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1. Introduction.

1.1 Description of pooling procedures. The simplest situation of a pooling pro-
cedure for testing hypotheses using analysis of variance procedures may be
described as follows: We are given three mean squares, V1, V., V3, based on
n1, n2, and m,; degrees of freedom, respectively, and designated as treatment
mean square (V3), the error mean square (Vs), and the doubtful error mean square
(V1). It is desired to test a null hypothesis involving V;, which can be tested
by comparing V; with V, by the F-test. It is now suspected that V, is also a
measure of the error variance, that is, has the same expectation as V, . It is de-
cided, therefore, to first perform a preliminary test of significance by comparing
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V. against V; by the F-test, and, if this turns out to be nonsignificant, to use
the pooled mean square V = (mVy + n,V2)/(n: + m2) as error for comparison
with V; in the final F-test. In the case that V, is significantly different from V;,
however, use V, as error in the final F-test. This test procedure is usually re-
ferred to as the sometimes-pool procedure. In corresponding terminology the
single test V3/V, is called the never-pool test, and the procedure of employing
V = (mV1+ n.Vs)/(m + n2) as error and always testing only V3/V is called the
always-pool test. If the level of significance for the preliminary test is 100% , the
sometimes-pool test becomes the never-pool test; if, on the other hand, the level
is 0%, the sometimes-pool test becomes the always-pool test. With the some-
times-pool test, the precise nature of the final F-test is, therefore, not determined
in advance, but it depends on the relative magnitude of the observed mean
squares V; and V;.

When the analysis of variance and associated tests of significance were first
developed by R. A. Fisher, such procedures were not advocated. Indeed, Fisher’s
original description of analysis of variance tests clearly stipulated that for every
well-designed experiment there can only be one correct analysis and the test(s)
of significance are completely determined before the experimental results are
available. With Fisher the appropriate test of significance is determined by a
specification of the population from which the experimental data were sampled.
We may speak in this case of an analysis determined by a completely specified
model.! However, in experimental design, situations frequently arise in which
the model is not completely specified. Furthermore, with the wider application
of analysis of variance to operational research and to the study of routine data,
statisticians are often faced with analyzing data which have not resulted from
a designed experiment, and in these situations the model is often incompletely
specified. In such cases preliminary tests of significance have been used, in
practice, as an aid in choosing an appropriate specification from which valid
subsequent inferences may be drawn. In particular, preliminary tests of sig-
nificance procedures have been used in the past in an attempt to increase the
number of degrees of freedom associated with the error in a final F-test, thereby
apparently increasing the sensitivity of the final F-test. Justification for the use
of such methods has been made apparently on intuitive grounds.

The procedures described above and similar pooling procedures can be re-
garded as dealing with these situations sequentially in two stages: the preliminary
stage in which inferences are drawn about the model, and the final stage in which
inferences are drawn about the parameter(s) involved in the main hypothesis.

The purpose of the present study is to critically examine the consequences of
certain pooling procedures with regard to the resulting errors of the first and
second kind, for certain random and mixed models. Finally, on the basis of
these results, we shall attempt some general recommendations on the advisability
or otherwise of using them.

4 For the general formulation of model specification, see Section 1.2,
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TABLE 1
Component of variance model with o3 > 0—Analysis of variance
Source of variation df Mean square Exp. mean square
Between 4. ................. ng=¢q—1 Vs o2 + sop + rsot = o3
Between B within 4 . ........ ne = q(r — 1), V. or + sob = ou
Within B.................... ng = qr(s — 1) V. o? =g

1.2 More precise formulation. Let us assume the component of variance model
(1) Tije = p + @ + b + 2,

where? = 1,2, ---,¢;5=1,2,--+,r;k =1,2, .-+, 8; a; is N(0, o), by is
N(0, o3), and 25 is N(0, o7). We wish to test a hypothesis concerning a; . If
o = 0and o> > 0, then

Tige = p + @ + bij + 2in for op > 0,

2
Tigp = p + @i + 2k for o5 = 0.

(2)

In this case (1) is said to be an incompletely specified model. If, however, a; > 0,
3) Tige = p + a; + by + 2,

and (1) is completely specified. Similarly, if op = 0,

(4) Tije = u + a; + 2o,

and again (1) is completely specified.

We wish to test the hypothesis Ho:os = 0 against the alternative Hy:ot > 0.
Now let us assume we have the completely specified model given by (3). Then
o3 > 0, and we obtain the analysis of variance given in Table 1. Then it follows
from the likelihood ratio principle that the appropriate test procedure is to cal-
culate the test statistic

Vs
Fy = 3
&) "=,
and to reject Ho if Fo = F.(ns, no), where « is the prescribed level of significance.
This test is the never-pool test.

Next let us assume the completely specified model given by (4). Now the
expected mean squares of Table 1 no longer include the o3 component, since
ot = 0. Application of the likelihood ratio test procedure to this model for the
test of Hy gives us the test criterion

(m + ’nz) Vs
ny V1 + Ng V2

and the rule to reject Hyif Fo = Fq(ns, ma + ng). This gives us the always-pool
test.

