A COMPARISON OF TESTS ON THE MEAN OF A LOGARITHMICO-
NORMAL DISTRIBUTION WITH KNOWN VARIANCE! ®

By Norman C. SeveEro® anD Epwin G. OLps

Carnegie Institute of Technology

1. Summary. Three test procedures are considered for testing an hypothesis
on the mean of a logarithmico-normal distribution with known variance. The
first is a normal theory test applied to the logarithms of the original data; the
second is a normal theory test applied to the original data; and the third is a
test based on the Neyman-Pearson Lemma.

The operating characteristics of these tests are developed and some asymp-
totic properties obtained. It is found that the three procedures give quite dif-
ferent results unless the mean under the null hypothesis is large relative to the
standard deviation.

2. Introduction. The studies of the correct transformation to be applied to
data in order to more closely fulfill the assumptions underlying a statistical test
occupy an important place in the statistical literature. In particular, the use of
the logarithmic transformation is widely advocated in cases where the error
distribution is known to be logarithmico-normal; or where component effects
in the analysis of variance are multiplicative; or where variance heterogeneity is
such that the variance is proportional to the square of the mean. The logarithmic
transformation would then make the error distribution normal; or cause the
effects to be additive; or homogenize the error variance. Thus, a transformation
is effected in order to force an observed, and slightly unconventional, model
into a well-known and rather well understood model.

The present investigation is concerned with the application of the logarithmic
transformation to the problem of testing an hypothesis on the mean of a logarith-
mico-normal variate with known variance. An experimenter can fail to recog-
nize the need for a transformation and simply proceed to apply normal theory
tests to the original data, or he can properly transform the data and then apply
a normal theory test to a parameter of the transformed scale. Each of these
testing procedures is investigated in detail.

Finally, a third test procedure is developed by using the Neyman-Pearson
Lemma for testing simple hypotheses.

A comparison of these tests is then made by means of their operating charac-
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LOGARITHMICO-NORMAL DISTRIBUTION 671

teristics and some asymptotic properties obtained. It is found that the three
procedures give quite different results unless the mean under the null hypothesis
is large relative to the standard deviation.

3. Statement of the problem. Let y be a normal variate with probability
density

1
o2

_<U—#y>2/2‘7§.

(3.1) 9; by, o) =

Then z, defined through y = In 2, is a logarithmico-normal variate with prob-
ability density

. [Insuyl /20y =
0y ‘\/21r X

(3.2) @y, 0y) =

If the mean and variance of z are designated by u, and o> , respectively, then the
following relationships hold [1]:

o pytel/2
My = €YV

o= (et — 1).

3.3)

Solving (3.3) for u, and ¢} gives
2
Kz

SRRV et

2
ol = ln[l—}-‘%:].

(34)

If it is assumed that o> is known, the problem is how to test the null hypothesis
Hy: p, = ous , against the simple alternative Hy : u. = 1. > ous , at a significance
level of a, using a sample O, : @1, &, -+, x,, where the x; are statistically
independent.

There is no loss in generality in taking o2 = 1, since it is always possible to
make a change of variables by dividing the variable, z, by the known standard
deviation. Thus, equations (3.4) may be written as

%

W= I s

ol = ]nljl—}-l-}z],

which means (3.1) and (3.2) may be written as

(3.5)

g(y; My ‘713) = g(y; ﬂx))
I@; w5 03) = fl@; pa).

4. Normal theory test applied to ¥ = In 2. The first test procedure is sug-
gested by the fact that y = In« is a normal variate. In fact, under Hy, y is

(3.6)
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N(ouy , 002),* where ou, and 002 represent the values of (3.5) at u, = ou, . Further-
more, since 14y, > ouy , Where i, is the value of u, at u, = ju,, it is possible to
test Ho: py = opy against Hi: p, = 1y > oy by using the test statistic
[§ — ouy]V/n/00, With a critical region specified by

Z In T; iy

— T 0
(x e xn)_ﬂ—“zza,

" ’ 00y/ '\/1;,

where § = Y yi/n and 2z, is such that

° 1
(4.2) ”\72——; et dt = a.

