ON REGULAR BEST ASYMPTOTICALLY NORMAL ESTIMATES!

By CHiN Long CHIANG
University of California, Berkeley

1. Introduction and summary. This study was initiated in connection with
estimating parameters involved in a ‘certain stochastic process of population
growth. Because of the nature of distribution functions arising in such studies,
the usual methods of estimation result in formulas which are so complex that it
is difficult, if not impossible, to obtain explicit solutions for the estimates of the
parameters. Investigation of the problem led to an extension of the method of
best asymptotically normal estimates developed by Neyman [1]. The estimates
derived are termed regular best asymptotically normal estimates (RBAN esti-
mates). This extension can be applied to other problems.

In [1], Neyman considers a whole class of estimates which possess the proper-
ties of consistency, of asymptotic normality, and of asymptotic efficiency, and
he provides estimates having these asymptotic properties for the case of multi-
nomial distributions. His method is extended in the present paper to a more
general case in which random vectors are dealt with. Such an extension was
considered by Barankin and Gurland [2], who studied a large class of estimates
and showed that if the distributions involved are members of Koopman’s family,
it is still possible to reach the Cramér-Rao lower bound.

The purposes of the present paper are to discuss a subclass of the estimates
considered by Barankin and Gurland and to present simple methods of generating
such estimates. The estimates discussed are based on a number of independent
random vectors whose distribution functions are not specified. It is proved that
under certain regularity conditions, the regular and consistent estimates obtained
are asymptotically normal as the number of random vectors tends to infinity. A
necessary and sufficient condition for a regular and consistent estimate to have
a “minimal” asymptotic covariance matrix is given. An expression is derived
for the “minimal”’ asymptotic covariance matrix. It is also proved that if a func-
tion f satisfies certain condltlons, then in order that £(8) be an RBAN estimate
of £(0) at £(8"), where 6° is the true value of the parameter point 6, 1t is necessary
and sufficient that the argument 6 be an RBAN estimate of 0 at 0°. Methods of
generating RBAN estimates are given.

For simplicity of presentation, matrix notation is used throughout this paper.
By derivatives of a matrix with respect to a vector (or with respect to a second
matrix) is meant the derivatives of the matrix simultaneously with respect to
all the components of the vector (or all the elements of the second matrix).
The usual rules of differentiation with respect to vectors are used.
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RBAN ESTIMATES 337

2. Assumptions and definitions. Let
Zo= Za,Zar, *** yZLan), fora=12 ---,m,

be a sequence of independent random vectors taking their values in an n-dimen-
sional Euclidean space R, . Let

6 = (01,"’,03),

be a parameter point ranging through a subset ® of an s-dimensional Euclidean
space. The true value of the parameter, denoted by €’ is assumed to be the
center of a nondegenerate s-dimensional sphere contained in ®. For each 6 ¢ ®
and for each a, it is assumed that the vector Z, either possesses a probability
density or is discrete. The density or frequency function of Z, will be denoted
by pa(z; 60), depending on 8. Let {.(8) be the expectation of Z, and let {..(0) be
the average of the expectations, i.e.,

W0 =13 .

For the sake of simplicity in further formulas, whenever the parameter takes on
the true value 6°, & will be written for Z.(6°).
The following assumptions will be made throughout the paper.
AssumprioN 1. The second central moments

¢y 02aitai = B{(Zai — £oi)(Ze;s T %) |6 = 0°}, fora=1,2 ---,m,
5,7=12---,n,

are finite and the matrix

O0Z4iZaj || » ,J=12---,n,

1 m
* = —
(2) On =2 “ m a=1
tends to a positive definite matrix ¢* as m tends to infinity.

AssumpTioN 2. Let
p= D (Zai — £23)°.
a1
Then, for every ¢ > 0,

lim LY f _ 0"Da(z; 6% dz = 0.
mr0 M a=1 J|p|>eym
AssumpTION 3. As m — o, {,(0) tends to ¢(8) in such a way that
V/m | &n(8) — £(0)| tends to zero. Let & = (61, 02, -+, 6),for 1 < k < 8.
The function ¢(8) has continuous second partial derivatives with respect to 6; ,
and. the matrix
a(e)

(3) Vk(O) = '—5&"‘
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has rank k in the neighborhood of the true value ° = (67, 63, ---, 63) for
every k, 1 =k = s.

Constant use will be made of the following definitions.

