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g(z) has a finite number of oscillations, this implies that there is an interval of
positive length A in the interior of (0, 1) on which g(z) = 0. But then the
largest of the values Z, - -- , Z,41 is certainly no smaller than A; therefore ¥,
is certainly no smaller than A"T'(n + u + 1)/T'(n + 2), and this last expression
approaches infinity as n increases.
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ON THE PROBABILITY OF LARGE DEVIATIONS FOR SUMS
OF BOUNDED CHANCE VARIABLES

By HaRrY WEINGARTEN
Bureau of Ships, Navy Department

1. Summary. The following theorems are proved.
TueoreM 1. If 21, 22, -+ - satisfy —1 S z, S a,a = 1 and

E(,| a1y «+ , To1) S —umax (|za| |21, -+, Tacr),
0 < u < 1, then for any positive t,
Priz + -+ + z» = ¢ for somen} < 6,

1) of

where 0 is the posttive root (other than 0

a+u

a+t+1

This choice of 6 s the best possible.
THEOREM 2. If 21, %, --- satisfy |z < land E@a |21, -+, Zaa) = 0,
then for all N > 0,

Pr{xl+"'+xn

n
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BOUNDED CHANCE VARIABLES 1171

where o = (1 + €)% — &)™, This choice of ¢ is, for every e between 0
and 1, the best possible.

Both results are improvements of results of Blackwell [1], and the methods of
proof are somewhat similar.

2. Proofs of the Theorems. Since the methods for Theorems 1 and 2 are simi-
lar to those in [1], we merely indicate the main steps.

For Theorem 1, let ®(N, ¢) be the least upper bound, over all sequences {z,}
satisfying the hypotheses of Theorem 1, of the probability

Pri{zy + --- + zx = tforsome k £ N};
in particular (0, t) is 1 for ¢ < 0 and O for ¢ > 0. Then
&N + 1,¢t) = Ud(N, t),

where U is the transformation taking Borel-measurable functions of ¢ into Borel-
measurable functions of ¢, such that the value of Uf at ¢ is

sup Ef(t — x),
zeX

where X consists of all chance variables satisfying —1 < z < ¢ and EX =<
—u max |X|. Now if 0 satisfies (1), then Ug = g, where g = 6'. Also, fi = f»
for all ¢ implies Ufy = Uf. for all {. Repeated application of this to g = #(0, ¢)
yieldsg = ®(N, ¢) for all ¢, and letting N — o completes the proof of Theorem 1.
To see that this choice is the best possible consider the sequence z; , 22, + + - in-
dependent, with the distribution of each z, = a, and —1 with probabilities
1 —u)/(a+ 1), (@ + u)/(a + 1) respectively. This sequence satisfies the
hypotheses of Theorem 1, and it will be shown that

1/t

Pr{zy + --- + z, = t for somen}’"" — 6

ast{— o,
To do this we consider a game between two players with fortunes, stakes, etc.,
as follows:

Players. ... Py P,
Fortunes............................... t b
Stakes. ... a=<1 1

- . ) _atu _1l—-u
Probability of winning a game............ p_a+1 q_a+1

The probability of the ruin of P, which we are interested in is easily seen to be
the same as Pr {z; + --- + 2, = ¢} for the case of a sequence z;, 22, +-* in-
dependently and identically distributed with each x, = a, —1 with probabilities
1 — w)/(a + 1), (a + u)/(a + 1) respectively.

Let us approximate a by some rational fraction r/s and then change the units
in which the game is played. We will have
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Players................... ... ... ..... P, P,
Fortunes............. ... ... ... ....... st sb
Stakes.....ooovvini r s
Probability of winning a game............ p = Z i 1; qg= (lz :I- 11‘

Using the results of [2], pages 144-146, we obtain

oat 0;b—‘a+l -1 < < oat—r+l 0ib -1
U el = Y S 01 prrrmy e e
01 -1 0 -1

where 6; is the root of p6i™ — 61 + ¢ = 0 and Yt is the probability of the ruin
of P; when his fortune is st. If the fortune of P; becomes infinite, we have