(4.1) T, =

(In short, the test can be characterized by T;.) Thus, the testing procedure may
be performed by a normal theory test on the transformed scale.
Under an alternative u, > ou. the distribution of § = Y In 2;/n is

N (.“'y ’ a’;/ n):
so that the operating characteristic becomes

)31'1=P{27§2a‘\0;—%+wy}

g — My Za 00y — (ﬂy - oy 7N
_plimm s, ol
1011/\/’"» - Ty \/—}

By using equations (3.5), one may write this as
2 ,‘/ln<1 +L>—|:]n s —In e :I\f
_ sl w Vidw VIl V"

44) Br, =4 m )

which depends upon o, , u., o, and n.
The operating characteristics of the T test were computed for the following
four cases:

(43)

n opz @
4 1 .05
4 10 .05

25 1 .05
25 10 .05

The computed values are tabulated in Table I and the corresponding curves are
given in Fig. 1, where the following notation is used

(4.5) 6 = uy — oz .

4 The notation N (u, o2) is used to denote a normal distribution with mean m and vari-
ance o2,
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TABLE I

. Probabilities that the T;-test with sample size n will acept sz = oz when
the mean is at op. + 0

n=4 n =25

5/opz

1 10 1 10
0.0 .95 .95 .95 .95
0.2 .88 .89 .53 .74
0.4 .74 .81 .06 .37
0.6 .55 .68 .00 .10
0.8 .33 .54 .00 .01
1.0 .16 .39
1.2 .05 .26
1.4 .01 .16
1.6 .00 .09
1.8 .00 .03
2.0 .00 .01
1.00

Probability of Acceptance

o 4 8 12 1.6 2.0 2.4 Y
Standard deviations from o /‘Q
Fia. 1. Operating Characteristics for the T'1 Test

Obviously, the power is not invariant under a translation in ou, . For fixed n,
the power in discerning a shift of K units (measured in standard deviations) from
the null hypothesis decreases as the null hypothesis increases; i.e., the test is a
more powerful one when the null hypothesis is small than when it is large. (Since
the known variance was assumed to be unity, it might be helpful to rephrase this
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to read: The region T for testing the mean of a logarithmico-normal variate
becomes more powerful against alternatives of the mean greater than the hy-
pothesized one as the ratio of the hypothesized mean to the known standard
deviation decreases.)

Further details on the properties of the T;-test for large gu. are given in Sec-
tion 7.

6. Normal theory test applied to x. The second procedure to be studied is
one which might be applied by the experimenter who, because of either blissful
ignorance or wishful thinking, assumes the universe sampled close enough to a
normal universe to justify a test based on normal theory.

Erroneously considering the logarithmico-normal variate = as though it were
actually N(u,, 1) leads to the critical region

T — oMz
—_— >
1/\/n = za};
where 2 = Y, z;/n and 2, is defined in (4.2).

The calculation of the operating characteristic at any alternative u, > ou.
for the T.-test is an easy matter for the case when n = 1. If the mean of z is

ts > oz, then y = Inz is N(y, , o2), where p, = In [u2/v/1 + 2] and o) =
In[1 + 1/43, and so

Bry = P{x < 2o + oz} = P{lnz < In [ea + oual}
P{lnx — b In [z + onad — p,,}

oy oy

5.1) T, = {(xx, )

Il

_ @{ln [Za + onal — M}'

Oy

By using equation (3.5) this becomes

5

In [za + opd — In T/—_i_——;;

(5.2) Bm =& )
1/ ln<1 +—1—5>
Mz

which depends only upon ou. , u. , and a.

The operating characteristic of test T is more difficult to obtain for the case
when n > 1, because the convolution of n logarithmico-normal variates is needed.
Since this could not be obtained in closed form, the particular procedure adopted
was to obtain an Edgeworth form of the Gram-Charlier Type A series expansion
and then to consider a sufficient number of terms to calculate power correctly to
two decimals.