DermviTioN 1, Let {6,(Z;, -+, Zn)}, m = 1, 2,---, be a sequence of
functions of the observations, taking their values in the s-dimensional space
containing ®. The sequence {8,} will be said to be a consistent estimate of the
parameter point 0 at the true value 6’ if, as m — o, 8, tends in probability
to 6°. This means that for every ¢ > 0 and # > 0, there exists a number m.,
such that m > m,,, implies

Pr{|0n — 0'| > ¢|0 = 6"} < 1.

DEeriniTION 2. Let B be a positive definite matrix such that as m — o, the
distribution of /m B (6, — 6°) tends to a multivariate normal distribution
with a mean zero and a covariance matrix identity; then for 6°, the estimate
8. is said to be consistent and asymptotically normal and m BB’ is said to be
the asymptotic covariance matrix of 6. .

Let Zn = 1/m D> mey Z. be the average of the vectors Z. and let S, be the
sample covariance matrix.

DEeFINITION 3. An estimate 6., is said to be regular if

(i) for every m = 1, 2, ---, the function 8.(Z;, Z;, --- , Z,) is either a
function of Z, or a function of Z, and S, , but it does not depend explicitly
either on m or on the individual vectors Z, ;i.e., 0n(Zi, Z2, -++ , Zn) = 6(Zn)
O 0n(Z1, Zsy -+, Zn) = 6(Zn,Sn); and

(ii) 8(Z.) has continuous first partial derivatives with respect to Z.. when the
estimate is a function of Z, ; or, 8(Z. , S») has continuous first partial deriva-
tives with respect to Z., and S,, when the estimate is a function of ZnandS,.

Since the theorems in the following section will be concerned mainly with the
derivatives of 8, with respect to Z,, , only 8(Z,.) will be used in Section 3.

3. The main theorems. The purposes of this section are to show that regular
and consistent estimates are asymptotically normal, to derive a necessary and
sufficient condition for an asymptotically normal estimate to have a ‘“minimal”
asymptotic covariance matrix, and to give an expression for the “minimal”
covariance matrix.

The following well-known lemmas are stated in appropriate forms.

LemMa 1. Let X, and Y., be s-dimensional random vectors and let Z,, be an
n-dimensional random vector satisfying the relationship

Xm = szm + Ym’

where Do, is an s X n random matriz. Suppose that as m — « , D, tends in proba-
bility to a matriz D with constant elements, Zn has a limiting distribution, and
Y.. tends in probability to zero. Then X has the limiting distribution defined by the
relation X = DZ, where Z has the limiting distribution of Ze .
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Proor. X,, may be written as
X, =DZ,+ Dn— D)2, + Yy, =DZ, 4+ U,.

According to a theorem by Slutsky [3] (see also Cramér [4], pp. 254, 299; Neyman
[1], p. 245), U,, tends in probability to zero as m — «. Furthermore, DZ,, has
the same limiting distribution as DZ. The lemma follows from a second appli-
cation of Slutsky’s theorem.

LemMma 2. Let Assumption 2 be satisfied. As m — «, Z,, tends in probability
to &, and the distribution of \/m(Zn — ) tends to an n-variate normal distribution
with a mean zero and a covariance matrix é*, as defined in Assumption 1.

The lemma is a consequence of the central limit theorem (cf. [5], p. 113) and
Lemma 1, since vVm(Zn — &) = Vm(Zn — Tm) + Vm@n — ).

Let

A=“ak‘“) k=1,2’o..’s’ i=1’2’...’n,

be an s X n matrix of rank s < n. Let A; stand for the row vector of the matrix
Afork=12 ---,s
TueoreM 1. Under Assumptions 1, 2, and 3, the random vector

4) VmZXn = Vm AZn — )

has an s-variate asymptotically normal distribution with a mean zero and a covart-
ance matriz A¢*A’. Moreover, as m ~ « , X,, tends in probability to zero.

Proor. According to Definition 2 of the asymptotic covariance matrix, it is
to be shown here that there exists a positive definite matrix, B, say, such that
the quantity ~/m BA(Z,, — ) has a limiting distribution which is normal
with a mean zero and with a covariance matrix identity. Since ¢* is a positive
definite symmetric matrix, and since A has rank s, A¢*A’ is also a positive definite
symmetric matrix. Hence, there exists a unique positive definite symmetric
matrix, B, such that B* = A¢*A’, or equivalently,

B(A¢*A)B™Y =1, (s X s identity matrix).