(6) Fy =
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Finally, we assume o; = 0 and, hence, are confronted with the incompletely
specified model given by (2). Ordinarily this model (2) might be assumed when
there exists some uncertainty as to whether o = 0 or o3 > 0. In such cases of
incomplete specification, attempts are often made to resolve the uncertainty by
first testing the hypothesis that 3 = 0. The model finally chosen and, hence,
the final test (test of Hy) depend upon the outcome of this original test. When
the original and final tests are performed on the same set of data, the original
test is referred to as a preliminary test of significance. In our example the pre-
liminary test becomes the test of Ho:op = 0 against H; 03 > 0. Again, a likeli-
hood ratio test procedure is available for this preliminary test. The statistic
Fo = V,/V,is calculated and Hj rejected at the level a; (usually different from )
if Fo = Fa (na, ny). If Hy is rejected, the non-pooling test procedure indicated
by (5) is used for the final test. If Ho is not rejected, the pooling procedure indi-
cated by (6) is used for the final test.

It should be noted that when the final test is carried out, the model is assumed
to be completely specified, that is, to be either model (3) or model (4), according
as the preliminary test is found to be significant or not significant, respectively.

The essential features of the sometimes-pool procedure as applied to the com-
ponent of variance model described may be summarized as follows:

(i) The three mean square V; are independently distributed as xio /N
where x? is the (central) x* statistic for n; degrees of freedom;

(ii) The main purpose of the analysis is to test the null hypothesis o3 = o3
against the alternative o3 > o3 ;

(iii) The error mean square V, has an expectation o3 which is greater than or

equal to the expectation, o7 , of the doubtful error mean square V1, which may
or may not be pooled.
It is clear that the above hierarchical classification is not the only analysis of
variance situation giving rise to the above conditions. As an example we may
quote the two-way classification with both factors random and cell repetition.
Here V, would play the part of the within-cell mean square, while V; would be
represented by the residual in the two-way analysis.

Aside from the preliminary test for the complete specification of the model,
it is to be noted that we have made the assumptions usually made in the custom-
ary analysis of variance, namely those associated with an additive analysis of
variance model. It is sometimes correctly argued that these latter assumptions
may not be justified in certain situations, and in others may represent only an
approximation to the actual mechanisms. generating the data. This issue is, of
course, one affecting the analysis of variance tests in general, and has led to ex-
tensive studies of the validity of these tests when the basic assumptions are not
completely satisfied. If there is some doubt regarding the detailed assumptions
for the analysis of variance model, it should be possible also to formulate the
problem as being incompletely specified in these other respects. We are not con-
cerned with these issues here. In extending the analysis of variance theory based
on the assumption of linear models, our results are, strictly speaking, limited to
situations in which these other assumptions are satisfied. However, the classical
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TABLE 2
Mized model example—Analysis of variance
Source of variation df Mean square Exp. mean square
Between rations. . ........... ng=k—1 Vs o3 = a' -+ 'mo'a + mnbea)
Reps z rations . .............. ne=(k—1)(n—-1) Ve o= a' + mos
Within pens. . . ... . = nk(m—1) v, o1 =o}

analysis of variance tests have been found to be remarkably robust, that is, not
sensitive to certain deviations from the basic assumptions.® We expect, therefore,
that our present results will likewise be applicable as useful approximations to
a wider class of situations.

1.3 Reduction of mixed models to random models. The preceding section has
been devoted to random models only. Another frequently occurring type of
model is the mixed model, in which one of the factors is fixed and the other
factors are random, and the hypothesis of interest is concerned with the fixed
factor. A typical example of an experiment giving rise to this type of model is
a randomized block experiment in which & rations are fed to each of m animals
of a pen in each of n replicates. Then a suitable model for these data is given by

xh-j=y+at+b.'+dti+ztii7

where the replicate variates b;, error variates d;; , and within-pen error variates
247 are assumed to be random samples from the respective normal populations
N(O, o2), N(0, ¢3), and N(0, o2), while the ration means a, are fixed parameters.
The analysis of variance based on this model is shown in Table 2. Here 6(,) =
> (a; — @)*/(k — 1). Following the same general consideration of Section 1.2,
it is shown in Section 2.5 how the sometimes-pool procedure for this model can
be reduced to that of the random model.

14 Related papers and objectives of present investigation. The problem to
be discussed here is from a general area of preliminary tests of significance. Work
in this area includes studies by Bancroft [1], [2]; Mosteller [12]; Paull [14], [15];
Kitagawa [10]; Bechhofer [4]; and Bennett [5]. Paull [14], [15] studied the size
and the power for the component of variance model described in Section 1.2.
However, he was able to express the size and power in closed form for the case

= 2 only, so that all comparisons made by him are restricted to that value
of ng.

The object of the present study is to prov1de the necessary extension of Paull’s
investigation to cover all of the important degrees of freedom combinations
occurring in the analyses of variance under discussion. This extension was made
possible by

(i) the development of the power integrals as series formulas for even values
of the degrees of freedom n, , 7, , and n; ;

5 See, e.g., Box ([6], [7]) and the numerous references to earlier work given there.
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TABLE 3
Component of variance model—Analysis of variance
Source of variation Mean square df Exs%u‘;f:n
Treatments............oouiuuneeee . Vs N on
Error. ... .. V, N2 os
Doubtful error. . ... ....c.ooiuiii 14 m o

(ii) the derivation of recurrence formulas for the power for even values of
n, Ne, and ng ;

(iii) the development of approximate formulas valid for large degrees of free-
dom for even values of n; , n,, and ng .

