APPROXIMATIONS TO THE POWER OF RANK TESTS

By Cura Kuer Tsao

Wayne State University

Summary. Proposed is a method for approximating the distribution of the
ranks, which is the basis for evaluating the power of an arbitrary rank test (see
definition of “rank test” in Section 2 below). The method involves, in essence,
a transformation of the original distributions, by means of interpolating poly-
nomials, into distributions defined on the unit interval (0, 1). A somewhat
detailed discussion is given to the problem of testing the hypothesis that two
populations are identical against the alternative hypothesis that they have two
specified (non-identical) distributions. Explicit formulas for approximating
the distributions of the ranks under the alternative hypothesis are given. A
few tables are computed for the case where both distributions are normal with
the same variance but different means.

The last section is devoted to the investigation of the asymptotic power
efficiency of certain rank tests.

1. Introduction. A number of rank tests [8] have been proposed for testing the
hypothesis that several populations are identical. The power of such (and other)
rank tests is determined by the distribution P(R) of the ranks under the alter-
native hypothesis. In [5] Hoeffding gives a simple formula for P(R) for an arbi-
trary alternative. However, the difficulty in evaluating this formula makes it
hard to obtain the exact power results, except in special cases. Fortunately, this
difficulty has been partially, overcome by other means. As examples, we mention
here a few known results. Terry [10] investigated empirically the power of
Hoeffding’s ¢;(R) test [5] against normal alternatives for the two-sample case.
Lehmann [6] investigated the power of several two-sample rank tests against
some non-parametric alternatives. Dixon [1] obtained, by numerical methods,
some power curves of several two-sample rank tests for normal alternatives.
Recently, Teichroew [9] obtained a few empirical power curves for the same
alternatives.

We shall in this paper investigate the power of an arbitrary rank test (see
definition of “rank test’” in Section 2) against an arbitrary alternative hypothesis.
Since no method has yet been found for evaluating analytically the distribution
P(R) of the ranks, we shall here propose an approximation procedure which,
as we shall see, appears to be quite satisfactory in certain cases. The computa-
tions are carried through for a few examples. However, in order to make practical
uses of the method, much more systematic computation is required.

For convenience we shall here make the assumption, to hold throughout this paper,
that all distribution functions that we consider are to be continuous. Furthermore,
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160 CHIA KUEI TSAO
all definitions and notations given in the following sections will remain the same
throughout the discussion.

2. Rank tests and power of rank tests. The term ‘“‘rank test’ is used here in a
rather broad sense. For testing the hypothesis that several populations are
identical, a test will be called a “rank test,” if it is based entirely on the ranks
of the random variables. The following consideration will illustrate the point.

Let

(2.1) Fo,- -, Fy

be £ 4+ 1 continuous univariate cumulative distribution functions (cdf’s) de-
fined over the infinite interval (— «, ) (or over a finite or half-infinite interval
(a, b)). Let

22) Z=(Zo, ,Ze)= Zo,-*Zomgs* "y Zi1y" "y Zkmp),
where
(2.3) Zi= Za, -y Zim;)

are the ordered values of m; independent random variables distributed accord-
ing to Fi(2),7 = 0, - - -, k; that is, for each (1 = 0, - - -, k), we have

(2.4) Zy <+ < Zim; -
Let
(2'5) 0= (00 y " Ty 0") = (001 y T Ty 00mo y T Ty okl y Tt T ok'mk)’

where

(2.6) 8:= (6, -+, bim;)

are the ranks of the m; variables Z; in Z; obviously, for each 7 (z = 0, - - -, k),
we always have

2.7 0n < - -+ < Oim; -

Let

(2.8) R=(ra, " Tomgy, " "y Thay= * *y Thmy)

be a permutation of the first M = mo + - - - + my positive integers (1, - - -,
M) such that for each 7 ( = 0, - - -, k), we have

(2.9) ra < < Tim; .

It is evident that there are n = M! /]I m;! permutations R. Let @ denote the
class of all possible sets w of such permutations R. Then, 6 is a random variable
over .