Because of Lemmas 1 and 2, v/m B™A(Z,, — ¢’) has the same limiting distribu-
tion as B™AY, where Y is normally distributed with a mean zero and a covari-
ance matrix ¢*. Consequently, \/m B™A(Z,, — ¢ is asymptotically normal
with a mean zero and with a covariance matrix B A¢*A’B™, which is an
identity matrix. Thus, by Definition 2, the asymptotic covariance matrix of
Vm AZ, — ) is BB’ = A¢*A.

The convergence of X, to zero follows immediately from the equation
X, = A(Z, — ) and from the fact that Z,, tends in probability to ¢’ (Lemma 2).

TurorEM 2. Suppose that 8(Z,) is a regular and consistent estimate of 0 at
o’. Then,

(1) 6(2") = 6° with a probability tending to one, and
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(i) v/m[8(Z.) — 0°] has an s-variate asymptotically normal distribution with a
mean zero and a covariance mairiz Aé*Ag , with

(5) Ao = @(_Zﬂz .
0Zn |
Proor. Since Z,, tends to ¢,

";1112 é(Zm) = 6((0)7

and since 8 is consistent, 8(Z,,) tends also to 6°; part (i) follows.
According to Taylor’s theorem,

8(Zn) — 0() = An(Zn — O)
with
_ 06(Zn)

BZ". £0+5m(zm_(0) ’

where 3,, is an n X n diagonal matrix having all its diagonal elements between
zero and unity. As m tends to infinity, ¢® + 8.(Z, — ¢°) tends in probability
to ¢". Since the derivatives of & are assumed to be continuous, A% tends in proba-
bility to Ae . Consequently, /m [6(Z.) — 6°] has the same limiting distribution
as v/m Ao(Zn — ") (Lemma 1). The rest of the proof follows from Theorem 1.

CoroLLARY. Let 6, be the kth element of the vector 8. Suppose that bu(Z.) is a
regular and consistent estimate of 6y, at 6 , then,

(i) 6:(°) = 6} with a probability tending to one, and

(i) v'm 0:(Z,) — 6%] has an asymptotically normal distribution with a mean zero
and a variance Ayé* Ay , with

A

— aék(zm)
A = 7. o

The corollary, which is a direct consequence of Theorem 2, may also be verified
by considering the following equation:

9k(zm) - élc((o) = A;:(Zm - c0)7
with
— aék(zm)

A¥ — .
* 0Zm | {+0nEn—"

Here, the diagonal matrix 5, has the same meaning as defined in Theorem 2.
DeriniTioN 4. Let C* be a class of symmetric positive definite matrices of
rank s. A matrix G £ @* is said to be minimal with respect to €* if, for every
H ¢ @*, the difference H — G is positive semidefinite; i.e., for any 1 X s row
vector u and for any H ¢ @*, the quadratic form u(H — G)u’ is nonnegative.
Let @ be the class of matrices which are covariance matrices of the limiting
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disgribution of v/m[6(Z.) — 0% for some regular and consistent estimate
6(Z,).

DEFINITION 5. A regular and consistent estimate 8(Z,,) is said to be regular
best asymptotically normal (RBAN) if the covariance matrix A,6*A; of the
limiting distribution of v/m [6(Z,.) — 6] is minimal with respect to the class €.

TuroreM 3. Let 8(Z,,) be a regular and consistent estimate of 6°. Then,

() n order for 8(Z.) to be RBAN, it is sufficient that the matriz

_ 9b(Z,)
Ao azm ém‘(o
satisfy the condition
(6) Ay = C5'Voe* 7™,
where Co = V0¥V, and
8¢(6)
Vo = =22 ;
° 3(0) | o-0°

(ii) the corresponding “minimal”’ asymplotic covariance matriz of 0(Z.) is
given by

) & = mCy;
(iii) condition (6) is also necessary if there exists a regular and consistent esti-

mate having the asymaptotic covariance matriz m ™ Cy .
Proor. If (6)is true, then
Agd*Ay = (C'Vos* ) e*(Co'Vog* )

= Cy'Vpo* é*e* 'V, Gy

= Ci'Voo* Vo C7' = Gy

Thus, the second part of the theorem is an immediate consequence of the first

part.

