ON CONSISTENT ESTIMATES OF THE SPECTRUM OF A STATIONARY
TIME S 2
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Summary. This paper is concerned with the spectral analysis of wide sense
stationary time series which possess a spectral density function and whose
fourth moment functions satisfy an integrability condition (which includes
Gaussian processes). Consistent estimates are obtained for the spectral density
function as well as for the spectral distribution function and a general class of
spectral averages. Optimum consistent estimates are chosen on the basis of
criteria involving the notions of order of consistency and asymptotic variance.
The problem of interpolating the estimated spectral density, so that only a
finite number of quantities need be computed to determine the entire graph, is
also discussed. Both continuous and discrete time series are treated.

1. Introduction. A stochastic process is a family of random variables z(f),
where ¢ varies in some set 7'. If the set T is the infinite real line, then z(f) is
called a random function, and if 7 = {0, +1, +2, --- }, then z(¢) is called a
random sequence. If the parameter £ is interpreted as denoting time, then the
stochastic process is called a time series, with the adjectives continuous or dis-
crete being used to indicate whether it is a random function or a random sequence.

Let us suppose that we have observed a sample of length T of a (continuous
or discrete) time series z(Z). The general problem of time series analysis is to
infer the statistical characteristics of z(f) from the observed sample. Now in
order to perform a statistical analysis of z(f), one has to assume a model for
z(t) which is completely specified except for the values of certain parameters
which one proceeds to estimate on the basis of the observed sample.

A widely adopted model for z(f) (see Grenander and Rosenblatt [4], [5]) is
the following. It is assumed that z(f) may be written as a sum of a mean value
function m(t) and a fluctuation function y(t):

(1.1) z(t) = m(®) + y(®).

The domain T of the variable ¢ is to be taken as the infinite real line, — o <
t < o, in the continuous case, and as the set of integers 0, 41, +2, - - - in the

discrete case. We seek to treat simultaneously both discrete and continuous time
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series. Most equations will hold for both cases, with the proper interpretation,
which will be explained as we proceed.
It is assumed that the function m(t) is nonrandom, and that there is a fixed

number K of known functions ¢(f), - - - , ¢x(f) such that m(tf) may be written
as a linear combination of the ¢;(t):

(1.2) m(t) = mei(t) + -+ + mxex(t).

The constants m; (forj = 1, ---, K) are unknown, and are to be estimated

from the sample.

The fluctuation function y(t) is a stochastic process, whose mean value func-
tion Ey(t) vanishes identically in ¢. It is assumed that it possesses a finite second
moment E | y(¢) | ? and that it is wide sense stationary, which means that the
product moment Ey(t) y(t 4 v) is independent of ¢, and depends only on v. One
then defines the covariance function

(1.3) R(v) = Ey(t) y(t + v).

In the case of random functions, it is assumed that R(v) is continuous. Then,
R(v) possesses a representation as a Fourier-Stieltjes integral:

(14) RO) = [ & dF(w),

where F(w) is a bounded non-decreasing function, called the spectral distribution
function of the process. The domain of the variable v is the same as that of ¢,
and the domain of the variable w is — « to « in the continuous case, and —m
to = in the discrete case. The domain of integration of an integral involving w
is to be taken as the whole domain of w, in cases where it is not otherwise specified.

It is assumed next that R(v) is summable. It then follows that the spectral
distribution function F(w) possesses a continuous density function f(w), called
the spectral density function of the time series z(¢). The following relations hold:

(1.5) R() = f e f(w) dw,
(1.6¢) flw) = 5117_ f e R(v) dv
(1.6d) - 2_11; > R®).

" In cases where the limits of integration (or summation). of an integral (or sum)
involving the variables u or v are omitted, they are to be assumed to be — « to
+ . Henceforth, we write equations of the type of (1.6) only once, for the con-
tinuous case, with the understanding that for every such equation a correspond-
ing equation may be written for the discrete case by replacing the integral by
a sum. For certain important equations, we will write, without further explana-
tion, two equations, with a suffix d for the discrete case and a suffix ¢ for the
continuous case.
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The model for the process z(t) which has just been described assumes only a
knowledge of the first and second moments of the process, and assumes no knowl-
edge of the probability distribution. The moments are assumed to be completely
specified by the constants m,, ---, mg, and the covariance function R(v), or
equivalently the spectral density function f(w). By analysis of an observed time
series is meant the estimation of the value of these quantities on the basis of

observed samples. The estimation of the constants m, , - - - , mx is called regres-
sion analysis, and the estimation of the spectral functions is called spectral
analysis.

A basic requirement for an estimate is that it be consistent in quadratic mean.
Let m be an unknown parameter of a time series z(¢), and let z(¢) for0 < ¢t = T
(ort =1, ---, T in the discrete case) be an observed sample of the time series.
An estimate mr of m, formed on the basis of the sample, is said to be consistent
in quadratic mean if the mean square error E | my — m |  tends to zero, as T —
o, where the expected value is taken under the assumption that m is the true
parameter value. If an estimate is consistent, it is then asymptotically unbiased,
which means that Emr > mas T — «.