Now, suppose the hypothesis

(2.10) HyFg=..-=F,
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is to be tested against the alternative hypothesis
(2.11) H:F; = Ff, i=0,---,k

where F7 , - - -, Fi are k + 1 given cdf’s. We shall denote by h(R; H;) the
probability distribution function (pdf) of 6 under the hypothesis H ; that is,

(2.12) h(R;H;) = Pr(6 = R|H,), 1=0,1.
Let us denote the » permutations R by R, , - - -, R, in such a way that

(2.13) h(Riy ; Hy) = W(R; ; Hy), t=1,+--+,9—1.
Let a,, - - -, a; be ¢ positive integers such that

(2.14) a+ - +a=n

Let

S =Riu---uR.,

(2.15) S = Reyau---u Raytay s

St = R“1+"‘+at—1+1 y----u R‘ .
Let X be a random variable derived from the random variable 6 such that
(2.16) X=4i if 6e8, Q=1 .t

In other words, the group of ¥ 4 1 random samples of sizes (mo, - - -, mz)
will be designated by ¢ (¢ = 1, - - -, ) if the rank set 6 of the sample values is
in 8;. Clearly, under H,(: = 0, 1), the random variable X is distributed ac-
cording to

(2.17) Pr(X =z |H)) = pia, z=1,---,81=0,1,
where
pa = h(Ri; H;) + - - - + h(R,, ; Hy),

Pie = h(Ra1+l yHZ) + -+ h(Ral—i-az ;Hi)’
(2.18)

Pit = h(Raytotaryt1 3 Hi) + - - - + h(R, ; H).

Now, according to the definition, there are many possible rank tests for test-
ing H, against H,, among which we mention the following three classes:

(a) Univariate rank (UR) tests. This class includes all tests which are based
on a single random variable X having the pdf (2.17).

(b) Multivariate rank (MR) tests. This class includes all tests which are
based on g(¢ = 2) independent and identically distributed random variables
X:, - - -, X, having the common pdf (2.17).
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(c) Sequential rank (SR) tests. This class includes all tests which are based
on a sequence of successive independent, identically distributed random vari-
ables X, , X, - - -, each having the pdf (2.17).

Many rank tests have been proposed in the past [8]. While most of them are
UR tests, a few (e.g., the sign test [3] and the sequential probability ratio test
[15, Ch. 6]) are MR and SR tests. Other MR and SR tests can be obtained by
the use of various goodness of fit criteria, such as the rank sum and the sequen-
tial rank sum tests introduced in [11] and [13].

Since the asymptotic efficiency of the rank sum test will be investigated in
Section 6, it is convenient at this point to describe this test in some detail.

To employ the rank sum test, we shall choose the constants a,, - - -, @, in
such a way that they are all equal and use
(2.19) s=Xi1+ -+ X,

as a test criterion. It is shown in [12] that under H; the probability distribution
function of s, denoted by q(y; p:, g), satisfies the following recursion formula

t
=
with the initial conditions
R =fpilm y=1,"',t,
(221) Q(y) s, 1) 1 0, ot-herwise,
where
(2:22) pi= (Pa, -, Pi), i=0,L
Using this criterion, a critical region of a one-sided test would consist of g,
g+ 1,---,g+ r, where r is a non-negative integer so determined that
g+r
(2.23) Qg+ ;20,9 = 2 a0, 9) =
1=g

for a predetermined level of significance . The power of this test is, of course,
given by
gtr

(2.24) Qg+ ;01,9 = 2 9; p1, 9).

=9
For an equal tailed two-sided test, a critical region would consist of g, g + 1,
-« ., g+ r* gt —r* - - -, gt where r* is a non-negative integer so determined
that (2.23) holds with r replaced by r* and « by «/2. The power of such a two-
sided test is given by

(2.25) L+ Qg+ r*;p1,9) — Qlgt —r* — 1;p1,9).