2. Exact and approximate formulas for power. Component of variance model.

2.1 Mathematical formulation of the pooling procedure. We now derive formulas
for the power and size of the pooling procedure applied to the component of
variance model described in Section 1. Let us first state the procedure in mathe-
matical terms. We are given an analysis of variance as shown in Table 3.

We are interested in testing the hypothesis Ho:o3 = o3 against the alternative
H,:02 > oF when it is known that o2 = o3 = o7 . We assume the sums of squares
n;V; are independently distributed as o3 , Where x5 is the central x* statistic
based on n; degrees of freedom. The test procedure with sometimes pooling V,
and V; is then as follows: Reject H, if

either {Vz/Vl = Fﬂz:"l(al) and Vs/Vz = Fna,ng(a2)}
or {Va/Vi S Fuym(en) and Vo/V 2 Fuynyiny(es)},

where V = (mV1 + nVs)/(m + n2) and Fy; n;(c) is the upper 100a % point
of the F-distribution with numerator df = n; and denominator df = n;.

The probability, P, of rejecting H, , which in general is the power of the test
procedure, is a function of the degrees of freedom, n;, n., and n3, the ratios,
05 = o3/05 and 6y = o3/07 , and the levels of significance employed, o , 2 , and
a3 . In the special case when 63 = 1, this power is equal to the size of the test,
i.e., the probability of type one error. In general the power P is obtained as the
sum of two components corresponding to the mutually exclusive alternatives
headed by either, and/or in its definition above, namely,

(8) P, = Pr {Vz/V1 = an,nl(a’l) 'and V?/V2 = Fﬂamz(a2)})

(9) P2 = PI’ {VZ/VI é an,nl(al) and VS/V g Fna.n1+n2(a3)}'

2.2 Integral expressions for the power. Definitie integrals for P; and P, will
now be derived. The joint density of Vi, V,, and V; is given by

¢, VimTipineiyinet exp{— 1 (m 171 + N 172 + N3 Zs>}’

2 [} o2 a3

@
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where ¢; is a constant independent of V,, V., and V; . By introducing new vari-
ates,
ne Ve ] Vs M Vi

= = w
O1my 2% Os2ms Vo’ n3 ’

and integrating out w, we obtain for the joint distribution of » and v
kui(ﬂ2+ﬂa)-—lv§"a~1

(]_ + u + uv)%(”l'l‘"l"‘"t)

f(uy i)) =

where
1

~ B(n/2, 1/2)B(ns/2, (ra + m)/2)
The probability of rejecting the hypothesis Hy is obtained by integrating f(u, v)

over the two ranges of variation of » and v which correspond to the two alterna-
tives either and/or of definition (7). These ranges are respectively given by either

k

0 0
Ucu<wB<y<w
01 020
or
i us(l + 6aw)
0=2u=s—, —————L =S¥ < .
021 032 021 u
where
0 N2 ng
(10) U = ‘n—l Fnz.n;(al), ug = E Fna,n,(a2)-
and

0 N3
U3 = ——— F, az).
3 m + 2 ngm;+nz( 3)

Hence the formulas for the two power components become

3 =f:f:f(u,v)dudu

and
P, = f [ f(u, v) dv du.
0
c(14+021%) /u
where
0 0 0
(721 Us U2
a = — C = ——o d = e— 0 2 1
(11) 021’ 021 O30’ 05 “ ’

g
v
=
s

A
g
SH
A
§
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2.3 Ezxact formulas.
2.3.1 Series formulas.

0 ao0 u!("z-l-":)—-lvi"a—l
P, = kfa . TF o F w)yievemo dv du.

The transformation z = (1 + u)/(1 + u + w) yields

Lo zi('u+»z)—1(1 _ z)ina-—luhrl

where
14+u
14+u@l+d)°

The binomial expansion of (1 — 2)*?~* gives us

®© Z) u}fi;-—lf(z)
P1 = k/; A mm dz du,

T =

where
f(z) = ’"t-l (—1)! (”8/2._' l)zl<»x+nz)+i—1
=0 J
Upon performing the integrations with respect to u and z, we obtain

1(me/2 — 1
P1=Z[ (-1 (nj—l ) ]
" Ll + n2)/2 + 7 — 1UB(/2,70/2)Bne/2, (. + 12)/2)(1 + d)™"

_ (j— 1>B(n1/2+j— 1—rmny/2+7)
X f r To(/247—1—1rn/2471) |,
Te=0 (1 +d)'

where

1

(12) Xo = m.

‘We now consider
u("g-'-ﬂg) /2—lvna/2—l

Po=k | a oo o
where '
zz = [c(l + 8aw)]/u = (c + bu)/u,
and
uO
(13) b =22,
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Using procedures similar to those used in deriving P; , we obtain

P, = Z[ (-1)F! (nz/%_-l 1)

7 1 ((n1 + n2)/2 + § — 1)B(n/2, na/2)
- B(ng/2, (ny + n2)/2)(1 + B)™*(1 + o)™”

(7 ) Btlow) + 7, w2 45— 1= 1

X & CLlme/2) + 7, w/2) +i—1—A|[
=0 1 +b0)A+ )yt
where
(14) s a(l + b)