The proof of the first part rests upon the fact that for any regular and con-
sistent estimate 8, the equation 8(Z) = 6° holds with a probability tending to
one, and this implies that

20k®]| o) _
oy I a(e) leo 7
which can be rewritten as
(8) 1 ‘ AV, =L,

The asymptotic covariance matrix of 8, by Theorem 2, has the form,

9) 8 = m ' Agd*Ay .
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To minimize Agé*A; subject to condition (8), introduce the Lagrange multiplier
o« = ||oml|, k,h=1,2/--- s,
differentiate
Ags*Ay — 2o(VAg — L)
with respect to Ay, set the derivative equal to zero to get the equation

(10) Ay* — aVy = 0,
and solve (10) for A,,
(11) Ay = aVoo* .

Substituting (11) in (8) gives
aVod* 'V = 1,

ie., «Cy = I, , and hence

(12) o= C7l.
It follows from equations (11) and (12) that
(6) A, = C7'Ve* .

It is easy to verify that a regular and consistent estimate satisfying equation
(6) will have the property of bestness as defined in Definition 5. Suppose that
8(Z.,) is any regular and consistent estimate of 0 at 6, and let A, be the cor-
responding derivative taken at {°; then A, also satisfies equation (8). If A, does
not satisfy condition (6) but A, does, then the difference (Ap — Ag)é*(Ao — Ao)’
is positive semidefinite. Since

(Ko — Ao)o*(Ao — Ao) = (Ky — C3'Voe* V)e*(Ky — C'Voa*ty
= Kpo*Aq — C;'Voo* 16*Ky — Koe*¢* 1V, C5!
+ ColVoe* le*¢* 1V, Gyt
= Aw*A; — CJ'L — LC7' + C3t
Koo*Ky — Ag*A;,

the difference Ao6*A; — Ag6* A is also positive semidefinite. The result follows
from Definitions 4 and 5.

To prove part (iii), suppose that there exists a regular and consistent estimate
6 whose derivative taken at {°, Ao, satisfies condition (6). Let § be any other
regular and consistent estimate of 0 at 6° and let A, be its derivative taken at
. In order that the asymptotic covariance matrix é¢5 = m'Ko*Aj of § be
minimal, it is obviously necessary that

It

Kod*x(,) = Aod*As ,
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which implies that the equation
(13) (Ao — A)é*(Ao — Ag)’ = 0.
Equation (13) holds only if A, — A, = 0, i.e.,

Ko = Ao = C7'Voer,

proving part (iii).

It will be shown in the next section that there exist estimates of 0, regular
and consistent, whose asymptotic covariance matrix is equal to m™Cy™.

ReMARk. When a regular and consistent estimate § is a function of both
Zn and Sy, ie., when 6 = 8(Z,, S.), a sufficient condition imposed on the
derivatives of the estimate with respect to Z,, and S,, taken at £ and ¢* i.e.,
that the estimate have a “minimal” asymptotic covariance matrix, can be de-
duced by a similar a;hproach. The condition so obtained will be similar to, though
not the same as, (6). Both the condition and the corresponding ‘“minimal”
asymptotic covariance matrix of the estimate will involve the covariance matrix
between Z,, and S,, . If the covariance matrix between Z,, and S,, is unknown,
it is tedious to obtain estimates having such a “minimal”’ asymptotic covariance
matrix. On the other hand, a condition imposed on the derivative of 8(Z,, , S,)
with respect to Z,, taken at ¢° and ¢* will be the same as (6), and the correspond-
ing asymptotic covariance matrix of the estimate will be equal to m™Cs?, if the
variation of S, is neglected. Such negligence is, in a way, not desirable. The
essential purpose of this study, however, is not only to deduce a necessary and
sufficient condition for an estimate to have “minimal” asymptotic covariance
matrix, but also to generate estimates satisfying such a condition or having
such a “minimal”’ asymptotic covariance matrix. Therefore, it seems to be justi-
fied to content oneself with condition (6) and with estimates having the asymp-
totic covariance matrix given by equation (7) (see Section 4).

COROLLARY 1. Let 6; be the kth element of the vector 0 and 0x(Z.) be a regular
and consistent estimate of 0, at 6 , for k = 1,2, - -+ , s. Then,

() on order for 6u(Zn) to be RBAN, for every k = 1,2, -+- , s, it s sufficient
that the matriz Ao satisfy the cond;itz'on

(6) Ay = Co'Vos*™;
(i) the mensmum asymptotic variance of 6u(Zn) s given by
14) 5%, = m'aC'e,

where gy = (0, --+,0,1,0,---,0) isan 1 X s row vector with the elements zero
except the kth element, which is unity.