We note that when ¢t = 2, these tests reduce to the binomial tests and that
for 3 < t < 6, the function Q(y; po, ¢) is tabulated iu [12] for 1 = g = 20.
Having indicated the scope of rank tests, we shall be concerned mainly with
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the evaluation of the power of such tests. Clearly, in order to evaluate the power
of any rank test, it is necessary to find first the probability distribution function
h(R; H,). The main purpose of this paper is, therefore, to develop an approxi-
mation procedure for evaluating h(R; H;). This procedure is quite effective
when 7 is small. For large 5, the approximation of the individual terms h(R; Hy)
becomes tedious, since there are too many entries involved. For example, in
the two-sample case, there are 252 entries when my = m; = 5, and the number
of entries rises to 12870 when mo = m; = 8; in the three-sample case, even
when my = m; = m, = 3, the number of entries is already 1680. Consequently,
when the distance between Hy and H; (in a suitable sense) is so small that no
sensitive UR test based on small 5 can be found, a MR or SR test based on a
large number of groups of small samples may be recommendable, especially
when it has certain other preferable properties.

3. Rank preserving transformations and equivalent tests. Our first step in
evaluating the pdf h(R; H,) is to transform the original distributions Fy , - - -,
F% into some new distributions defined over the unit interval (0, 1).

Let T(z) be a continuous, strictly increasing function defined over the in-
finite interval (— «, «) such that T(— ) = 0, T(«) = 1. Let

(3°1) V=(V0)'"’Vk)=(V01"")VOmo”"7Vk1;"'7Vk1ftk))
where
(3.2) Vie Va, - -+, Viw) = (T(Za), - + -, T(Zimy))

are the ordered values of m; independent random variables distributed accord-
ing to

(33) ¥i0) = ¥i(T(2) = Fi2), i=0,---,Fk
Let

(3.4) 0= (80, +,0) = (Bory* *yOomgyr = * s 0k, ", 0km)

where

(3.5) 8= (B, - * -, 0ims)

are the ranks of V;in V. Then, clearly, 4 is also a random variable over €, and
has the same distribution as 6([6], Theorem 8.1). It follows that a rank test for
testing H, against H,; is equivalent to the same rank test for testing the hy-
pothesis '

(3.6) Hoigo(v) = - + - = u(v) = v

against the alternative hypothesis

(3.7 Hii(v) = ), i=0---,k
where

(3.8) &.(v) = BT (2)) = Fi(2), i=0---,k
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We shall assume that the functions ®o(v), - - - , ®x(v) are differentiable on (0, 1)
with continuous derivatives ¢o(v), - - -, ox(v) respectively. That is,

(3'9) ‘Pi(v) = <I>:(v), T = 07 MR k.

4. Polynomial approximation of a cumulative distribution function. Our next
step is to find polynomial approximations for ®$(v), - - -, ®«(v). That is, for a
given edf F*(z) and a given transformation 7T'(z), an interpolating polynomial
of the function

(4.1) ®(v) = B(T(2)) = F*(z2)

is to be found. Now, letting 0 = vy < »; < - - - < v = 1 be h 4+ 1 chosen
points on the unit interval (0, 1), we shall find a polynomial P(v) of degree h
such that -

(4.2) P, = ®@.), r=20,---,h
Since, in this case, the function ®(v) is a cdf so that we always have

(4.3) ®0) =0, 1) =1,

then, P(v) must have the following form

(4.4) P@) =aw +a* + - - - + aw”

with real coefficients a;, - - -, a» . The derivative of P(v) will be written as

(4.5) p@) = bo + bw + - - - + by,

where, of course,

(4.6) ¢g=h—1, b= (@+ Dawn, 1=0,---,9¢.
In the following, we shall derive some formulae for determining the coeffi-

cients @y, - - -, ax in terms of a given set of values (vo, P (o)), - - -, (v, B(vs)).