Tifc+adF b

2.3.2 Recurrence formulas. Integrating P, (as originally given in section 2.2)
by parts with respect to v, we obtain

(d) ng/2—1 o : ’M( no4-ng)/2-2
Pang) = (m1 4+ n2 + n3)/2 — 1 k o (1 + u(l + d)) it du
(n3/2 - l)k
(nl + N2 + 7]:?)/2 — 1 Pl(ns 2)’
Upon integrating with respect to u, we obtain
ng/2—1 _
(15) Pl(na) — (d) Izz(nl/27 ('"/2 + ns)/z 1) + P1(’n3 _ 2),

(ns/2 — 1)B(ns/2 — 1, m2/2)(1 + d)(retna it
where z is given by (12). For the set of initial values at n; = 2 it is found that

Izg(n1/2y n2/2)
L +a™"

The recurrence development for P, is similar but more cumbersome. We obtain
the relation

(16) P,\(2) =

Palna, me) = 1 (1/a)" 7 (4 n2)/2 — 1, 1a/2)
T TH e(m 4 m)/2 = DBm/2,m/) (1 + 1/a) "I
+ ¢ Ps(ny, ns — 2) + Pa(m — 2, ns),
where ‘
(18) Zs 1+ (1/0)

T1F (1/a) + b+ (c/a)’
The formulas for the initial values are found to be

I.,[(ns/2), (m/2))

(19) Py(m,2) = T+ B + o)
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and

1 [Llow/?), /2)
@ P - g {0 , o + oPam — D),

where 2, and x4 are given by (12) and (14), respectively.

2.4 Approximate formulas. We now derive simpler approximate formulas.
We first consider P, . Writing i = F,, »,(c1), Fo = Fuyny(as), Fz = Fryniing
(e3), we have

P2 = Pr {Vz/Vl =< Fla.nd Vs/V g F3}.

As nl‘—+ w both V; — o} and V — o} and, in the limit, the two ratios Va/V:
and V;/V are independently distributed. It is therefore suggested that for large
m we use the approximation

Py = Pr {Vy/Vi < F1} Pr {V5/V = F}

(21) )
= [1 = LG, $1)e (3(m + m2), 3ms),
where
1-—- m(a1)>
=1/(1 4+ 252\
o /( + O z(es) /'
= (m + )/ (’nl + ng + (nabn + m)(1 — x(ag))>’
021 055 2(cts)
and z(ay), z(az) are respectively the roots, z, of I.(3m1,3n) = a1 and

I.(3(m + n2), 313) = a3 . Here we have used the well-known relation between
the incomplete Beta function I.(a, b) and the F-integral, viz,

PI‘{F’yl.y2 =< Fo} = I,(%v; ) %71'2), Wlth r = VlFo/(l'z + VlFo).

We have also used the approximation that for large n,, V is approximately dis-
tributed as (n10} + 7205)xn;1ne/ (M1 + n2)’.
Next we turn to

P1 = Pr {Vg/Vl = Fl a,nd Vg/Vz g Fz}.

Here we could use a similar argument if we were to let ny — oo, This limit would
however, not yield useful results. The important situation in pooling procedures,
is one in which 7, is moderate or small. Instead we use the well-known normal
approximation to log V. M. S. Bartlett and D. G. Kendall [3] have shown that
log V; is approximately N(log ¢ , 2/(n: — 1)), provided that n; is not too small.
Writing

% = log Vo — log Viand z = log V3 — log V.,

it follows that the joint distribution of » and z is approximately bivariate normal
with.correlation coefficient

@ e {(e =)0 )
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We may therefore employ the tables of the double probability integral of a
bivariate normal surface of K. Pearson [16]. Tables VIII and IX. If z and y follow
a bivariate normal distribution with both means equal to 0, correlation coefficient
p, and both standard deviations equal to unity, then these tables give the prob-
abilities P;(h, k), for x = h and y = k. In our case, p is given by (22) and h and
k by

ho= 22ng,n,(01) — log 0n k= 22ng,ny(22) — log 032
2/t — 1) + 2/(n. — DI’ [2/(ne — 1) + 2/(ns — P’

where 2n;,n;(e) is the upper 100« per cent point of Fisher’s z distribution with
numerator degrees of freedom 7; and denominator degrees of freedom n;.°

2.5 Theory of reduction of mized model to random model. Certain mixed models
of analysis of variance were described in Section. 1.3. No new formulas are re-
quired for these models, as we shall show that the joint distribution of the three
mean squares is, at least approximately, equal to that of the component of
variance model. The exact specifications of the distribution for the mixed model
being considered are as follows. (Primed parameters will be used to specify the
parameters for the mixed model.)

(a) The error mean square V3 and the doubtful error mean square V; are dis-
tributed as xio7/ni (¢ = 1, 2), where x} is the central x* statistic with n; degrees
of freedom. On the other hand, the treatment mean square V; is distributed as
x',.’,ag/né , Where x',.’, is the noncentral x* statistic with ns degrees of freedom
and noncentrality parameter

’ 2 ’ 2
_ MN3o3 — N30

203

’

A = 1';"3 (0;!2 - 1);
where 83 = o3/03. V1, V3, and V; are independent.

(b) The main purpose of the analysis is to test the hypothesis Hy : 03 = o3
against the alternative Hy:o3 > 03 .

(c) The true error mean square, Vs, has an expectation o3 which is greater
than or equal to the expectation, o3 , of the doubtful error mean square.