The Edgeworth expansion for the distribution of the variate

X = Eﬂ — E(En)’

Okn

(5.3)
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where &, = 23 + --- 4+ 2,, with z;s independent, and where E(¢,) and oy,
denote the mean and standard deviation of £, , respectively, is given in Cramér
[2, p. 229] as

1 ,39X)

) )
(54) F(X) = &(X) — =1 1 ,8°(X) |, 10 »n®"(X)
3! nil?

=l —=+ 0™,
n

+Z_!72 n 6!

where v1 and v, are the coefficients of skewness and kurtosis of the z; variate.
For the logarithmico-normal variate, the skewness and kurtosis become

yi= (T = )T + 2)

(5.5) ) )
v2 = (' — 1)(I* + 3T° + 6T + 6),

where
T=ey =+ 1/u).

If these results are used, the operating characteristic for 7' when n > 1 at
some u, > ou, becomes

1
Br, = P{a‘: = za\—/——;b—koﬂz}
56 =P j_ﬁzsza\/’;&"f'nguz—np,}
o0 {1/\/11 - \V'n
=P{X§za_6\/’7l}.

Therefore, for n > 1, the operating characteristic for T'; at a mean u, > ou; may
be written as

(5.7) Br, = F(zo — 80/n)

where F(X) is given by (5.4) with the coefficients determined by (5.5).

The operating characteristics for the same tests studied in Section 4 have been
computed by using the above expansions. The calculated values are given in
Table II and the corresponding graphs in Fig. 2.

Now, for n = 4, the T-test where ou. is equal to 10 standard deviations is
more powerful for distinguishing departures less than 1.2 standard deviations
than is the Te-test where ou. is equal to 1 standard deviation. For departures
greater than 1.2 standard deviations, the converse is true. Note also that the
T,-test for ou. = 10 has an actual « level almost identical with the one for which
the test was supposedly constructed; i.e., @ = 0.05. For ou; = 1, however, the
true « level is around 0.039 instead of 0.05, as the experimenter had believed.
Similar results are true for the case n = 25. Thus the T, procedure would appear
to give a rather satisfactory « level when the value specified by the null hypothe-
sis is large, (or, in general, when the ratio of the value specified by the null hy-
pothesis to the known standard deviation is large.) When the value specified by
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TABLE II

Probabilities that the 7's-test with sample size n will accept u, = ouz When
the mean is at ou; + &

n =4 n =125
8/opz
1 10 1 10
0.0 .96 .95 .94 .95
0.2 .92 .89 i .74
0.4 .85 .80 .39 .36
0.6 .73 .68 .07 .09
0.8 .58 .53 .00 .01
1.0 .41 .37
1.2 .23 .23
1.4 11 .12
1.6 .04 .06
1.8 .00 .02
2.0 .00 .01
1.00
.80 \
AEAE
A\ AR 4 ¥
g 60—\ — ¢
el -] Cd -< " »
§‘ FT\F *e g
g A O
&y o
; 40
b
2
.g
20 \
0 \\_
(o] 4 .8 1.2 1.6 2.0 2.4

Standard deviations from o/ﬁ

F16. 2. Operating Characteristics for the T'; Test

the null hypothesis is small, the experimenter is actually running a smaller risk of
rejecting the null hypothesis when true than the risk for which he had constructed

the test.

More details on the asymptotic properties of the T.-test are given in Section 7.
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" 8. Test based on Neyman-Pearson theory. The third test considered is dic-

tated by the Neyman-Pearson Lemma (see [2]) for testing a simple statistical
hypothesis. The test may be characterized by the critical region

(6.1) T; = {(xl,---,xn) %H‘Z‘k}

where k is such that

62) [ e [ 11 s6ass o) dos = o

The inequality in the expression for T'; can be shown to reduce to

> (nz; — b/a) £ K

where \
a = <1£;") -1,
6.3) e
b= (ﬂ) Oy — 1My,
00y
and where

’ 2 2 Oo'un 2 10'1,2 2|1 nb2
k' = 210',,1]1]0—210‘,,111 — +7L1/.Ly‘—’n — ] Uy —+ .