Proor. In order to prove (i), it is adequate to show that for every
k=1,2, -, s, a sufficient condition for §(Z.,,) to have minimum asymptotic
variance is implied in (6). Since 6, is regular and consistent, the corollary to
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Theorem 2 gives
(15) Be(L) = 6
and the asymptotic variance of 6 ,
85, = mIAL6*A;,
with
_ b,
0Zn 1"

By using a similar approach employed in the proof of Theorem 3, minimization
of A,é*A; leads to the equation

(16) A, = £,Co'Voe* .

Thus, equation (16) is a sufficient condition for é; to have the minimum asymp-
totic variance. Because & Ca’Voé* " is the kth row of the matrix C5'Vyé* ", (16)
is the same condition which was imposed on the kth row of matrix A,. This
means that equation (6) implies equation (16), for every k = 1, 2, -- -, s; thus
proving part (i). It is of significance to note that whereas condition (6) implies
the entire set of s equations (16) for £k = 1, 2, -+, s, the entire set of the s
equations (16) also implies equation (6).

Part (ii) of the corollary can be shown by substituting (16) in the expression
Aié*A; . Simple computation gives €,Cs'er. Equation (14) follows. The right-
side member of (14) is identically equal to the kth diagonal element of m™Cs”,
the asymptotic convariance matrix of 6.

The significance of this corollary is that when all of the components of the
vector 0 are estimated simultaneously, each of the individual estimates will
have the minimum asymptotic variance.

CoroLLARY 2. Let 8(Z.,) be a regular and consistent estimate of 8 at 0°. Suppose
that the components of the random vector Z.. are statistically independent. Then

(i) in order for 8(Z.) to be RBAN, it is sufficient that the matrix Ao satisfy the
condition

A

A, = G7'VD* 7,
where D* is the limit of the diagonal matriz D with diagonal elements

1<x o .
—Edz.n f01'2= 1929"'7n:
M aml

and Go = VoD¥ 'V ;
(ii) the “minimal” asymplotic covariance matriz of 8(Z,) is given by
a7 8 = m Gyl
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The corollary is a direct consequence of the substitution of ¢z,;z,; = 0 for
1#7;4,7=1,2, .-+, nin Theorem 3.

CoroLLARY 3. Let 6,(Z..) be a regular and consistent estimate of 65 . Suppose
that the elements of the random vector Z., are statistically independent. Then,

(i) in order for 6(Z,) to be RBAN, it s sufficient that the vector Ay satisfy the
condition

A, = &Gy VD¥,

where D* and Gy are defined as in Corollary 2;
(ii) the minsmum asymptotic variance of by ts given by

2 -1 ~1 7/
o6, = m gGo e .

The corollary is a direct consequence of the substitution oz,z,; = 0, for
1% 5;4,7=12,--+,n,in Corollary 1.

It is clear that an estimate having the minimal asymptotic covariance matrix
in the sense of Definition 5 has a remarkable property of bestness, at least
asymptotically. To make this point more apparent, the following general theorem
is given.

TueoreM 4. Let 6 be an RBAN estimale of 8 for values of 0 in a neighborhood
v of 6°. Let £(6) be a function of ® with its range in a Euclidean space.

() If £(8) admits continuous partial derivatives ¢ in the meighborhood of €',
then £(8) ¢s an RBAN estimate of £(8) for 6 € ».

(ii) If the matrix

N

00

_Y
)
has rank s, then in order for £(8) to be an RBAN estimate of £(8), 4t is necessary

and sufficient that the argument 8 be an RBAN estimate of .
Proor. Let h(Z,,) be any other regular and consistent estimate of f, and let

h(Z.)
H= .
0Zn I
As in the proof of Theorem 3, we can show that H must satisfy the relationship
(18) HV, = ¢,

where V, is the derivative of £(8) taken at 8 = 6°, as defined in Theorem 3.

Since 6 is RBAN, the limiting distribution of v/m {f{8(Z..)] — £(6°)} is normal
with a mean zero and a covariance matrix ¢A,6*Agd’. Similarly, the limiting
distribution of A/m [h(Z.) — £(6°)] is normal with a mean zero and a covariance
matrix Hé*H’. To show that £(8) is best, it is sufficient to show that if H satisfies
(18), then the difference Hé*H’ — ¢Ao6*Agd’ is positive semidefinite. Let

= = (H — ¢A))e*(H — $A))’
= H¢*H' — ¢Ap*H' — Ho*Ad' + dArs*Acd’.
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Replacing Ay by CyVoé* ™,
= = He*H' — $Ci'VoH' — HV,Ci'¢’ + ¢ Co'¢,
or, owing to (18),
= = He*H' — $C5'¢p/ = He*H' — $pAss*Acd'.