Our derivations are based on the Lagrange’s interpolating polynomials. It

should be pointed out, however, that equivalent formulae can be obtained by

other methods (e.g., by means of Newton’s interpolating polynomials [14]).
Suppose we let

(4.7) m@) = @ —v)@ —v) - - - (v — W)
and let m(v) be the derivative of m(v), we then obtain
TuEOREM 4.1. For any given set of values (vo, ®(v0)), - - -, (va, P(va)), the
coeflicients ay , - + - , ax of the polynomial P(v) in (4.4) can be writlen as
h
(48) Gr = CTSQ(US) r=1---, h,

= om)
where ¢, s the coefficient of v" in the expansion of

(4.9) () / (v — v,), s,r=1,+++,h.
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Proor. From [7, p. 83], the Lagrange’s interpolating polynomial is given by

h
(4.10) P@) = 2, @)L W),
8=0 .
where
(411) L(,:)(?)) = 1I'h(11) / [(1) - vs)"rlll(vs)]y 8§ = 0, c oty h.
But this can be expanded into polynomial form as
h
(12) £06) = [ et |/ ite, s=1,-,h
r=1

By substituting (4.12) into (4.10), it is easily seen that the coefficients a; , + - - »
ax are given by (4.8).

COROLLARY 4.1. If (v, - + -, va) are equally spaced, the coefficients a; , - - -,
an can be written as
B < hes (B
(4'13) @r = m Z ('—1) s Crsé(vs)) r= l) ) hr
« 8=1
where c,s is the coefficient of y in the expansion of
h
(414) IIo(y_J)/(?f_ S): 78 = 1" ° '7h'
7=
Proor. Since, by assumption, we have
(4.15) v, = r/h, r=20,--s,h,

this corollary follows directly from Theorem 4.1.

Consider now a simple application of Corollary 4.1 to the normal alternatives.
Let N(z;.A, B) denote the cumulative normal distribution with mean A and
standard deviation B. Let the transformation be given by

(4.16) v=T() = N(z;u, o).

Some approximating polynomials of degree five are obtained for the normal
alternatives

(4.17) ®(v) = ®(N(z; 1, 0)) = N(z; p + do, o).

Table 1 gives the coefficients a;, - - -, a5 for the cases d = 0, 0.25, 0.50, 0.75,
1.00, 1.25, 1.50.

5. Two-sample preblem. Applying the results of Sections 3 and 4 to Hoeffding’s
formula ([5] p. 88), we shall now find the approximate values of h(R; H,) for
the two-sample case (k = 1). Since, in the two-sample case, the complete set

of ranks 0 is determined by the ranks of Zi, - + -, Zia, alone, we need con-
sider only the distribution of the ranks
(5.1) 01 = (011 y " " %y 017»1)'

Consequently, if we let
(5.2) S=(s1,°"° ", 8m)
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TABLE 1

Coefficients of Approximating'Polynomials of Degree Five for Normal Alternatives
N (Z e+ d”y ‘7)

d a1 a2 as as as

0 1 0 0 0 0

.25 .590656 .512090 —.083386 —.345181 .325821

.50 .355264 .307583 1.195227 —2.174861 1.316787

.75 .256026 — .409675 3.578142 —5.416004 2.991511
1.00 .255337 —1.475861 6.873877 —9.976240 5.322887
1.25 .319949 —2.759978 10.879441 —15.632358 8.192946
1.50 .422091 —4.146164 15.319144 I —21.979847 11.384776

be the permutation of m; out of the first mo + m; positive integers such that

(5.3)

s < -

* < Smy,

then, our sample space @ may be considered as being made up of all subsets w
of such permutations S.
To approximate h(R; H,), we shall employ the convenient transformation

(54) v = Fi(2);

that is, we may assume ®y(v) =
TaeoREM 5.1. Let the interpolating polynomial P(v) of the function