However, we shall be interested in estimates which are consistent and asymp-
totically unbiased at certain prescribed rates. Let o be a positive number. We,
define an estimate to be asymptotically unbiased of the order of 7¢ if, for some
finite constant 8,
a.mn lim 7“(Emr — m) = B.

T-»00

We say that an estimate possesses an asymptotic variance ¢° of the order of

T’ if ¢ is positive and

(1.8) Lim T* olmr] = o,

where ¢° [ms] = E|my — Emg|?® is the variance of mr. The importance of
these notions derives from the central limit theorem, for dependent random
variables, from which one may hope to obtain conditions that the normalized
random variable (mr — Emz)/c[ms] tends to a normal distribution. We define
an estimate to be consistent of the order of T*%, with asymptotic bias 8 and
asymptotic variance ¢°, if (1.7) and (1.8) hold. If such an estimate obeys the
Central Limit Theorem, then the random variable T* (mry — m) tends to a
normal distribution with mean 8 and variance ¢°. Many estimates that one
encounters are consistent of the order of 7'; however, we will encounter below
estimates which are consistent of a lower order.

A knowledge of the order of consistency, the asymptotic bias, and the asymp-
totic variance of an estimate is valuable on several counts, as will be shown in
detail in a later paper [8].

The problem of regression analysis has been extensively treated by Grenander
and Rosenblatt in several excellent papers (see [5]), in which they obtained
expressions for the asymptotic variances (of order T') of various estimates of the
constants m; in the model given above, and obtained conditions that the least
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squares estimate and the best linear unbiased estimates have the same asymp-
totic variance. We mention regression analysis here only to point out that the
results of this paper remain valid if in estimating the spectrum one uses the
deviations of the observed values of z(f) from the sample mean value function
formed by inserting into (1.2) the least squares estimates of the constants m; .
As far as detailed considerations are concerned, we consider only the case where
m(t) = m, an unknown constant.

The problem of outstanding interest at the present time in the analysis of
time series is that of estimating the spectral density function, and it is this
problem that is treated in this paper. In view of Eq. (1.6), the obvious way to
estimate f(w) is to form the Fourier transform fr(w) of the least squares estimate
Rr(v) of the covariance. The sample spectral density function fr(w) so obtained
is essentially what has been studied by various authors under the name of the
pertodogram. However, as is well known, it turns out that fr(w) is not a consistent
estimate of f(w).

Rather, to begin with, we are only able to estimate what may be called spectral
averages; that is, averages of the spectral density function of the form

(19 J(4) = [ A@)fw) do,

where A (w) is a suitably chosen function. On the one hand A (w) may be chosen
to be a unit step function, A (w) = 1 or 0 according as w < wo or w = wo . Then
J(A) represents the spectral distribution function f(w,). On the other hand,
A (w) may be a function highly peaked about a center frequency wy .

In Section 5, we obtain a class of consistent estimates of the spectral density
function at a point w,. However, the order of consistency of these estimates will
be T?%, where 0 < a < 4. Expressions are obtained for the asymptotic variance
and bias of such estimates, so that the means are at hand for choosing among the
large class of estimates presented. In Section 6, consistent estimates of the spec-
tral density function, asymptotically optimum within the family of estimates
considered, are discussed. In Section 7, we use the ideas leading to consistent
estimates of the spectral density to obtain alternative estimates of the spectral
averages. In Section 8, we treat the problem of interpolating the spectral density.

2. Assumptions on the fourth moments. Some additional assumptions are
required in addition to the assumptions we have already stated. We assume that
the fluctuation function y(t) is wide sense stationary of order 4, in the sense that
E | y(t) | * exists for all £, and the fourth moment function

2.1) P(vy,v2, ;) = Ey(t) y(t + v) y(t + v2) y(¢ + vs)

is a function only of the time differences »; , v2, v3, and not of the initial time ¢.
Now if the process. y(f) were normally distributed, then P(v, , v2, v3) could be
expressed in terms of the covariance function R(v) as follows:

(2.2) Po(l)l , U2, 1)3) = R(vl)R(v,, - 1)3) + R(vz)R(U; - 1)1) + R(ﬂ;)R(i)] - 02).



STATIONARY TIME SERIES 333

We introduce the function
(23) Q(v1,v:,v5) = P(th,03,v3) — Peo(r,02,0s),
which is the difference between the actual fourth moment function of y(t), and
what it would be if y(f) were Gaussian. We refer to @(v1, v2, v;) as the non-
Gaussian part of the fourth moment function of y(¢); it is the same as the fourth
cumulant function. ]

We assume that Q(v:, v2, v5) is absolutely summable (and, in the continuous
parameter case, continuous) over all of (v, v2, v3) space.