The probability P of rejecting Hy is obtained as the sum of the two com-
ponents,

(23) Py = Pr {V3/V1 = Frp (1) and Vy/Vy = Fo, (e2)}
and
(24) P, = Pr {V,/V: < Fni.ni(oé) and Vi/V 2 Fug niing(as)}s

In evaluating these pro‘tz)abilities we use, the approximation first used by
Patnaik [13]. We replace xn, by Cx}; , x», being the central x* statistic based
upon »; degrees of freedom, where
‘ 4
ns + 4\

¢ See Appendix Table 4 for illustrations of the nature of the approximation to the inte-
gra.] P,.

7
vy = nz +
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TABLE 4
Modified parameters for random model corresponding to specified parameters for
mixed model
Specified pa:lg‘;:f“ for mized Modified parameters for random model
’ ’
n n =m
! ’
ng Nz = N
’ ’ 4\
n, ng =v3 =N —-—
3 3 v3 3 n; + a
! /
’ a =
a? agy = ROOt Of Fn3 ng (0!2) = F73n2(a2)
as a3 = ROOt of an nﬁ-nz(as) = Fv;; n1+n2(013)
/ 2,2
0?1 = 0‘2/0‘1’ 021 = 021 , ,
032 = a3/03 03 = (2N + na)/ny
and
2\
C=1 .
T Fa 3 + 2\

Since the use of this approximation reduces the noncentral x” statistic to a central
x* statistic, all three statistics are now central.

We now compare the power for the mixed model as defined by (23) and (24)
with the corresponding formulas (8) and (9), for modified values of the eight
parameters as indicated in Table 4. Entering the random model tables with
these altered parameters we obtain the mixed model power. It will be seen that
when we deal with the size for the mixed model we have A = 0 and hence v; =
n3 , so that all primed parameters agree with those without primes. Thus our
entire size discussion to follow is directly applicable to the mixed model. On
the other hand, the power evaluations, which refer to a; = a3 = .05, will in gen-
eral provide answers for larger values of as and a3 , and these levels s and aj
will vary with A. For a proper evaluation of power corresponding to a given pair
of significance levels oz and a3 , say, a2 = a3 = .05, a more extensive tabulation
of (8) and (9) as described in the subsequent section, would be required.

2.6 Application of derived formulas. The recurrence formulas derived in Sec-
tion 2.3.2 were used to construct master tables of P; and P, . These master tables
were constructed for

g M0y m _

T=5 Z=3110, and3=101)6

Also, tables were constructed for $n; = 3, in order that the effect of small error
degrees of freedom could be better studied. However, the latter tables were con-

fined to the values
nz=1 and in. = 4,7, and 10.
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To compute the power component P; in a given problem from these master
tables, for specified degrees of freedom n; , n, and n; and levels of significance
a1, oy, the values of the parameters u§ and w3 are computed from (10). From
these values and those specified for 6 and 6z , the corresponding values of @ and
d from (11) and hence the value of z, from (12) are computed. P; is then obtained
by interpolation in the appropriate master table.

The procedure used to compute the component P, was similar, and required
evaluation of an interpolation for the parameters g, b, ¢, , z; and z, ; but interpola-
tion with respect to @ was avoided by choosing values of 65 which would result
in tabular values of a. This accounts for the decimal values of 65 found in our
tables.

The approximate formula (21) for P, derived in Section 2.5 is exact for n; = o
and was found to be very effective for large n, , yielding either P; values directly
to sufficient accuracy, or facilitating extrapolation of the master tables.

3. Discussion of power and size curves and comparison of test procedures.

3.1 Type of recommendations attempted. We have seen that the power of our
test procedures depends upon the following eight parameters: the degrees of
freedom 7y , 7z, and 7 ; the variance ratios 6x = o3/ af , 02 = 03/03 ; and the
levels of significance a1 , a2, a3 . Of these, the degrees of freedom n, , ny , and n;
are completely determined by the analysis of variance table, while the variance
ratios are generally unknown (except in the case of the size of the procedure,
when 63, = 1). Any recommendations that are to be made must therefore be con-
fined to the levels of significance, ai , a2 , and a3 . We shall here be primarily con-
cerned with the size of the procedure being in the vicinity of .05. It will be ap-
parent from what follows that a convenient way to achieve this is to choose a; =
az = .05, that is, to choose procedures in which the significance levels of both
final tests are .05. However, the remaining parameter, oy , the level of significance
for the preliminary test, is entirely at our disposal. In attempting recommenda-
tions, therefore, we shall be concerned with the choice of the level of a; . Should
a; be, say, .05, .25, .50, or should we use what Paull ([14], p. 4; [15]) has called
the borderline test, where a; will be near .70 to .80? In choosing the level of o,
we shall consider

(i) the variation in the size of our test procedure as a function of the param-

eter 6y , and

(ii) a comparison of the power of our test procedure with that of the never-
pool test of the same size.

3.2 Size. The size of our test procedure does not equal the nominal level of
.05, but varies about this level as o1 and 6 vary. Figures 1 to 10" give us examples
of size curves, illustrating the variations in type one error with variation in 6y
for fixed values of the remaining parameters.

7 A selection of figures and tables has been agssembled in the Appendix. Additional size
and power curves and tables, illustrating the points to be made in the ensuing dis-
cussion will be found in [8].
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Note that as 6z becomes large, the size approaches .05; for, as 65 — «, the
preliminary test will almost certainly be significant, pooling will almost
certainly not occur, and hence the final test will almost certainly be that of
V3/Va, having a size of .05.

