg,.dp.

This identifies H with the entropy rate of [4, u].
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10. Finitary devices.

10.0. Sources. Shannon’s Markov-like sources, which we have here called
finitary, are defined by a construction equivalent (in a sense to be made precise
later) to one now to be described.

Consider a Markov process with finitely many states, enumerated 1,2, ---,S.
Let pi; be the probability of the transition from state j to state ¢, and £; the
stationary probability of occupancy of state ¢, so that

8

& = 2 piiki, 1278

=1

Let B be the alphabet whose letters are the symbols 1,2, --- , S. We may
suppose that the Markov process makes a transition at each time r = ¢ + 3,
t = 0,1, £2, --- . We define the stationary information source [B, »] by the
rule that the letter which occurs at time ¢ £ I is the name of the state in which
the Markov process is at that time. The p;; and the £; are enough to define this
source. A source defined in this way will be called a finite Markov source.

Let A be an arbitrary alphabet and let ¢ be a function from B to 4: a =
¢(B),BeB,acA.Giveny e B',sayy = (-++ ,9-1,% ,% , ---), we define
z=8@y)eAd" byxr = (- ,2_1,% ,%1, ), where z; = o(y:), t £ I. Let u be
the measure over F, defined by this construction. In the notation of [3], p =
»®~*. The source [4, ] we will call a projection of [B, v]. The notion of projection
clearly applies even when [B, »] is not Markov.

An arbitrary source [4, u] will be called finitary if it is a projection of some
finite Markov source [B, »]. Shannon’s sources are all of this kind in the sense
that, given any source of his, there is a projection of a finite Markov source
which produces the same ensemble of text, and conversely.

Consider now an [4, ], a projection by ¢ of [B, v]. Given a € 4, let ¢ ()
denote that subset of B consisting of all 8 such that ¢(8) = a. We will call [4, u]
unifilar if for each a £ A and each state ¢ ¢ B there is at most one transition from
% t0 ¢ *(a) which has nonzero probability.

The definition of [2], paragraph 7, and certain related results, are tacitly re-
stricted to finitary and unifilar sources. The word “finitary’’ as we use it in dis-
cussing the proof of the fundamental theorem (Section 8) may, however, be
interpreted in the wider sense defined above: being a projection of a finite Markov
process.

10.1. Channels. We now frame a definition of “finitary channel” consonant
with that just given for finitary sources. A finitary channel is spécified by:

(i) An input alphabet 4.

(ii) An output alphabet B.

(iii) A finite set D = (1, 2, --- , K) of states. We treat D as an alphabet.

(iv) A set of Markov transition matrices, || g:j(«) | , one matrix for each
a ¢ A. Each element g;;(«) represents a conditional probability of transition from

“state j £ D to state i £ D knowing that the input letter is . We have Z; g:j(a) = 1
for each j and a.
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(v) A function ¢ from D to B. The output letter from the channel is ¥(z)
whenever the transition is to the state < ¢ D.

Consider a stationary source [A, u] driving the channel so specified. Let A;
be the stationary probability of finding the channel in state j ¢ D, (if such a
probability exists). Then the probability that the letter a be presented to the
channel and that the channel make a transition to state z ¢ D is
ey ; s(laD)gi(a; .

Stationarity of the system requires now that the sum of these numbers over all
a £ A be A; . That is, the vector (\;, 2 ¢ D) must be invariant under left multi-
plication by the Markov matrix

Q = Il 3 nla) ay(e) Il

At least one such invariant probability vector exists. If, for example, each
matrix || ¢;j(«) || has a unique such invariant vector, then in general the \; will
also be unique and they will be continuous functions of the letter frequencies of
the source.

Given the \; above, the joint probability that letters oy , - - - , a. be presented
to the channel and that the corresponding sequence of states of the channel be

%1 ,1%, -, ts is similar to the expression (1):
2) p(lar, -+, anl) Zl; Qinin_z(@n) *** Gigir(a2)giyi(a); .
JE.