We will find in many instances that Q(v , v, v;) admits of a representation as
a Fourier integral:

(24) Qv1,v:,v5) = ff exp [(w191 + w20; + w303)lg(w1, w2, w3) dwordwzdws,

where the function g(w; , ws , w;) is absolutely integrable over all of (w; , ws , ws)
space. We may have also the relation

(2,5) fduQ(vx, uu+v) = %ffdwxdwzg(wx, — w2, w2) exp [i(wn 01 + was)].

We will assume these relations to be valid, since they simplify the writing of
some of the results. It should be pointed out that the notion of the Fourier trans-
form of the non-Gaussian part of the fourth moment function has previously
been considered by Magness [6] where some examples may be found.

In the continuous parameter case we assume also that the stochastic process
z(t, w), where « varies in a space @ on which the basic probability measure P
is defined, is measurable jointly in ¢ and w. Then the random integrals, such as
J3 =(£) dt, which are employed exist with probability one, by virtue of the Fubini
theorem (see Doob [9]). Alternatively, the random integrals employed may be
defined as limits in quadratic mean (see Lodve [10]).

3. The sample covariance and spectral density functions. The estimates of
the spectrum that we shall consider will be defined in terms of two functions,
the sample covariance function and the sample spectral density function, which
are defined in this section. Given a sample of observed values of z(f) for0 < ¢ = T
(or for ¢ = 1, ---, T), let mr be the least squares estimate of m, and consider
the function Y 5(t), defined by

Yr(t) = Z(t) -_ My -fOl' 0 é té T,

3.1) =0 otherwise.

Define now the function

(3.2¢) fr(w) = iTl j; i Y(t)e ™ dtr

(32d) = 7| X o™ r

t=1
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which may be regarded as the notion of the “periodogram” extended to the case

of time series with an unknown mean value. We call fr(w) the sample spectral
density function, because its Fourier integral

(3-3) R:(v) = f eiwfr(’w) dw

is a consistent estimate of the covariance function. We call Rr(v) the sample
covariance function. It vanishes for [» | = T, and for v | < T,

(340) R =5 [ v+ 10 )
(34d) = ITZ” Yo(O¥ st + [ v]).
We may invert (3.3) to obtain

(350) sew) = = [ e Rao) av
(3.5d) 2, € Re(v).

21 |s|=T

In the continuous parameter case, the interval of integration in (3.3) is infinite,
and to establish that fr(w) is summable, one needs to employ a standard argu-
ment involving Plancherel’s theorem.

An important role in the sequel will be played by the following representation
of Rr(v), for|v| = T:

(3.6) R:(v) = Dz(v) + br(v) + R(v) (1 - l'%"l),
where

‘1 T—|v|
37) De) = [ dtly@yCt +|v]) — R0}

and br(v) is defined so as to make Eq. (3.6) correct.

The term br(v) represents the bias arising from the fact that the sample covari-
ances are computéd using Yr(f), the deviations of the observations from the
sample mean. That it may be essentially ignored in our calculations will follow
from the fact that there is a constant K such that

-(38) T E | b:(0) [ < K*
for any v and T. To establish (3.8), it suffices to show that there is a constant K’
such that, for any choice of numbers 7' and T;, T, Ts, T, satisfying 0 =
Ty, T, T:, T+ = T,

To Ty - 2
(3.9) E f [ W) dt dy| s KT
1 3
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which follows from the fact that the expected value in (3.9) is less than

3{1‘[ | R() | azu}2 + Tfff | Qus, uz, us) | dus dus dui.

We next evaluate the covariance of Dr(v). We obtain that, for any non-nega-
tive numbers »; and v, ,

(3.10) TED:(2)Dx(vs) = L duUz(u, v1, 1) {Q(v1, u, u + v2)
+ R@R( + v — 1) + R(u + 0)R(u — w)},

where Ur(u, 1, ;) is a function with values between 0 and 1 defined as follows:
3

UT(u’vl,vz) =0 ué —T+v
=1—02;,-u — T+ v <4 < min (0,2, — vy)

_ 7 _ nmax (v, v3)

(3.11) =1 —

min (0,2, — ) < u < max (0, v, —v;)
max (0,02 —v) Su =T —n

=0 T—vl.Su

To establish (3.10) one makes the change of variable 4 = & — &, v = f in the
expression

T—v; T—vy
T’ED+(1)D+(v;) = [ f dt; dt;
) )

Q,b—t,b—t+m)+Rt:—t) Rl — t + v — )
'I" R(tz ol t_l "|' 1)2) R(tz ot tl ot 01)}.

As a first consequence of (3.85 and (3.10, we obtain the following theorem.
TugoreM 3: For any non-negative numbers v, v, , and vs,

(3.12) lim T'? | ERx(v) — R(v) | = 0,
lim T Cov[Rs(v1), R(vs)]

(3.13)
= fdu {Q(vr, u,u + v2) + R(w)R(u + v, — v2) + R(u + v)R(u — v5)}
= 21{ f f dw; dw; exp [t(wrvy + weve)lg(wy, —we, ws)

(3.14)

+ f dwf’(w) exp [fw(n, — v)}+ f dwf(w)exp [iw(n + vz)]} .
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4. Estimation of spectral averages. To estimate the spectral average J(4)
there are two methods available, which may be called the method of filtering
and the method of covariance averages. In the method of filtering, one estimates
the variance (zero lag covariance) of a new time series obtained by filtering the
observed series. In the method of covariance averages, one defines a sample
spectral average Jr(A), which may be expressed as an average with respect
to the sample spectral density function or with respect to the sample covariances.
This latter form is the more convenient for computations. Only the method of
covariance averages is discussed here.