At the lower extreme, that is, at 6 = 1, the size is at its minimum, which is
less than .05. This minimum, and even more so the size peak, are points of
particular interest.

We first consider the size peak. Referring to the size curves for a preliminary
test carried out at the 5% level (see Figs. 1 and 2), we note that the peak is
usually -very high. Clearly, a preliminary test carried out at this level will in
many cases admit an unacceptable size disturbance. This is due to the fact that
at this level, the preliminary test will frequently admit pooling V, and V; when
oi is smaller than the true error mean square o}, and thereby increase the
probability of type one error. We therefore seek a preliminary test in which
pooling is admitted less readily; we next investigate the level a4 = .25. At this
level (compare Figs. 2 and 3), size control is considerably better, and in many

(1)

(l) 0236
(2) np = 10
(3) ng=16

.08

0o ! 1
(o) | 5 10

CPY
Fra. 1. Size curves for ny = o, n3 = 6,01 = a; = a3 = .05
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Fi1a. 6. Size curves for n; = 6, ne = 16, a1 = .25, as = a3 = .05

cases the peaks do not go beyond .08. (See, e.g., Figs. 3, 4, 5, and 6.) It is ob-
served that, in general, the size peak increases as n; or n; increases or as n; de-
creases. (See Figs. 1 through 6.)

It is of course quite arbitrary to specify any rules for maintaining an ac-
ceptable upper tolerance for the size peak, since what is considered acceptable
is a matter of opinion. In using a nominal size of .05, if we stipulate that our
size peak should not go much beyond 10 per cent, then we find that even with
the 25 per cent preliminary level, there are situations in which this upper limit
is exceeded. Generally speaking, these unacceptable size peaks occur when

(25) ng=n and m; = 5ng.

(It should be noted that the occurrence of n; > n, is clearly rare.) This means
that when the treatment degrees of freedom are greater than or equal to the
error degrees of freedom, we must be careful if at the same time the doubtful
error degrees of freedom are greater than or equal to five times the true error
degrees of freedom; or, briefly, we must be careful when pooling promises a
large gain in the precision of the error estimate. This rule has been established
by an empirical study of an extensive number of size curves, and is not based on
any analytic study. See, for example, Fig. 7. Here the situation represented by
Curve 1 would be excluded by our rule. See also Figs. 8 and 9, in which the
situations represented by Curves 1 and 2 would be excluded. If our rule is fol-
lowed, size disturbances such as are represented in Figs. 3, 4, 5, and 6 occur; and
also disturbances such as are represented in Figs. 7, 8, and 9 occur, with the
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exception of the excluded cases mentioned above. In the situations represented
by (25), a more conservative level of ax would be appropriate. From a study of
a number of size curves it appears that a preliminary test at the 50 per cent
level will ensure adequate control of the size peak in these cases. (See Fig. 9.)

Not only the size peak, but also the size minimum is affected by the level of
the preliminary test. From theorems proved by Paull ([14], Chap. 4; [15]), we
know that the size of our test procedures is a minimum with respect to 6; at
621 equal to one, and that a lower bound for the size for this value of 6y is

1 = 01)(.05).

These lower bounds are .0475, .0375, and .025 for «; = .05, .25, and .50, respec-
tively. For some of our curves the plotted minimum sizes are situated very
close to these lower bounds. For the borderline test, where, as proved by Paull

([14], [15]) the size is always less than .05, this lower bound varies in magnitude
from approximately .01 to approximately .015. We have computed actual
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minimum size values for the borderline test for selected values of n;, n,, and
n; . For small n, and n; , these are very close to their lower bounds, irrespective
of n; . A person using this test should therefore remember that he may be using
a test which has a considerably lower size than .05. The actual disturbance is of
course small, but the proportional disturbance is considerable. However, since
the borderline test size disturbance is a reduction rather than an increase in size
and is therefore on the conservative side, we are not attempting to make any
definite rules as to when the experimenter should avoid the use of this test, but
merely to remind him that large proportional size disturbances occur when 7,
and n; are both small (<6). )

Summarizing our considerations of size control, therefore, we have narrowed
down our recommendable range of a; to a; = .25, with the reservations that in
certain cases characterized by inequalities (25), a1 = .25 would not be desira-
ble, as it would admit too large a peak in the size curve; and that for very small
values of n, and n; the experimenter may not wish to use the borderline test,
as this would admit too low a size minimum.

The discussion thus far has been concerned with test procedures in which
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as = a3 = .05. A few special cases for a; = a3 = .01 and a; = .25 have also
been investigated. In all these situations, larger proportional size disturbances
than those found for a; = a3 = .05 were experienced, even for cases which our
rule would accept. (See Fig. 10.)

3.3 Fregquency of pooling. We have been discussing the effect of increasing «; in
order to achieve size control. It is obvious that for a; = 1, our preliminary F
per cent point would be zero, and pooling would never occur. The question
arises as to the relative frequency of pooling for the intermediate values of oy
that we have been considering. When 6;; = 1, the probability that V,/V; exceeds
Fo(ny, m) is a1, so that pooling occurs with relative frequency 1 — a;. As
0 increases, this frequency rapidly decreases, approaching the limit zero as
0n becomes infinite. Evaluations of these frequencies of pooling show that,
while for a; = .25 and small values of 6, , pooling will occur in the majority of
experiments, when «; = .50 the frequency is usually well below .50. This fre-
quency of pooling is of course even smaller for the borderline test, where a;
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usually takes on values in the neighborhood of .7 to .8; when such large values
of a1 are employed, pooling occurs in only about 25 per cent of all situations
for which 8 = 1, and this pooling percentage rapidly decreases as 8y increases.
While this property by itself cannot be regarded as a disadvantage of the bor-
derline test, it is clear that, if this test were the only one recommended to the
experimenter, he would hardly ever pool.