The joint probability of input letters [e1, -+, @] and output letters
[81, -+ , Bn] is found by summing (2) for

1) allsin ¢ (B,
(2) all iz in ¥~ (8y),

(n) all 4, in ¢~ (Ba).
The conditional probability of [81, - - - , 8a] knowing [a;, - - - , as] is then
3 ; ; e Zl: ”Z‘; Ginin—r(@a) =+ girila)r;,

where Y_; denotes the summation of 4 over ¢ (8:). The expression (3) depends
on o1, -++, as and [B1, - - -, Bal, and not otherwise upon past history. It is
independent of the source except for the continuous dependence of the \; upon
the letter frequencies. This continuity is sufficient for the proof in Section 8,
since it is easy there to guarantee that the source [4, p*] and the source which
results from putting [4; , u] through the transducer there defined have virtually
the same letter frequencies.
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10.2. A discrepancy. The purist will observe that in 2.24 we defined a channel
as a set of conditional probability measures »; over outputs, where 8 represents
the input sequence. The construction in 10.1 is not obviously of this kind, since
the measures v there obtained might well depend not only on 6 but also on the
particular source-ensemble in mind at the moment. We will not clarify the point
here. Some pedagogic license was used in 2.24, and it is simpler to enlarge the
notion of channel beyond that defined there than to try to reconcile the two
definitions.

11, A useful theorem. Let 2 be an abstract countable set of elements w.
Let A be a finite set, an alphabet. Let u be a probability measure over a Borel
field containing all sets S ® W, where S ¢ F, and W & Q. Define the measures
o Over F by u.(8) = u(S ® w)/u(A’ ® w). This definition is valid for almost
every w. Define @ over F 4 by 5(S) = u(S ® Q). Suppose that the source [A4, 7]
is ergodic and has rate H. Suppose that

(1) [ 1-10g w4’ ® )] dutz ® ) < .

Then the functions f.(z, w) = —(log u ([0, n — 1; 2] ® w))/n converge in L!
mean to H relative to u. Considering w as a parameter, for almost every w the
functions f.(z, ) converge in L! mean to H relative to u, .

Proor. Since u([0,7 — 1; 1] ® ») < 5([0,n — 1;z]) we have

@ 1@, @) 2 = Tog 1[0, n = 1;2) = (o),

where the second equality sign defines g.(z). Fix n and consider the countable
list of events [0, n — 1; 2] ® w. By the composition law (3.2), extended to in-
finite sums, the entropy of this list of events is the sum of the entropy of the
[0, n — 1; 2] and the conditional entropy of w knowing [0, n — 1; z}:

&) H({0,n — 1;2] ® w) = H([0, n — 1;2]) + Hzn(w).

Now the convexity law (3.3) implies that the ’avera,ge conditional entropy
H, .(w) is always less than the unconditional entropy of w, which latter is the
integral asserted to be finite in (1). Hence there is a finite K such that for all n

4) " H..(v) £ K.

From (2), (3), (4) and the definitions of @ and the entropies,
f | fa(z, @) — ga(2) | du(r ® w) f fa(@, ) du(z ® w)— f gn(2) di(x)

K.

v

S|t

H(0,n — 1;2] ® w — %H([O,n — 1) =

S
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Therefore ‘
1
— < — — Hi - — i
f[fn Hld,u___flf,. g,,ldy+f|g,, HlduénK+flg,. H | dg.

Since by hypothesis and (9.1) g, tends to H in L! mean (), the first conclusion
of the theorem follows.
For the second conclusion of the theorem, we note that

[15:6 0 ~Hldaow) = uta’®0) [15.6,0) - H | dut)

Since the left-hand side has limit zero, every term on the right for which (4’ ®
w) & 0 must have limit zero.

As an application of this theorem let [B, »] be a stationary source. Let [A, &
be a projection by ¢ of [B, v]. Let @ coincide with the alphabet B and for S & F,
define p by (S ® w) = »@'(S) N D,) where D, is the set of y £ B' such
that y1 = w. The theorem then implies (if [A, f] is ergodic) that the rate of
[A4, u] may be calculated by considering conditional probabilities knowing that
the letter w occurred at time —I. When [B v] is finite and Markov, this often
leads to simplified calculations.

As another application, consider a fixed countable partition of A" into sets
8. € F, . Given an ergodic source [A, ], define u(S ® w) by u(S ® ) = g(S N
S.). The theorem then implies that the entropy rate of {4, f] can be calculated
using only partitions which refine the given one.
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