Spectral averaging functions: A function A(w) will be called a spectral averag-
ing function if it is a real valued function which is both absolutely integrable
and square integrable. Its Fourier transform

(4.1) a(v) = 51; f e A(w) dw

is then bounded and square integrable. We call a(v) a covariance averaging func-
tion. We assume finally that
4.2) la@)|=0(|lv]|™)  for somer > }.

If A(w) has finite total variation (and also, in the continuous parameter case,
vanishes at infinity), then | a(®) | = O (| v | ™). From (4.2) it follows that,
for some constant K; and some ¢ > 0,

T
43) [ 1at) | dv < Ky
T
for all T, and also that
44) [ 19171 aRG) | dv < .
A lemma: Of frequent use in the sequel will be the following lemma.

LemMA 4: Let ¢ = 0 and 8 > 0. Let M+ be a sequence of constants tending to
o a8 T — . Suppose that

45) [1911 6)RG) | b < .
Then, as T — w,

- (48) M3 f. .| GORG) | dv >0,
@7) 1 | 9 |%* | a@)R() | do — 0.

Mz Jisisuy

Sample spectral averages: The spectral average J(A) may be defined in terms
of either the spectral density or the covariance function by
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48) JW) = [ Aw)iw) dv = [ aWRG) dv.
Accordingly, we define the sample spectral average Jr(4) by
49) 1:4) = [ A)fstw) do = [: (W) Ra(o) do.
The properties of Jr(A) as an estimate of J(4) are given in the follow-
ing theorem:
THEOREM 4: For any spectral averaging functions A (w), A:(w), and As(w),
(4.10) Lim 7% | EJ+(4) - J(4) | = 0,
lim T Cov [/+(4,), Jx(A2)] = 4 [ duf*(w)430)43(es)
@i T
+ 2 [[ dundiongla, —101, 1n) 430 43w,
where
(4.12) A'(w) = 5 {A(w) + A(—w)}.

ProoF. Omitted, since it is similar to the proofs of Theorems 5A and 5B.

6. Estimation of the spectral density. Various authors have pointed out that

the sample spectral density function, or periodogram, fr(w) is not a consistent
estimate of the spectral density function f(w). The suggestion has been made to
estimate f(w) at a point w, by averaging the values of f(w) in the neighborhood
of w, . However, this yields a consistent estimate not of f(w,), but rather of the
spectral average in the neighborhood of we . To eliminate this bias, one needs to
narrow the neighborhood averaged over as the sample size is increased. The
manner in which this is to be done is examined in this section. A similar method
of obtaining a consistent estimate of the spectral density is that of Bartlett
(see [1]), who has suggested a modified form of the periodogram. More general
methods of constructing consistent estimates of the spectral density have been
given by Grenander [3] and Tukey [7]. In this section these methods are general-
ized somewhat further. A noteworthy feature of the general method of construct-
ing consistent estimates of the spectral density which is discussed in this section
is that one may construct estimates which are consistent of any prescribed
order 7%, where 0 < & < %.
- Covariance averaging kernels: A function k(z), defined for all real 2z, will be
called a covariance averaging kernel if it fulfills the following conditions. It is
even, bounded, square integrable, and normalized so that k(0) = 1. Its Fourier
transform K(w) is defined (as a limit in quadratic-mean) to satisfy

(5.1) k(z) = f K (w) dw.
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It is assumed that there is a constant K; and an € > 0 such that

(52¢) B [: | k(Bv) | dv £ Ky(BT)"*,

(5.2d) B 3 | k(B0 | < Ki(BT)",

for every B and T. A sufficient condition for (5.2) to hold is that k(z) satisfy
(4.C2}z;ren a kernel k(2), and a positive number r, define

(53) K = i{rgliﬁlff—@.

We assume next that there is a largest number r, called the characteristic exponent
of the kernel k(2), such that k* exists and is finite (nonzero). If the limit in
(5.3) exists for every positive 7, then the kernel is said to have characteristic
exponent o

Estimates of the spectral density: Let k(z) be a covariance averaging kernel
and let By be a sequence of constants tending to 0, as T — o, in such a way
that B;T — «. As an estimate of the spectral density function we define the
even function

T

(5.4c¢) fH(w) = 1 ¢ k(B v)Rr(v) dv
2w )7

(5.4d) - 51- > T k(Br)Ra(o).
T |v|ET

The constant By may be called the bandwidth of the estimate. In terms of the
sample spectral density, one may write

(5.5) fr(w) = Bl _w K <)‘ yon ) fr(\) dn,

where fr(M) is to be defined as a periodic function in the discrete parameter case.
Alternate ways in which f§ (w) may be written in the discrete parameter case are

55) fiw = [ g 1 5k (A=t
and
657) 73 = [ KA — w),

where Kr(w) is defined so that
k(Bzv) = [ e " K r(w) dw.