(5.5) ®1(v) = B1(F5(2)) = Fi(2)
and the derivative p(v) be given by (4.4) and (4.5).
Then, the approximate value of h(R; Hy) is given by
-1
(58)  h(R; Hy) = <m°;n" m‘> S BRI - bR C(S; mo, e, -+ 5 1Y),
0

where the sum Y, is taken over all possible (no, - - - , ng) such that

Mg+t ng=m,
and where

C(S;'ﬂo, c e ,’ﬂq

_ T(smys1) 3 7t (i +a+ -+ 1)
"T(s1) =il(s+a+ - +15)’

in which the sum Y’ is extended over all possible (io, - + + , im,) Such that n; of
them are equal to 1,1 = 0, - + -, qand 8y, 11 = mo + my + 1.
Proor. By the same argument as in Section 4 of [6], it can be shown that

s ) = ("o ™) [ [ et - gy
II(S 11— & — l)'1~1

1=0
X H ez -
k=1

© Zmy) d21 + - d2m,,
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where s; = 0. Since
my my
g¢l(zj et Zmy) zg (bo+ b12j =+ + 2my + =+ A+ g2t oo+ 25)

= Z b(;'obiu * b"qz (zl cce zml l('22 e zml)i2 e (zml)iml

— Z b:"b{” e "q Zl 1 n+zz . zn+zz+ +'m,
we then have

~ 1 ( D! nop 1 ne
RITeY e

x 2 H T — ) T - dim,

my + m ng ng P(sm1+l) ’ _ F(Sj + Z.l + e + 7/])
< ) 2570 - b I'(s1) > il + 2+ - +145)°

This completes the proof of THEOREM 5.1.
CoROLLARY 5.1. Under the conditions of Theorem 5.1, the approximate values
of pu, - * -, Pu are given by

-1
(5.7) = (mon-:)ml> Z beobyt - b Ki(ng, ma, - e, n.,), j=1,---,t

where
(58) Ki(mrnly"'ynq) =ZC(S;no,n1,-“,nq).

Se8;

This corollary is a direct result of Theorem 5.1.

As an application of Theorem 5.1, we shall now consider the problem of test-
ing the hypothesis H, that two populations are identical against the alternative
hypothesis H; that they ate two normal populations with same variance but
different means. More precisely, we have under H, ,

Fi(z) = N(z; u, 0),
Ff(z) = N(z; u + do, 7).

Since, in this case, the function h(R; H1) depends only on the parameter d, we
shall write h(R; d) in place of h(R; H,). Table 2 gives the approximate values
of h(R; d) for the cases (mo, mi) = (2,2), (3,3), where the ranks E of the two
samples have been replaced by 0’s and 1’s, following the conventional notation;
that is, 0’s represent Z’s and 1’s represent Z’s. The interpolating polynomials
used are those given in Table 1. The ordering is made according to the ci(R)
criterion, that is, the optimum rank order criterion for small d proposed by
Hoeffding [5] and studied in detail by Terry [10]. In cases where the ¢, value is
the same for two or more rankings, however, the order is by increasing prob-
ability for the case d = .25. We note that, in Table 2 we have defined R’ as the
ranks of the sample values in the decreasing order; that is, R’ is obtained from
R by interchanging 0’s and 1’s.

5.9
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TABLE 2
Approzimate Values of h(R; d) and h(R’; —d)
d
Ranking
25 ’ 50 ] 75 1.00 | 1.25 ! 1.50

mo = m; = 2
1100 11727 .07917 .05136 .03218 .01970 .01206
1010 .13603 .10586 .07893 .05676 : .03969 .02725
1001 .16223 .14964 .13087 .10871 .08607 .06541
0110 .16307 .15308 . 13881 .12293 ¢ .10791 .09534
0101 .19401 .21413 .22391 .22206 . .20961 .18958
0011 ) .22739 .29812 .37612 .45736 ' .53702 .61036