3.4 Power. We now attempt a comparison of the power of our sometimes-pool
procedure with that of the never-pool test. As is well known, any comparison of
power of any two test procedures is a fair comparison if the two test procedures
have the same size. We have seen that the size of our sometimes-pool procedures
is not at the constant level of .05, but varies about this, depending upon the
parameter 6, . The method of power comparison we have therefore adopted is
as follows:

(1) Assume a fixed value of the parameter 6,; .
(i) For this value of 8 , evaluate the size of the sometimes-pool test.

(iii) For this level of size, evaluate the power curve of the never-pool test;
this power is then directly comparable with that of the sometimes-pool test
corresponding to the chosen value of 65, .

For an illustration of such comparisons, see Table 1. Here we have n; = 20,
ne =6, 3 = 2, & = .25 and a» = a3 = .05. For 6y = 1, the sometimes-pool
procedure is always more powerful than the never-pool test of the same size.
For 8, = 1.5, the powers are very similar; on the other hand, for 6, = 2, the
never-pool test is always more powerful. See also Tables 2 and 3, which again
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illustrate the fact that the sometimes-pool procedure is more powerful for small
02 but less powerful for large 6z .

In order to show more clearly the dependence of these power differences on
0x , we have plotted in Figs. 11, 12 and 13 the difference between two corre-
sponding power points against 6, . Here each curve corresponds to a fixed value
of 6;0—i.e., that value of 63 at which the difference between the power ordinates
of the power curves was taken. It will be seen, again, that for small 6, the dif-
ferences are positive (the sometimes-pool procedure is more powerful than the
never-pool test), while for larger 6y the position is reversed. As 64 — «, the
difference tends to 0, since both procedures tend to the never-pool test at the
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.05 level of significance. The transition from favorable to unfavorable power
conditions generally occurs between 6, = 1.5 and 6;; = 2.0. From other similar
curves not shown here, it is seen that the magnitude of these power gains and
losses increases with increasing n; , or decreasing n. , or increasing 7, .

Figures 11, 12, and 13 also illustrate the effect of decreasing the per cent point
of F for the preliminary test. In these figures, corresponding power comparisons
are given, respectively, for oy = .05, Fy = 2F go(n2, m),} and oy = .25. There
is a general tendency for both power gains and power losses to diminish as the
per cent point of F decreases—i.e., as oy increases from values such as .05 through
intermediate values such as .25 to the level of the borderline test (approximately
a = .70 to .80). Here the gain in power has diminished further, but the power
losses have completely disappeared. In fact, a theorem by Paull ([14], p. 61;
[15)) proves that the borderline test is always more powerful than the corre-
sponding never-pool test of the same size, although the power gain is small for
large 61 . However, as stated in Section 3.2, this size is below the nominal level
of .05. If we compare the borderline test power with that of the never-pool test
at the nominal level of .05, the former is always less powerful. It is likewise less
powerful than our sometimes-pool procedures for a; = .50 and @y = .25, which
have, of course, a larger size.

We now attempt recommendations, considering the relative merits of the
procedures at a; = .25, a; = .50, and a; = .7 to .8 (the borderline level). These
recommendations are somewhat subjective, since they are contingent upon what

8 This means we use a preliminary test V,/V, = 2 F(nz, mi).
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the experimenter may regard as a reasonable assumption concerning the param-
eter 0y .

(1) If the experimenter is reasonably certain that only small values of 6; can
be envisaged as a possibility, he is advised to use oy = .25 except in the cases
(25) when he should use a1 = .50, in order to ensure size control. Our figures
show that the range of small values of 6, , when the sometimes-pool procedure
gives a gain in power, is approximately between 1 and 1.5 to 2. An experimenter
about to adopt this recommendation but not quite certain about his assumptions
may wish to know the consequences which result from his adopting this pro-
cedure when, in fact, unknown to him, 6 is large. It is seen from Figs. 1 to 10
that in such a situation he will still have control of the size of his test; in fact
the size will be near .05 for large 8 . All he loses (as is illustrated by our power
figures and tables) is the power of his test; this is a risk that he may well be
prepared to take.

(ii) If, however, the experimenter can make no such assumption about 6y ,
and wishes to guard against the possibility of power losses, he may then use the
borderline test, which would ensure a power gain, although he must realize

(a) that for large 62 this gain would be very small;

(b) that for small 6; he would use a test procedure of a very much smaller

size than oy = .05 (particularly when 7, and n; are <6) and accordingly
a test which is much less powerful than the never-pool test of size .05.
In fact, he may in these circumstances prefer not to pool at all.