Various estimates of the spectral density which have been proposed (see Bart-
lett [1], [2], Grenander [3], Tukey [7]) may be obtained as instances of (5.4).
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By choosing k(z) = 1 — | z|if | z| = 1 and 0 otherwise and letting By = (1/M),
where M is an integer less than 7', one has a modified form of Bartlett’s estimate:

1 = —iow I v l)
g 2, (1= ) o,
By choosing k(z) = sin 2/z and letting Br = h, one has Daniell’s estimate:
1 & i sin (Av) 1 [‘
5 2o ¢ Ba0) = oo | fxOM — w) a\.

By choosing k(2) = 1if | z| < 1 and 0 otherwise, and letting B = (1/M), one
has the truncated estimate

1 & —1w
— 2 € "™R(v),
21|' r=—M
which, in view of the fact that the Fourier transform K(w) of k(2) is not non-
negative, has the possibly undesirable property that it is not necessarily non-
negative.
The properties of the estimate f7(w) are embodied in the following theorems.
TueorREM 5A. The asymptotic covariance of the estimate f7(w) defined by (5.4)
salisfies, for any non-negative frequencies w, and ws ,

(5.6) lTlm TBr Cov [f5(wy), f1(w.)] = f*(w) f K(z) dz{1 + 8(0, wy) }6(w, w:),
where 8(wr , we) = 1 4f wy = we and 0 of wy # we . Further, for any € > 0, the limal
wn (5.6) is uniform in wy and w, such thal wy = eand w2 = e.

RemARK. The integral in (5.6) is not to be replaced by a summation in the

discrete parameter case.
TrroREM 5B. Let ¢ > 0 be such that

(5.7¢) [T 1RO 1 do < =,
(6.7d) v |'R(w) < .
Define the generalized qth spectral derivative f'9(w) by
(5.8¢) fOPw) = 51; f e | v |'R(v) dv
(5.84) - 51; 3 6™ | o [PR().

Let the covariance averaging kernel k(v) have characteristic exponent r = q. Let the
constants Br be chosen so that

(5.9) 0 < lim 7B < w,

T-»00
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Then, uniformly in w,
(5.10) 1;23;" | Efr(w) ~ fw) | = [KfP@) [} ifr=g

=0 ifr>gq.

Proors. We first show that the term bz(v), defined by (3.6), has no effect by
showing that uniformly in w,

T . 2
[T dve ""k(Brv)bs(v) | = 0.

(5.11) lim TB-E
T-»00

By Minkowski’s inequality, (3.8), and (5.2), the square root of the quantity
in (5.11) whose limit is being taken is less than

T
K(TB.) "B, L dv | k(Brv) | < KK, T,

which tends to 0 as T — .
We next establish Theorem 5B. By (3.6), we write

(512)  2xf3w) = [ doe™""K(B2) {Dr(v) + bs(0) + R() (1 - Tl)}

Therefore
2xB7(Ef 7(w) — f(w)) = EB7* [: dve """ k(Brv)br(v)

_ By [ doe=™(1 — k(Bsv))R(0)

(5.13) . ‘
1 —ivw
- TB;" [T dve"" | v| k(Brv)R(v)

— B dve "R (v).
Isl2T

We now show that the first, third, and fourth termsin (5.13) tend t0 0, as 7' — o,
uniformly in w. From (5.9) and (5.11), it follows that, uniformly inw,

1 [ ) 2
= L dve=""k(Br 1)bs(v) | = 0.
T

lim E
T-»00

Next, if M is an upper bound for | k(v) | , the third term in (5.13) tends to 0 by
(5.7) and (5.9) if ¢ = 1, and if ¢ < 1 it is in absolute value less than

M 1 (7

mTT;; TdvlvllR(v)|,
which tends to 0 by (5.7) and Lemma 4. Similarly, the fourth term in (5.13),
which is in absolute value less than
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1 !
(TBT)G T' -/;vlgr dv I R(v) I ’

tends to 0.

Consequently, (5.10) is proved for the case that the kernel has characteristic
exponent r = g, since the second term in (5.13) then tends, uniformly in w, to
—2x k'@ (w). Next, to prove (5.10) for the case that r > ¢, it suffices to show
that then :

T
(5.14) lim B7* |1 — k(Brv) || R(v) | dv = O.
T->c0 T

L4
Let M, M, , and D be positive constants such that | k(v) | < M for all v, and
(5.15) |1 —k@) | =M |ol for|v| = D.