Since = is obviously positive semidefinite, part (i) is proved.
To prove part (ii), let

_ ob
0Zm 1’
and consider the matrix (¢4, = dAo)d* (@A) — A,). Using the relations
Apé* = Co'Voand AV, = I, = A,V,, simple computation leads to the equation
@Ko — $A)* (Ko — 9A0) = ¢Kos*Kod’ — dArs*Acd'.

The last difference, then, is positive semidefinite unless $Ay = Ay . Since ¢ has
rank s, this implies that Ay = A, hence the necessity of the condition. The
sufficiency follows from part (i). _

CoroLLARY. Let the random vector (61(Zn), -+ , 0:(Zm)) be a regular and
consistent estimate of (63, - -+ , 6%), for r < s. Then,

(i) in order for the random vector to have “minimal” asymptotic covariance matriz,
or for the elements 0(Zn), for k = 1, 2, --- , r, to have the respective minimum
asymaptotic variances, it is sufficient that

A
E = 61'06-1 60_*—1 )
A,

with
10 00 0
S AR
00 10 0

being an r X s matriz;
(ii) the minimal asymptotic covariance matriz of the random vector is

m%5,C'55, .

The proof of the corollary is obvious.

Random vectors Z, considered in this paper are assumed to be independent
but not necessarily identical. If identical distribution is assumed, then Assump-
tion 2 is no longer necessary, and Assumptions 1 and 3 may be replaced, respec-
tively, by Assumptions 1’ and 3’.
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AssumpTioN 1’. The second central moments
E{(Zai — £0)(Za; — £3) | 0 = 6°),

fora =1,2,:--- ,mandfors,j = 1,2, ..., n, are finite.

AssumprioN 3'. Let 6, = (61, 02, -+, 6,), for 1 < k < s. The expectation
E(Z,) = {(0) has continuous second partial derivatives with respect to 6,
and the matrix Vi(6) = 3¢(0) / 36, has rank & in the neighborhood of the true
point 0°, forevery k, 1 2k < s.

In this case the strong law of large numbers can be used and the results will
be stronger—the vector Z,, tends almost surely to the expectation £(6°), the esti-
mate 6(Z,,) tends almost surely to the true value 6°, and all the other proba-
bilistic statements will be stronger.

4. Methods of generating RBAN estimates. In this section methods are given
by which RBAN estimates can be obtained. Application of the first method
(Theorem 5) requires the knowledge of the matrix 8* In the second method
(Theorem 6), such knowledge is not assumed.

TrroREM 5. Let a quadratic form Q(Z. , 8) be defined by

(19) QZn, 0) = [Zn — LO)6*(0)[Zn — (O)],

where ¢*(0) ts assumed fo have continuous second partial derivatives with respect
to 0 in the neighborhood of the true parameter point 0°. Let Assumptions 1 to 3 be
satisfied. Then,

(1) As m — oo, there exists, with a probability tending to one, one and only one
function 8(Z.) which locally minimizes the quadratic form Q(Z.. , 0);

(i) The function 8(Z,.) is a consistent estimate of 0°;

(iii) 8(Z.) is regular in the sense of Definition 3;

(iv) Vm[0(Z,) — 6% has an s-variate asymptotically normal distribution;
and

(v) 8(Z,.) has the asymptotic covariance matriz m ™~ Cq, with Co = Vod*'V,.

Thus 8(Z,.) is an RBAN estimate.

Because the proofs of Theorems 5 and 6 are analogous, only the proof of
Theorem 6 is given.

TuEOREM 6. Let S,, be a consistent estimate of ¢* at 0 = 6°, and let a quadratic
form Q(Zn , S , 0) be defined by

(20) Q(Zm ’ Sm’ 0) = [Zm - {(0)]’8;1[21" - {(0)]'

Let Assumptions 1 to 3 be satisfied. Then,

(i) As m — o there exists, with a probability tending to one, one and only
one function 8(Z., , Sn) which locally minimizes the quadratic form Q(Z,. , Sn, 8);

(i) The function 8(Z.. ,Sn) is a consistent estimate of 6°;

(iii) 8(Z.,. , Sn) s regular in the sense of Definition 3;

(iv) vVm [6(Z. , Sw) — 0°] has an s-variate asymptotically normal distribution;
and
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() 8(Z,, ,Sn) has the asymptotic covariance matriz m " Cs", with Co = Voé* 'V .