It may be correctly argued that, in order to control the size peak, to advocate
a1 = .50 in the cases characterized by (25), and a; = .25 otherwise, introduces
an artificial discontinuity in our recommendations. It would be quite feasible
(although it would require a considerable effort in computation) to evaluate for
any given triplet n; , 7z, and n; that value of e which results in a size peak of
0.10 exactly. Since this level of ey would depend on the degrees of freedom n; ,
ng , and m3 , it would be necessary to evaluate the associated per cent points of
F. For such recommendations to be useful, this table of F,.,(n:, n:) (which
would be a large 3 parametric table with n; , n,, and n; as arguments) would
have to be published. To encumber the experimenter with special tables for the
preliminary F-test in addition to the standard F-tables for the final F-tests ap-
peared to us to be unnecessary, and the use of the published Merrington and
Thompson [11] 25% and 50% points of F preferable.

We should note here that a rule favored by Paull ([14], Chap. 6; [15]) ad-
vocating testing the ratio V,/V1 against, 2F go(n. , n1) will not ensure adequate
control of the size peak, since 2F 50 > F 4 in general, and we have just seen that
F o is sometimes too large and hence not always acceptable as a significance level
for the preliminary test. Also, it would appear to us that no rule of the form
V2/V1 > constant is very satisfactory, for with such a rule the frequency with
which pooling occurs, as well as the size, varies considerably with the degrees
of freedom 7, and n, .

Concerning recommendation ii, the experimenter would require knowledge of
the precise level of a; for the borderline test, or, better still, the value of F as-
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sociated with it. Paull ([14], p. 20; [15]) gives a simple formula from which the
following is derived: F point for borderline test equals

(ann,.nH-ng(az)

(n1 + nz)(Fn,,n,)(az) - nan:m1+M(a3) ’

where F,, n.(a) represents the 100 o, per cent point of F with numerator df ng
and denominator df n. . Similar statements can be made for the other symbols.

It has been noted that the above recommendations depend upon some a priori
information regarding 6y . It is shown in a number of examples discussed in the
Wright-Patterson report how this information can often be obtained from the
general conditions under which the experiments were carried out.

APPENDIX

Ficures AND TABLES

TABLE 1

The power of the sometimes-pool procedure and the never-pool test of the same size,
form = 20,?’1«2 = 6,7’&3 = 2, o = 25, a = as = .05

B2
821 Test
1 2 4 16 64
1 s.p. .038 .161 .368 757 .930
n.p. .038 127 .314 .705 .913
1.5 8.p. .060 .189 .385 .756 .930
n.p. .060 .178 .373 757 .930
2 8.p. .068 .190 377 751 .935
n.p. .068 .195 .396 .71 .935
3 s.p. .068 .178 .361 .743 .926
n.p. .068 .194 .394 770 .935
5 8.p. .058 .164 .348 738 .924
n.p. .058 175 .369 754 .930
n.p. .050 .156 .343 737 .924

TABLE 2

The power of the sometimes-pool procedure and the never-pool test of the same size,
forny = 20,m, = 10,13 = 12, @ = 25, 0y = a3 = .05

32
6n Test
1 2' 4 10 50
1.066 S.p. .044 .354 .741 979 1.000
n.p. .044 .259 .679 .973 1.000
1.708 S.p. .086 .360 714 .976 1.000
n.p. .086 .389 .799 .988 1.000
2.914 s.p. .079 .292 .701 975 1.000
n.p. .079 .369 784 .987 1.000
5.399 8.p. .050 .280 .697 .975 1.000
n.p. .050 .280 .702 .976 1.000
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TABLE 3

The power of the sometimes-pool procedure and the never-pool test of the same size,
fOT n = 14,”2 = 10, Nng = 12, ap = 25, ay = Q3 = .05

O3z
Oa Test
1 2 4 10 50

0.714 8.p. .013 .232 .708 971 1.000
n.p. .013 .111 .448 911 1.000

1.045 s.p. .039 .204 757 .980 1.000
] n.p. .039 .240 .657 .969 1.000

1.593 8.p. .075 .360 727 977 1.000
n.p. .075 .358 774 .986 1.000

2.552 s.p. .082 311 .704 .975 1.000
n.p. .082 377 .790 .988 1.000

8.066 s.p. .050 .280 .699 .975 1.000
n.p. .050 .280 .702 .976 1.000

TABLE 4.
Illustrating the nature of the approximation to the integral Py (n, = 20 throughout)

ns=06 ns = 10 72 = 16
on
Exact | Approx. | Diff. Exact | Approx. | Diff. Exact | Approx. Diff.
1.0 .0375 | .0375 | .0000 | .0375 | .0375 | .0000 | .0375 | .0375 | .0000
1.5 .0574 | .0530 | .0044 | .0484 | .0441 | .0043 | .0400 | .0363 | .0037
n; = 2 2.0 .0621 | .0528 | .0093 | .0444 | .0364 | .0080 | .0304 | .0245 | .0059
3.0 .0524 | .0396 | .0128 | .0274 | .0190 | .0084 | .0128 | .0084 | .0044
5.0 .0288 | .0187 | .0101 | .0088 | .0050 | .0038 | .0020 | .0010 | .0010
1.0 .0375 | .0375 | .0000 .0375 | .0375 | .0000
1.5 .0692 | .0623 | .0069 .0512 | .0445 | .0067
ng = 6 2.0 .0932 | .0757 | .0175 .0441 | .0329 | .0112
3.0 .0856 | .0618 | .0238 .0208 | .0122 | .0086
5.0 .0463 | .0305 | .0158 .0034 | .0016 | .0018

For exact integral P, , see Eq. (15).
For approximate integral P; , see Section 2.4 and Formula (22).
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