If the characteristic exponent is infinite, we may take any exponent r > ¢ in
(5.15). Let 8 = r — q. Then the quantity in (5.14) whose limit is being taken is
less than ‘ ,

| 9 |™"R(v) do + MBF f R(v) dv,

lelzDB71

M,B: f

lelspBr™?

which tends to 0 in view of (5.7) and Lemma 4.
We next establish Theorem 5A. In view of the foregoing, it follows that the
desired asymptotic covariance in (5.6) is given by the limit, as T — «, of

(5.16) 4112 TBr j; j; i dvidv: cos wy vy cos W vok(Br v)k(Br v2) EDr(v1)Dr(vs).

We may write (5.16) as a sum of three 3-fold integrals, by replacing TED(v1)
Dx(v3) by its value (3.10). The term in this sum which involves Q(v: , u, u + vs)
clearly vanishes in the limit, uniformly in w; and w, .

Next we show that the term involving R(u + v) R(u — v,) also vanishes in
the limit, uniformly in w0, and w; . For this term is less than

T T T
Br [ don [ do [ du| K(Brodk(BrmR(u + R —w) |
0 0 T
Making the change of variable v; = 2, — v, u = z -+ v., this becomes
T T+4vg T—vs
Br[ o [ da[  de| k(Beodk(Bro, — BradRGRG + 20 |.
(] 2 T—vg
Making the change of variable zz = By, this becomes

ByT T+(23/Br) T(1—(22/TB 1))
£ dz, j; dz, [ dz | k(z)k(zz — Br2)R(2)R(z + 2) |,

22/BT) T(14(s2/TB7T)]

which tends to 0 as T — o, since the region of integration over the 2z, variable
tends to infinity.
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The value of (5.6) is then given by the limit of

1 T T
= B, {; { dvy dv, cos wy vy cos wyvek(Brv)k(Brvs)
(5.17) ’ .
f " duUr(u, v, )RR + v, — ).
L, !

By the change of variables u; = v, — v, , up = v, this becomes

1

T T—ug
Br f dus f duy cos wi(uy + us) cos wsus
1r2 0 —ug

(5.18) .
k(Brus)k(Bruz + Bruy) f_ . duUr(u, w1 4+ us, w2) R(w)R(u + ).

By the change of variable z = Bru,, and the formula 2 cos A cos B = cos
(A + B) + cos (A — B), one obtains that (5.18) js equal to

1 BrT fT[l—(leBT)l

272 Jo (z/B)

(5.19) {cos [z <’£LB;_‘W) + w Wl] + cos [z.(wl ;_ w2> + u wl]}

T
k(2)k(z + Bruy) f_ . dulUr(u, v + Ez_, ) 7;—;) R(wR(u + uy).

du1

By referring to (3.11), it may be verified that, as

T — o, UT(u,ul-}-BiT,l-g—r)—ﬂ.

Now to evaluate (5.19), one may distinguish three cases: case I, w; # w; ;
case II, w, = w, = w 5 0; case III, w; = w, = 0. In view of the Riemann-
Lebesque Lemma, the first term in (5.19) vanishes in the limit if w; — w, = 0,
and the second term vanishes in the limit if w; 4+ w, = 0. Further, for any
¢ > 0, the convergence to 0 is uniform in w; and w, such that w; = eand w; = e.
Thus one obtains that, in the limit, the value of (5.19) is 0 in case I;in case II,
it is equal to

(5.20) Q% ‘l ]cz(z) dz [ . duy cos wu, [w du R(uw)R(u + w);

and, in case III, it is equal to twice (5.20). It is easily verified that (5.20) and
(5.6) are equal. '

To adapt the foregoing argument to the discrete parameter case requires
some care in the phase of the argument following (5.19). The integration in
(5.19) involving the variable z should be replaced by a summation over the
lattice points z; = jBr, wherej = 1, --- |, T. As T — o, the distance between
the Iattice points tends to 0, and the highest lattice point tends to infinity, so



STATIONARY TIME SERIES 343

that the summation may be regarded as approaching the integral [§ k°(2) dz,
as above.

6. Optimum consistent estimates of the spectral density. In view of Theorems
5A and 5B, the means are now at hand for choosing that estimate f7(w), of the
form of (5.4), which is optimum in the sense that it possesses an order of con-
sistency not less than that of any other such estimate. We obtain the following
theorem.

THEOREM 6: Suppose that (5.7) holds. Let the constanls By be chosen so that, for
some finite positive number B,

(6.1) lim T""*?B, = B.
T->x
Let
_q
(6.2) @ =i Yo

Then for any covariance averaging kernel k(v) with characleristic exponent r = ¢
the corresponding estimate f3(w) possesses an asymptolic mean square error given by

63) lim TE | f7(w) — f() [* = %@ f (z) dz{1 + 80, w)}
+B2q l k(q)f(q)(w) l2,

REMARK. If ¢ <., then k¥ = 0.