10y 00y/ 0 a —aé—
The value of % must now be found such that (6.2) is satisfied. Under H,,
z=Inz — (b/a).is N(ow, — b/a, oo3). Now the variate

12 :E: Z%

(6-4) X = P

where z; are independent and N(a;, ¢*) with «; not all zero, has a noncentral
x’ distribution with probability density
—3x’2 I\ 12\inti—1y 7
(6.5) P(X’z) =2 ’ (X ) 1
2 2910 (30 + 5)

where A = 2 oi/c". Hence the value &’ is such that

k’/oﬂg
(66) [ p6) dx? = o

where the paramefer \ in the function p(x'®) is given by
N = oy — b/a)"/ody -

If the value of k' /oo. which satisfies (6.6) is denoted by xo% , then the critical
region (6.1) may be written as

2 = XOa (-
00y

Z {In z; — b/a)’ < X<I)2}

6.7) T; = {(131, Cee, Tn)
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It is interesting to note that this test, although most powerful for testing Ho
against the simple alternative H,, is not uniformly most powerful against any
class of alternatives, since the distribution of the test statistic involves the quan-
tity b/a which depends not only on ou, but also on 1, .

Extensive tables of noncentral x* are not yet available, so that it often becomes
necessary to use approximations which are discussed, for example, by Patnaik
[3] and Abdel-Aty [4]. (Pearson and Hartley [5] promise to include more exten-
sive tables of this nature in their second volume to be published soon.)

When the mean of  is some u. > ouz , then the variate In z — (b/a) is

Ny, — (b/a), o3),
where u, and ¢ are determined from equation (3.5). Hence, according to (6.4)
and (6.5), the quantity
n 2
6.8) it =3 dnw 2 be)
1 oy

follows a noncentral x’-distribution with parameter A = n(u, — (b/a))*/s, and
degrees of freedom equal to n. Using this fact, the operating characteristic of

T for some u, > ou- becomes

2 2
BT;{ = P{X!; g X(;.a}

2 2 2
o0 e Btz oy o)
10y 00y 10y
= P{X" = cxowl,
where
2
(6.10) =
10y
and
n(u, — b/a)®
A=
Oy

The operating characteristics for the following cases were computed:

n wz ohz @
4 1 2 .05
4 1 10 .05
4 10 11 .05
25 1 2 .05

The calculated values are given in Table III and the corresponding curves in
Fig. 3.
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TABLE III

Probabilities that the T';-test with sample size n designed totest Hy : u; = o against Hy:
pz = 1z Will accept Ho when u, = our + 8

n =4 n = 25
5/1nz onz=1 ouz = 10 opz =1
2 10 11 2

0.0 .95 .95 .95 .95
0.1 .79
0.2 .85 .90 .49
0.3 .14
0.4 .64 .67 .80 .02
0.6 .39 .67 .00
0.8 17 .52 .00
1.0 .06 .08 .36
1.2 .01 .19
1.4 .00 .00 12
1.6 .00 .05
1.00

:

°

: <

N <

>

b

]

3

£ N

o e >
o 4 .8 12 1.6 2.0 24 1)

" Standard deviations from o/%
Fia. 3. Operating Characteristics for the 7'; Test

7. Asymptotic properties of the tests for large values of the null hypothesis.
If, instead of being a logarithmico-normal variate, x were actually N(u., 1)
then the most powerful test of Hy against H; would be characterized by the crit-
ical region



680 NORMAN C. SEVERO AND EDWIN G. OLDS

\
\

.00

.80

§ 60 \ \
i \
9
» 40 ¥
d \ T,
2
e}
E 20 T!t \

o -_ \

o 4 .8 1.2 1.6 2.0 24 S

Standard deviations from o/ﬁ

F1a. 4. Comparison of the Operating Characteristics for the T, Ty, T2, T; Tests for
n = 4, oMz = 1

(7.1) T=f(x’...’xn) j__‘o_#:?gzal

[ 1/+/n =7
and the corresponding operating characteristic would be
(7.2) Br = ®(24 — 64/n).