mo =m; = 3
111000 .02860 .01536 .00775 .003706 | .00170 .00078
110100 .03157 .01859 .01025 .00535 .00267 .00132
101100 .03527 .02313 .01424 .00836 .00479 .00274
110010 .03532 .02323 .01427 .00823 | .00448 .00233
101010 .03945 .02883 .01968 .01266 .00776 .00459
110001 .04069 .03049 .02099 .01326 .00770 .00416
011100 .04098 .03144 .02274 .01582 .01093 .00780
100110 .04382 .03579 .02759 .02034 .01453 .01018
101001 .04541 .03771 .02869 .02006 .01296 .00778
011010 .04580 .03906 .03117 .02350 .01704 .01220
100101 .05037 .04652 .03957 .03125 .02320 .01645
010110 .05081 .04828 .04320 .03678 .03004 .02368
011001 .05267 .05088 .04494 .03635 .02719 .01924
100011 .05669 .05944 .05782 .05245 .04484 .03680
001110 .05714 .06166 .06368 .06402 .06364 .06325
010101 .05836 .06248 .06132 .05528 .04608 .03584
001101 . 06555 .07945 .08934 .09410 .09429 .09174
010011 .06563 .07955 .08870 .09056 .08427 .07106
001011 .07367 .10081 .12793 .15056 .16471 .16851
000111 .08219 .12730 .18613 .25737 .33718 .41955

Although no theoretical results are given as a basis to reveal the error of our
approximations, the values for some of the extreme cases in Table 2, that is,
for the cases R = (000111) and R = (111000), can be compared with the re-
sults of Dixon [1] and Teichroew [9]. These comparisons show that our approxi-
mate values and the exact figures agree to two or three decimal places for d <
1.25. This may be considered as quite satisfactory for many practical purposes.
If, however, one wishes to attain more accurate approximations, polynomials
of degree higher than five must be used. This, of course, would result in more
extensive computations.

6. Asymptotic power efficiency of the rank sum test. The purpose of this
section is to investigate the asymptotic behavior of the rank sum eriterion de-
scribed in Section 2. As a representative, we shall consider only the problem of
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testing the hypothesis H, that two normal populations are identical against the
alternative hypothesis H; that they have the same variance ¢ but different

means v and v .
Let n(z; 4, B) be the normal density with mean 4 and standard deviation

B. Let
(6.1) T = (Tor,* * ) Tomg, Tity* * * 5 Timg)

be a point of a my + m; dimensional Euclidean space and let

1 m;
(6.2) f(x; d,mo, mi) = T1 I ol i, o). —w <3y < oo,

=0 j=1

where »; = » + do. Then, h(R; d) can be written as
h(R;d) = h(R;d, mo, m;)

6.3 mi\

©3) =(me Y[ [t m ! S dy o, o d,
—00T01< 0 * <2 <O

where

(6.4) ze = @, - - xf.ﬁf, , T, - :vff.i)

is the rearrangement of z according to R (in the obvious manner).
For deriving the power efficiency of a rank sum test, it will also be convenient

to write pu , P12, * -, D1 88

pu(d; ma, my, @) = h(Ry;d, mo, ma) + -+ + h(Ra ;d, mo, ma),
(6.5)

pre(d; mo, my, a) = h(Ratasr 3 d, mo, my) + -+ + h(Ras 5 d, mo, ma),

where t = 2 and a = 1 are two integers such that
. me + My
.6 at =19 = .
(6.6) Ul ( " e )

Consider a rank sum test which is based on g groups of two samples of sizes
(mo, my) and which is to have the strength (o, i) for testing Ho against H;
(that is, the probability of rejecting Ho under H; is a;, ¢ = 0, 1). If under H; ;
the mean and variance of the rank sum statistic s are designated by u; and o}
respectively (z = 0, 1), then, from (2.4) of [11], we have

M0=g(t+1)/2y
o =g —1) /12,

t
(6.7) w= g 2 jpis(d; mo, mu, @)

i t 2
Cr% =49 [2112p11(d; mo, My, a) - <Zl jplf(d; my, My, a’)) ]'
7= I= -
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Now, suppose d is small so that g is large; then the distribution of s is approxi-
mately normal. Consequently, for a two-sided test, g is to be determined so
that

(6.8) N(uo + 2000 5 pi, 00) — N(uo — 2000 385, 00) =1 —a;, 1=0,1
from which we obtain

(6.9) g = [Ba(d; mo, my , 8, @) / Ba(d; Mo, ma, ¢, @)

where

t
Bl(d; Mo, My, L a’) = (t + l)/2 - Zl]pla(d; mo, M, a)r
J=.