Now, as ¢ increases, the exponent «, as defined by (6.2), increases from 0 to 1.
Thus the factor which determines the highest order of consistency which may
be attained, is the largest positive number ¢ such that (5.7) holds. Fér want of
a better name, we call this largest q the exponent of uncorrelation of the time series
whose covariance function is RB(v), since the larger ¢ is, the faster R(v) falls off
as » — «, and the less correlated are successive observations of the time series.
If (5.7) holds for all finite values of g, asis the case if R(v) decreases exponentially,
we define the exponent of uncorrelation to be infinite.

For computational convenience, the kernel with characteristic exponent r
that we prefer is

(6.4) k(z) =1—|2|"  iflz] <1,
=0 otherwise.

Such a kernel leads to an estimate which does not require the computation of
all the sample covariances. With this choice of kernel, f7(w) may be written
" letting M, = (1/Byr) = T,

(6.5) fr(w) = %r [”IZ_;,” e""""’{l - (IMLTI)T} R,(v).

The foregoing results may be interpreted from two points of view, emphasiz-
ing either the choice of kernel k(2) or the choice of constants M, = 1/By (which,
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in the case of a kernel vanishing for | z| > 1, represent the number of sample
covariances included in the estimate).

Let a kernel k(z) be chosen whose characteristic exponent is r. Then the order
of consistency of the corresponding estimaté cannot be greater than 7%, where
a(r) = r/(1 + 2r), and will be T°%, where & < a(r), if the constants M r satisfy
the relation for some finite positive number M,

. My
@ im 7%
and if (5.7) holds for ¢ = a/(1 — 2a). .

Therefore, if Bartlett’s modified periodégram (which is (6.5) with r = 1) is
used as the estimate, its order of consistency cannot be greater than 7%, and will
be T** (where a < 1) if the number of sample covariances included in the esti-
mate is T">*. If the truncated periodogram (which is (6.5) with r = «) is used
as the estimate, its order of consistency will be T? (where @ < 1) if My = T,
and if (5.7) holds for ¢ = a/(1 — 2«), which would be the case if the exponent of
uncorrelation is infinite.

On the other hand, let the constants Mr be chosen so that (6.6) holds for
some a between 0 and 1. Then the order of consistency of the corresponding
estimate f7(w) is T°%, no matter what the value of the characteristic exponent r
of the kernel used so long as r = ¢(a) = «/(1 — 2a), and (5.7) holds
for ¢ = ¢(e).

7. Alternative estimates of the spectral averages. In our study of the con-
sistent estimates of the spectral density, we were led to consider estimates, such
as Bartlett’s modified periodogram, which had the property of only requiring
the computation, on the basis of an observed sample of length T, of the sample
covariances Rr(v) for | v | less than some root of 7' In this section we show that
for the spectral averages J(4), one may define estimates J7(4), alternative to
the previously given estimates Jr(4), which have the same order of consistency
and asymptotic variance as the latter, and require the computation of fewer
sample covariances.

Let A(w) be a spectral averaging function, with Fourier transform a(v). Let
k(z) be a covariance averaging kernel, with Fourier transform K(w). Let Br
be a sequence of constants tending to 0. Let f7(w) be defined by (5.4). Define

=M

7.1) T34) = [ 1) A@) dv.

One may write J T(4) in terms of the sample spectral density function by
@2) THA) = [ f2w)Astar) doo,

where

Ar(w) = i;l", [x ("’B—"T") AQ)
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In terms of the sample covariance functions, one may write

(7.3¢) JE4) = f : a()k(Bzv)Rr(v) dv
(7.3d) = ! IEST a@)k(Brv)Rr ).

The properties of the estimate J7(4) are embodied in the following two theo-
rems, whose proofs are omitted.

THEOREM 7A. For any two spectral averaging functions A,(w) and As(w), the
covariance Cov|J# (A1), J(A2)] satisfies (4.11).

TurorEM 7B. Let a(v) be a covariance averaging function. Let ¢ > % be such that

(7.4) [ 10171 a0)BO) | db < o

Let k(z) be a covariance averaging kernel with characteristic exponent r = gq. Let
the positive constanis Br be chosen so that

{=O if r=yq,

(7.5) limsup T"*B% .
<o if r>q.

T—>c0
Then the bias E J1(A) — J(A) satisfies (4.10).

Optimum Estimates: The estimates J7(4) are all equivalent from the point
of view of their order of consistency and asymptotic variance. If one desires to
choose between them, the only basis is computational convenience. It is with
this in mind that the following remarks are made. For the covariance averaging
kernel, we choose k.(z). Then (7.3d) becomes, letting M, = (1/Br)

1) i = % a0 {1 - (2} ro.
lvlsM7p M,

We choose By to be of the form By = T~ ™, where the positive exponent m is to
be chosen as small as possible, so that the number of terms in (7.7) will be as
small as possible. Let ¢ be the largest positive number such that (7.4) holds.
Assuming ¢ to be finite, choose r = ¢. Then J7(4) will give a consistent esti-
mate of J(4), involving the calculation of a minimum number of sample covari-
ances, if m is chosen as near to the lower bound as possible in the inequalities

1

m > if r =g,

2
(7.8) .
: > — if .

m = % r>q
8. Interpolating the spectral density. In order to obtain an estimate of the
complete graph of the spectral density function f(w) by means of the estimates
fr(w) discussed in the foregoing, one needs to compute the estimate at all values
of w. In this section, estimates f7*(w) are constructed, which are equivalent to
fa(w) from the point of view of order of consistency and asymptotic variance,
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and which require the computation of only a finite number of quantities in order
to obtain the entire graph. Only the discrete parameter case is discussed in detail.
To begin with, define

2rm
(8.1) wa(T) = T + 1 form =0, %1, -+, &T,
=0 otherwise.