The operating characteristics for the T, Ty, T2, and T tests for n = 4 and
ouz = 1 are plotted together in Fig. 4, where the scale measures the number of
standard deviations away from the hypothesized mean. Similar curves are plot-
ted together in Fig. 5 for the case n = 4 and ou, = 10. An examination of these
curves indicates that the power depends not only on the specific test being used,
but also on the specific value of the null hypothesis. In fact, the T, Ty, and T’
operating characteristics given in Fig. 5 cluster closer about the 7' operating
characteristic than do those in Fig. 4. This suggests that, possibly, the approach
of all three operating characteristics, as the hypothesized mean is increased, is to
the operating characteristic of the T-test. Specific results of this nature will now
be proven.

Throughout this entire section ou, will be written simply as u. Furthermore, an
alternative u, > ou. will be written as

(7.3) Mz = u + 8,
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1.00
.80
[
¥
< 60
3
®
Q
,’é 40
[N
20
\ ]
. ‘
0 4 .8 1.2 1.6 2.0 24

Standard deviations from o/,

Fie. 5. Comparison of the Operating Characteristics for the T, Th , T2, Ts Tests for
n =4, o, = 10

where & represents the number of standard deviations from the hypothesized
mean.
Thus the null hypothesis Ho : u. = our and the alternative Hy 1 p, = 1ps > opiz
become
H 0 . 8 = O,
(7.4)
Hi:6 = 0§ :
where 81 = 1, — otz .
The Ty-Test. The behavior of the T, test for large u is summarized in the
following theorem:

TaEOREM 1. limysw Br, = Br.
Proor. Using the notation (7.3), the operatlng characteristic of the T'-test

may be written as
1) _ (s + 8)° ] —
_ s 3“1/1“<1+;2> [In\/1+(n+6)2 \/1+ \

/‘/ln<1+(7-_'l_—6—)-2>

{zan — A, \/ﬁ}
pPefn ™ L2 VL
As

(7.5) B,
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Since ®(2) is a continuous function of z, it is valid to take the limit sign inside
the & function.

By using the expansion of the function In(1 + 1/#) in the neighborhood of
z = o, it is seen that as u approaches infinity

%vﬁ+OW%

(76) %: - —1.
3
\/___——"
s VIF O+
Note also that
_ 8, . (w402 .
R e A Ly
= S 1 1 l]
m{1+u] 2n[1+0“+w]+2m[1+ﬁ
=2+ 0w, |
"
so that
4 >+ 067
(7.0 23 = ] L — 8.
3
— \/———
s VI O+ o

Hence, if one uses statements (7.6) and (7.7), the limiting operating characteris-
tic of T becomes

lim By, = Bz — 3\/7—';):
>0

and so

lim BTl = BT'
>0

Thus, for large values of the hypothesized mean, the T:-test behaves like the
T-test.

The To-test. A similar theorem to that proved above will be shown for the 7',-
test. The proof involves interchanging the limit and integral signs. As the justi-
fication for this, one could use the Lebesgue Dominated Convergence theorem
(2], p. 66], which involves finding an integrable function which bounds the ab-
solute value of the integrand. In cases where the integrand, say p.(z), is a proper
density for all n, Scheffé [7] has shown that a sufficient condition for demon-
strating the existence of such a bounding and integrable function is that the
limit (as n tends to infinity) of the integrand is also a proper density, say p(z).

It is now possible to proceed to

TaEOREM 2. limyse Br, = Br.
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Proor, The operating characteristic for the T, test given in (5.7) may be
written as

& 1 —[Inz;—py]2/202 dxz
(7.8) =f f __ g il 2 T8
ﬁT2 5'2 zI;-Il Oy ‘\/27|- Xq

where 7', is the complement set of T’ and is given by

(7-9) T2 = {(xl y "y xn) a;./.—‘\/o;:; é za} .
Using the notation of (7.3) and letting
(7.10) w,' = X; — My
one can write (7.8) as
_ 1 —In(wi+w)—uy12/202 _ GW;
(7.11) ﬁ:(vz = ./;:2’ fII oy /——21r (4 ”w__,: + ”,
where
(7.12) Ty = {(wi, -, wn) | B = 2a/V/n}.