Ba(d; mo, my, ¢, @)
1 T 2
=2 /‘/Z; jz pli(d; mo, M, (l) - (Zl ]pl.‘l(d; Mo, M1, a')>
i= J=

_M/tz_:_l
0 12 ’

and where 2y and z are two constants determined by ao and a; respectively.

If mi=m; = 1,thent = 2 and ¢ = 1, and the, test reduces to the sign test.
It is well known that the asymptotic efficiency of the sign test (as compared
with the most powerful i-test) is 2/x. Consequently, we may first find the
asymptotic power efficiency of a rank sum test as compared with the sign test,
and then the corresponding power efficiency as compared with the t-test by
multiplying the former by the constant 2/x.

The large sample power efficiency of a rank sum test as compared with the

sign test is now defined as
(6.11) &(d) = 2¢' / (mo + m1)g”,

where ¢’ is the number of pairs of observations required by the sign test and
g” is the number of groups of samples required by the rank sum test. It is then
readily seen that

(6.10)

_ 2 ﬁl(d; Mo, M, t; a') ﬁz(d; 1’ 1’ 2; l))z
(6-12) 8(d) h mo + my (ﬁl(d; 1’ 1; 2, 1) ﬂz(d; Mo, My, t; a’) )

If we now let
(6.13) E(w(hj ] moy + ’ml))

be the mean of the r;th order statistic in a sample of size (mo 4+ m,) from a
‘population with cdf N(y; 0, 1) and let

c(R|mo + my) = i”f E(z(ry; | me + my)),
(6.14) =

ja
Aslmo,my,0) = 3 aBi|mo+m),  j=1,-- 1,

i=(j—1a+1
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then, the asymptotic power efficiency is readily seen to be
t 2
24 3= im0 |
im &(d) = = x 21 2 3
d-»0 .
@ = D+ m) ("3 ™) [ 4t 10|
J=

By the use of the mean values of the order statistics computed by Godwin
[4], some of the efficiencies are computed and displayed in Table 3; here again
the ordering is made according to the ¢;(R) criterion. The values 26(0) / = in
Table 3 are to be interpreted as the asymptotic power efficiencies of the rank
sum tests as compared with the i-tests. '

In conclusion, we remark that the asymptotic power efficiency of one-sided
rank sum tests can be obtained similarly according to formula (6.1) in [11].
This can be shown to be equivalent to (6.15) above.

The author wishes to acknowledge the debt to his wife Ying-Lan Tsao, who
carried out the computations of Tables 1, 2, and 3

(6.15) &(0) =

TABLE 3
Asymptotic power efficiencies of the rank sum tests
mq my t a &(0) 28(0)/=
2 1 3 1 1.0000 .6366
2 2 2 3 7397 4709
2 2 3 2 1.1096 .7064
2 2 6 1 1 1662 7424
3 1 2 2 .6909 .4398
3 1 4 1 .9000 .5730
3 2 2 5 L7978 .5079
3 2 5 2 1.1638 .7409
3 2 10 1 1.1846 L7541
3 3 4 5 1.1713 7457
3 3 5 4 1.2160 7741
3 3 10 2 1.2613 .8030
3 3 20 1 1.2679 .8072
4 1 5 1 .8000 .5093
4 2 3 5 .9761 .6214
4 2 5 3 1.0849 .6907
4 2 15 1 1.1282 .7182
4 3 5 7 1.1911 .7583
4 3 7 5 1.2289 .7823
4 3 35 1 1.2705 .8088
4 4 2 35 .8915 .5675
4 4 7 10 1.2804 .8151
4 4 10 7 1.2946 .8242
4 4 14 5 1.3073 .8322
4 4 35 2 1.3150 .8372
4 4 70 1 1.3158 .8377
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