We now show that f7(w), as defined by (5.4), may be expressed in terms of its
values at the above (2T + 1) lattice points by the formula

T

(8.2) frw) = M_Z_T em(w; T)f 7 (wn(T)),
where
enlw; T) = ZT;-!-I ”ir exp [—w(w — w,(T))]

(8.3) .
_ sin [(1/2)@T 4+ 1)(w — wa(T))]

T @T + 1) sin [(1/2)(w — wa(T))]
To prove (8.2), we note that, for v = 0, £1, ---, &7 and any w,

T
(84) e = ZT cm(w; T) exp [—ivwn(T)],
which may be verified by expanding the right-hand side. It is now easy to obtain
(8.2) by substituting (8.4) into (5.4).

If f7(w) is given by (6.5), then it is determined by its value at even a fewer
number of points, namely the lattice points w.(M r), since by the same argument
as above we may write
(8.5) i) = 3 en(w; Mofi(wa(M ).

misMrT

Thus it is seen that it suffices to compute f7(w) at a finite number of points in
order to know it on the entire interval 0 < w < . In view of the peaked nature
of the ¢,(w; T) functions for large 7', it might be thought that an adequate
approximation to f3(w) would be f7(wn(T)), where w,(T) is the lattice point
nearest to w. The problem which is raised by the representations (8.2) and (8.5)
is when is such an approximation valid. From a statistical point of view, the
. justification of such an approximation must be in terms of its providing an
estimate which has the proper order of consistency and asymptotic variance.
It is from this point of view that we now consider the problem of using the value
of f#(w) at a finite number of points to obtain estimates of its value at all points.

Let dr be a sequence of constants tending to 0, and define the function, for
w =0,

8.6) Wa(w) = [g’-]d
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where [z] denotes the largest integer smaller than z. Consider the following
estimate of the spectral density function

8.7) T (W) = f1(Wa(w)),
where f7.(w) is defined by (5.4). This estimate clearly has only a finite number of

distinct values. The properties of this estimate are embodied in the following

theorem.
THEOREM 8: Assume that the conditions of Theorem 6 are fulfilled, so that the
estimate f1(w) is consistent of order T°*, with asymptotic variance given by (6.3). Lel

(8.8) B==—=——=1—20a.

Let the positive constants dr be chosen such that
(8.9) limsup 7% dr < »  f0<g<1,  whence0 < a <},

T->c0

(8.10) limT%dr =0 ifg=1, whence i = « < §.

T->00

Then the estimate f3*(w) is consistent of order T, with the same asymptotic bias
and asymptotic variance as fr(w).

ProoF. One may suppose w > 0, since f2* (0) = f2(0). Now w — dr <
Wer(w) = w, so that Wr(w) — w. In view of the uniform convergence in (5.6), it
follows that the asymptotic variance of f7*(w) is the same as that of fr(w).
Next, in view of the uniform convergence in (5.10), to establish that f7*(w) has
the same asymptotic bias as that of f7(w) it suffices to show that

(811) lim 7| F(W () — f(w) | = 0.

Now the quantity in (8.11) whose limit is being taken is less than

T*dr 2, |v|R@) +2T° 2. |R@)]|.
lvlSTh lvlz T8

The second term tends to 0, since it is less than
2 Eﬂ o] *| R@) |.

v|=T

The first term also tends to 0; by (8.10) if ¢ = 1, and by Lemma 4 and (8.9),
if ¢ < 1, since the term may be written

1—¢
a—BamB 1
| T TdT<T,;> PREIEOM
If dr is chosen by
(8.12) dr = #T7'2,

then (8.9) and (8.10) will be satisfied for ¥ < &« < 1 (which corresponds to
1 = ¢ < «). It would seem that (8.12) provides a safe universal choice of the

spacing of the lattice points.
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If it is desired that the estimate of the spectral density be a continuous func-
tion, without jumps, then one may use the estimate

(8.13) 75 (W) = arft(Wrw)) + (1 — ar) fr(We(w) + dr),

where ar is a sequence of constants between 0 and 1, not in general approaching
a limit. It may be verified that Theorem 8 holds for the estimate given by (8.13),
provided that in (8.9) it is required that the limit be 0. Then it follows that

(dT/BT) — 0, and
lim T** Cov [f5(W r(w)), f(Wr(w) 4+ dr)] = lim T** Var [f5(w)].

T->0
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