Thus, 8(Z,, , S.) is an RBAN estimate.

In writing quadratic form (20), it is assumed that for every m = 2,3, -- -,
the matrix S,, is positive definite with a probability one.

Proor. Differentiation of the quadratic form with respect to 0 leads to the
equation

(21) W(Zn,Sn, 8) = V(0)S'[Zn — £(0)] = 0,

with V(0) = 9¢(8) / 30. Clearly, the derivative of @ with respect to 6 is equal
to —2W. In order to prove part (i) of Theorem 6, we have to show that as
m — o equation (21) has, with a probability tending to one, a root, 0(Zn,Sm),
in the neighborhood of the true parameter point 6°, however small is the neighbor-
hood, and that at the point 8(Z,, , S.), the quadratic form attains a minimum.

Equation (21) is satisfied for Z,, = £, S, = ¢*,and 8 = ¢’, since {’ is written
for £(6°). Clearly the function W(Z,., S, 0) possesses continuous first partial
derivatives with respect to Z,, and S,, . Assumption 3 on the differentiability of
the function ¢(6) implies that W(Z,., Sn, 0) possesses also continuous first
partial derivatives with respect to 6. The derivatives taken at the point
(', 6*, 0") are

oW _ V(e

6 |05 = o Sn' [Zn — £(0)] Paeg T V'(6)S='V(6) .

0 'a.'oo
= — Vog*7'Vq,

where Vo = V(0% is of rank s and é* is positive definite; hence, Voé* 'V, is
positive definite. It follows from the implicit function theorem ([6]; p. 117)
that (a) there exists a region R containing (°, 6*) and a rectangular parallelepiped
(6*, 6**) containing 6° such that for every point, (Z, S), say, inside the region
R, equation (21) holds for one and only one point 8 = 8(Z, S) inside the paral-
lelepiped (6*, 6**); (b) the Jacobian |0W / 86| taken inside (6*, 6**) will have a
constant sign; (c) the function 8(Z, S) is a continuous function and possesses
continuous partial derivatives with respect to Z and S; and (d) substitutions of
Z = " and S = ¢* into 8(Z, S) lead to the equation 8(°, ¢*) = 6, the true
parameter point.

Because of the convergence of Z,, to ’ and S,, to é*, as m — o, with a proba-
bility tending to one, the point (Z, , S,) will be inside the region R, however
small is R, and thus the equation (21) will hold for one and only one point
0(Z,. , S,) inside (6*, 6**).

It may be convenient to point out here that (c¢) and (d) imply the consistency
of the estimate 8(Z,, , Sn).

To show that the quadratic form Q(Z,, , Sn , 6) attains a minimum at the point
0(Zn, Sm), we let 0, = (61, 62, -+, 6), for 1 < k < s, and let Vi(8) =
3¢(0) / 36y, , which is of rank k. For k = s, 6, = 6 and V,(8) = V(6). The second
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partial derivatives of Q(Z,, , S, , 0) with respect to 8; are

@2) ¥Q_ _,aVi(e)

i %0, SalZn — 1(0)] + 2Vi(0)S5'V,(6).

The first term on the right-hand side of (22) tends in probability to zero, and
the second term is positive definite in the neighborhood of 6°, for every 1 < & < s.
Because of the convergence of 8(Z,, S.) to 6°, this means that the matrix
V’(6)S%'V(8) is positive definite for 6 = 8(Z., » Sm) and that all of the principal
minors of the matrix are positive. It follows that Q(Z.,., S,, 6) is a minimum at
0 = 8(Zn, Sm) ([7], pp. 51-52).

Regularity of the estimate 8(Z,, , S,.) is implied in (c).

Since 8(Z,,, S,) is a regular and consistent estimate of 0’, it follows from
Theorem 2 that \/m [6(Z,, S.) — 07 is asymptotically normal, proving part
@iv).