01 < yoe < 617
When we return to the original units of the game, we can state
03] < ye < [o2) 10
or
6% < y, < gyt

where 0; is the root of p6;"/?** — 65'* + ¢ = 0.
By choosing r and s large enough, we may come as close as we wish to a, and
so we may finally write

ot é yt é ot-—a

where 6 is the root of p6*** — 6* 4+ ¢ = 0. This s possible, since the probability
of ruin in the game where the stakes are r and s is the general solution of the
difference equation

Yz = DYzts + QYor,

where y, is the probability of ruin of P; when his fortune is z. Such solutions are
known to be continuous functions of the stakes. That 6, , the root of pg*/?+ —
6" + q = 0, approaches 6, the root of p6°*' — ¢° 4 ¢ = 0, follows from the
fact that the solution of a polynomial is a continuous function of the coefficients.
From this we may obtain

07" = Pri{z + - + =z =t} < [0
and so
Pr{xl+---+x,.gt}”'——>0 as t— oo,
As a matter of fact we note that 6 is really a lower bound, since
9 > 0.

Hence 6 is best possible.
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For the proof of Theorem 2 we have:
Pr{?-l——-*——';l'—_l‘-:—c—" > ¢ forsome n = N}

SPriz— ke+ -+ + 2o — ke = Ne(1 — k) for some n}
< [Q + 21— oY,
where the last inequality is obtained by applying Theorem 1 to the sequence

_ Tn — ke
U = T F ke
Here we have taken
1 — ke ke
a = and u

T 1T ke = 1F ke

and found

- Ne(1 — k) < V=R (4ke)
Pr{y1+ +y»§———lﬁ—}=0" ,

where 6 is the root of

(2) %_02/(1%5) _ o(l-ke)l(1+k¢) + % = 0.
To find the smallest value of 7<*~»/0+kd
ner: Beginning with (2), we write

®3) guTRINAHI(g — 2) 4+ 1 =0,

and solving for ke, we find

we may procede in the following man-

___10g0+log(2—0)
logf —log (2 —6)°

Giving ke the value from (4), we find that B = ¢7<0™®/0+ giyeg
(5) Rl/N = 0—[(1—4) log 64 (1+¢) log (2—0)1/2 log &

4 ke

If we take logarithms in both sides of (5) and simplify, we may rewrite (5) to
obtain

(6) RI/N = 0—(1—¢)Il2(2 _ o)—(1+e)12’
and it is very easy to find the value of 6 which makes R a miniraum to be
) 6=1—ce

The same inequality holds for
Pr{””_‘i;’;if" < —eforn 2 N},

and hence Theorem 2 is proved.
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To see that ¢ is the best possible, consider the case of the sequence {z,} in-
dependently distributed, each taking the values 41 with probabilities %, 1.
It follows from a result of Chernoff [3] that

Pr{x,+---+m,.gne}”"—>qo as n— o,
so that our ¢ is exact.
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A REMARK ON THE ROOTS OF THE MAXIMUM LIKELIHOOD
EQUATION

By C. Krarr anp L. LeCam!
University of California, Berkeley

1. Introduction and summary. The statistical literature combines two types
of investigations concerning the consistency of maximum likelihood (M.L.)
estimates. A few of these, such as the most excellent paper of A. Wald [1], do
prove directly the consistency of M.L. estimates. However, most investigators
seem to have concentrated their efforts on proving the existence and consistency
of suitably selected roots of the successive likelihood equations. Some authors,
see [2], for example, add the supplementary remark that such consistent roots
will eventually be unique in suitably small neighborhoods of the true value and
will achieve a local maximum.

It is the purpose of the present note to point out by means of examples that
this second mode of attack is not adequate. In the examples given below, the
‘“usual regularity conditions” of Cramér [3] or Wald [4] are satisfied, but the
M.L. estimates are not consistent. It should also be pointed out that the direct
proofs of existence of roots, simple in the case of a unidimensional parameter,
become unwieldy in more than one dimension. On the other hand, if one has
proved the consistency of the M.L. estimates, the existence of roots follows
trivially from the fact that when a differentiable function reaches its maximum
in an open set, the derivatives vanish at that point.

2. Examples with independent identically distributed variables. The first
example given below has the following characteristics:
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