Scheffé’s theorem is now used in order to justify bringing the limit sign under
the integral sign. Note first that the integrand of (7.11) is a proper density, so
that it remains to show that the limit of this density is also a proper density.
Also, since the limit of the product is the product of the limits, it is only neces-
sary to consider the behavior of one such factor, namely,

(713)  fu(wi; )

(w408 \? -
— exp [_ {hl('wz + P") — In \/m} /2 ]n(l -+ [M + 9 2] 1’7_-%_’;’
V2r [l + (s + 02 '

which will henceforth be written as

1 —A92/24
7.14 i3 0) = ————— e 203,
( ) fn('w ) \/21r 4

Now for a fixed w; , as u — ©,

(715) Ay = (wi + ) /‘/]n (1 + (ﬂli'a')i> = ’%4—_-—"‘;‘\/1 F Ok Fo2—1.

Furthermore,

4s ln(u+5>+2ln[l+(u+6)2

_ w,-—B —2
—1n[1+n+6:|+0(#+6)

_w,--—B —2
———————“_*_6+0(u)
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and
A3=ln[1+ 1 ]= L 40w
(u =+ 8)? (u +6)? ’
so that for a fixed w;
2
(7.16) 22 (w; — )%

Hence, if one makes use of (7.15) and (7.16), it follows that

1 _wi—a2p

e
V2T ’

(7.17) lim fu(w; ; 8) =

which is a proper density.
Therefore,

1 —5)2
lim = f e f — —(wi—8)?/2 dw;
u]-;eo 61'2 12v§zal\/;; H V 2[.t é w

zalV/7 N
N —(E—5)2/2(1/n)
= —_c dt = ®{2, — /0
f_ . Vi { Vn},
and so
lim ﬁr2 = ﬁT .
B->0
The proof of Theorem 2, above, suggests an interesting property of the loga-
rithmico-normal distribution which is summarized in the following corollary.
CorOLLARY 1. The standardized logarithmico-normal variate w = z — ug s
distributed asymptotically N (0, 1) as u, — .
Proor. The result follows immediately from that part of the proof of Theorem
2 where it was shown that

. 1 (w22

lim fu(w; 8) = ——e .

lim f, =
(The mean of w may be taken as zero so that § = 0, which means y = y,.) The
theorem of Scheffé states that this is sufﬁcignt to show that

; ) dw = [ L e
lim /Sf,,(w, 0) dw /s\/ﬁ;e dw

H—>0

for all Borel sets S in R.
Another property of the logarithmico-normal distribution follows readily

from this corollary.
CorOLLARY 2. The standardized logarithmico-normal variate w = x — u, 8

distributed asymptotically N (0, 1) as o2 — 0.
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Proor. Corollary 1 showed that x — u. is asymptotically normal as u, — .
According to (3.5),
=T [1 + -ng ,
Bz

which means pu, — « if and only if ¢ — 0. Hence, * — p. is asymptotically
N, 1) as o — 0.

The result of Corollary 2 was also obtained by Yuan [8] who considered the
normal variate y = (1/c)In[(x — a)/b] and showed that

limy = r—m,

c-»0
This, according to Yuan, would imply z is asymptotically normal as ¢ approaches
zero. The quantity ¢ corresponds to oy, .

The Ts-test. One would expect that a similar result to Theorems 1 and 2 would
be true for the Ts-test. Since the logarithmico-normal distribution approaches
the normal distribution as u, — <, one would conjecture that for large values
of u the most powerful tests based on the two distributions could be interchanged
with a guarantee of similar calculated risks.

The corresponding theorem to those given above reads:

TaEOREM 3. liMyse B, = Br.

The details of this proof, which are not included here, may be found in Severo
[9]. The theorem is proved as a special case of more general results which are
summarized in two theorems. The first is concerned with the uniqueness of the
most powerful critical region for testing a simple hypothesis as a parameter of
the distribution is allowed to pass to its limit. This uniqueness is demonstrated
up to a set of measure less than an ¢ > 0. The second theorem then justifies the
convergence of the power function to the power function of the limiting critical
region.

8. Acknowledgments. The authors are indebted to Mr. Robert E. Odeh for
his generous assistance in carrying out much of the computation. Also, the
authors wish to thank Dr. H. L. Harter for his helpful suggestions for the im-
provement of this paper.
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