We now write

W(Zn,Sn,0") — W(Z,,Sn,0) = {%‘f IH,}W ),

/4

- {(ﬂ‘i )s;l[z,n — 0] — V’(o*)S;‘V(e*)} © — ),
30 lo=o*

where 0* = 6° + §,,(6° — 8), with 5, being an s X s diagonal matrix having all

diagonal elements between zero and unity. Transposing the derivative of W to

the other side of the equality sign gives

A a0 ) xprfax) el *_ﬁ _1_*_11_1 0
6—0 —{V(e SRV (6%) (ao H,)smlim () )]} VoSn'Zn — O,

since W(Zn , S, ) = 0 and W(Z,., Sn, 0°) = ViSn'[Z, — ¢|. By Lemma 1,
v/m (6 — 6% has the same limiting distribution as

. -1
m {V’(e*)S;.‘V(o*) - <%% 0_0,) SHZn — ((e*)l} VoSalZa — %,
or as
(23) ‘\/ﬁ {Vsd*_lvo}_lv(,)d*—l[zm - (0]’

since Z, = ¢, S, — ¢*, 0*— 0, and
"(6%)S5' V(%) — f’l', )s-‘Z — o)} Vos* V.
{vorszves - () Vst -« 1} = Vet

According to Theorem 1, the quantity (23) is asymptotically normal with a mean
zero and with an asymptotic covariance matrix

[{ Voo* " Vo) ™ Voa* "6 Voo* Vo) VoY) = {Voe* 'V} 7%,

proving the theorem.
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In the practical application of the preceding methods there may be difficulties
in solving such equations as (21) for 8, since the function { might be a compli-
cated function of the parameter 6. In such cases, devices suggested by Neyman
[1] may be used.

In the light of Theorem 4, an estimate of a function £(0), say f, may first be
found and then f may be used to obtain the estimate of the parameter 8, pro-
vided that the function f satisfies the regularity conditions assumed in Theorem
4. One possible such function is f(6) = {(0). Assumption 3 on the function ¢
implies that the regularity conditions in Theorem 4 are satisfied. Thus the
quadratic form (20) may be minimized with respect to { to obtain the RBAN
estimate ¢ and then the equation { = £(8) may be solved for 8. In doing so,
however, it should be remembered that ¢ is a vector of n components, and 0
is a vector of s < n components. To ensure a unique solution of 8 from the esti-
mate ¢, the function { must be subject to n — s = r restrictions before esti-
mation takes place. Let the restrictions be represented by the equation

(24) FF=FQ¢ =0,

where F° is an r X 1 column vector. Equation (24) is deduced by eliminating
the parameter 0 from the equation { = £(8), with f denoting the function of the
parameter 0. The estimate obtained by this procedure is identically equal to the
one found by directly applying Theorem 6.

A second modification of the methods is suggested for the purpose of deriving
an explicit formula for the estimate {. Under Assumption 3 on the differenti-
ability of the function ¢, the function F({) has continuous partial derivatives with
respect to { and the matrix of the derivatives has rank r. Using Taylor’s theorem,
we write the reduced form of the restrictions (24),

(25) F*(, Zn) =F + T — Z.) = 0,
where F = F(Z,,) and

roFQ)
a Z,
The idea is to minimize the quadratic form (20) with respect to ¢, subject to the
reduced form, (25), instead of the original restrictions (24). The resulting esti-
mate is also RBAN. This is shown in the following lemma proved in [1}, p. 257,
in the case of multinomial random variables.

Lemma 4. Let Q denote the quadratic form Q(Z, , 0) or Q(Z, , Sm, 0). If the
minimazation of the quadratic form Q under restriction (24) leads to an RBAN
estimade of the expectation ¢, then the minimization of the same quadratic form under
the reduced restriction (25) will also lead to an RBAN estimate of L.

An explicit formula for the estimate of {° is given in the following:

LemMa 5. The function {(Zn , Sw), which minimizes the quadratic form

(20) QZw,Sm, 0) = [Zn — LO)SHIZn — £(6)]
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subject to the reduced restrictions (25), is given by

(26) 8(Zn,Sw) = Zn — S,T'P'F,
with P = TS, T'. The corresponding quadratic form is given by
@7 QZ.,Sn,{) = FP'F.

The first part of the lemma can be proved easily by using the Lagrange method
as outlined in the proof of Theorem 3. A direct computation gives the second
part of the lemma.

In obtaining RBAN estimates in a practical problem, the essential part of the
work is deducing the side restrictions (24). Once the side restrictions are deduced
RBAN estimates can be obtained by a straightforward computation. A detailed
description of the procedure is given in [8].

An application of the methods has been made to a stochastic process of flour
beetles, and the work is being prepared for publication elsewhere.
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