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It is obvious that F(p) is a continuous function of p with F(0) < 0 and
F(1/k(k — 1)) > 0. Hence there exists a p* with 0 < p* < 1/k(k — 1) which
is a function of A/¢ so that F(p*) = 0. Once the Bayes solution relative to
[1 — k(& — 1)p, p, - -+, p] has been worked out, it is obvious that to get the
Bayes solution relative to [1 — k(k — 1)p*, p* ---, p*] it is only necessary to
replace ¢ by ¢.. If we now substitute w; = (#; — &)/s and replace A and B
by their values, we find after some simplifications that the Baye’s solution rela-
tive to [l — k(k — 1)p*, p*, ---, p*] reduces to (1) when D,; is made to cor-
respond to D;;, (¢, = 0,1,2, --- | k; 4 = jif 4, 5 > 0). Since (1) is an allow-
able procedure, this proves that it is an optimum one.
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ESTIMATES OF THE MEAN AND STANDARD DEVIATION OF
A NORMAL POPULATION!

By W. J. Dxon
University of California, Los Angeles

0. Summary. Several simple estimates of the mean and standard deviation
of a normal population are discussed. The efficiencies of these estimates are
compared to the sample mean and sample standard deviation and to the best
linear unbiased estimates. Little efficiency is lost when simple rather than opti-
mum weights are used.
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TABLE I

Several Estimates of Mean of Normal Population with Efficiencies. (Variances to
be multiplied by o°.)

N Median Midrange X; + X;)/2 _J_k’)l,n(
Var. Eff. Var. Eff. 47 Var. Eff. Var. Eff. A*

2 | 0.500 1.00 0.500 | 1.00 , 0.500 1.00

310.449 | 0.743 0.362 | 0.920 , 0.362 | 0.920 | 0.449 0.743 1.000
4(0.298 | 0.838 | 0.298 | 0.838 , 0.298 | 0.838 | 0.298 | 0.838 1.000
51 0.287 0.697 | 0.261 | 0.767 , 0.231 0.867 | 0.227 | 0.881 0.994
6] 0.215 0.776 0.236 | 0.706 , 0.193 0.865 | 0.184 0.906 0.992
710.210 | 0.679 | 0.218 | 0.654 s 0.168 | 0.849 | 0.155 | 0.922 | 0.990
8 | 0.168 0.743 0.205 | 0.610 0.149 | 0.837 | 0.134 | 0.934 | 0.990

910.166 | 0.669 | 0.194 | 0.572
10 | 0.138 | 0.723 | 0.186 | 0.539
11 1 0.137 | 0.663 | 0.178 | 0.510
12| 0.118 | 0.709 | 0.172 | 0.484
13 ( 0.117 | 0.659 | 0.167 | 0.461
14 | 0.102 | 0.699 | 0.162 | 0.440

0.132 | 0.843 | 0.118 | 0.942 | 0.990
0.119 | 0.840 | 0.105 | 0.949 | 0.990
0.109 | 0.832 | 0.0952 | 0.955 | 0.991
0.100 | 0.831 | 0.0869 | 0.959 | 0.991
0.0924 | 0.833 | 0.0799 | 0.963 | 0.991
0.0860 | 0.830 | 0.0739 | 0.966 | 0.992
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15| 0.102 | 0.656 | 0.158 | 0.422 4,12 0.0808 | 0.825 | 0.0688 | 0.969 | 0.992
16 | 0.0904 | 0.692 | 0.154 | 0.392 5,12 0.0756 | 0.827 | 0.0644 | 0.971 | 0.993
17 | 0.0901 | 0.653 | 0.151 | 0.389 5,13 0.0711 | 0.827 | 0.0605 | 0.973 | 0.993
18 | 0.0810 | 0.686 | 0.148 | 0.375 5, 14 0.0673 | 0.825 | 0.0570 | 0.975 | 0.993
19 | 0.0808 | 0.651 | 0.145 | 0.363 6, 14 0.0640 | 0.823 | 0.0539 | 0.976 | 0.993

20 | 0.0734 | 0.681 | 0.143 | 0.350 6, 15 0.0607 | 0.824 | 0.0511 | 0.978 | 0.994
© 0.637 0.000 | 0.27,0.73 0.810 1.000 | 1.000

* A = Var (BLSS)/Var(X),.x0)-

Since moments of the order statistics are now available for samples of sizes
N = 20 from normal populations [3] it is a simple matter to find the variances
of linear combinations of order statistics. The sample values are denoted
Xi=Xe=sX3=s - = Xy,

1. Estimates of the mean, Table I gives the variance and efficiency of the
following estimates of the population mean: (a) median, (b) midrange, (¢c) mean
of best two, and (d) Xy,»¢ = X ime X:/ (N — 2). The median and midrange
are given primarily for comparison purposes, since results are well known. The
median is defined as X v4n/2 for N odd and as (X2 + X@w41y2) for N even.
The mean of the best two (here “best’ is used in the sense of minimum variance)
is reported as the small sample equivalent of the estimate commonly used in
large samples, the mean of the 27th and 73rd percentiles. It can be seen from
Table I that for sample sizes larger than five, the particular ordered observa-
tions indicated are not far from the 27th and 73rd percentiles, and efficiencies
are close to the asymptotic efficiency (0.810). The efficiency reported for the
mean, median, and the mean of best two is the ratio of the variance of the sta-
tistic to the variance of the arithmetic mean.

Estimate (d) above is the mean of all observations except the largest and
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TABLE II
A linear estimate of the standard deviation. (Variances to be multiplied by o)
Sam- Range s
ple
Size | Var. Eff. Estimate Var. Ef. B
2 10.88 | 0.571 | 1.000 | 0.8862w 0.571 | 1.000 | 1.000
3 10.591 | 0.275 | 0.992 | 0.5908w 0.275 | 0.992 | 1.000
4 10.486 | 0.183 | 0.975 | 0.4857w 0.183 [ 0.975 | 0.986
510.430 { 0.138 | 0.955 | 0.4299w 0.138 | 0.955 | 0.966
6 [ 0.395|0.112 | 0.933 | 0.2619(w + w(2)) 0.109 | 0.957 | 0.968
7 10.370 | 0.0949 | 0.911 | 0.2370(w + w(z)) 0.0895 | 0.967 | 0.978
8 | 0.351 | 0.0829 | 0.890 | 0.2197(w + w(2)) 0.0761 | 0.970 | 0.980
9 | 0.337 | 0.0740 | 0.869 | 0.2068(w + w)) 0.0664 | 0.968 | 0.979
10 | 0.325 | 0.0671 | 0.850 | 0.1968(w + w(2)) 0.0591 | 0.964 | 0.974
11 | 0.315 | 0.0616 | 0.831 | 0.1608(w + we) + ww)) ) 0.0529 | 0.967 | 0.977
12 | 0.307 | 0.0571 | 0.814 | 0.1524(w + we) + ww) 0.0478 | 0.972 | 0.981
13 | 0.300 | 0.0533 | 0.797 | 0.1456 (w + we) + wu)) 0.0436 | 0.975  0.984
14 | 0.294 | 0.0502 | 0.781 | 0.1399(w + we + ww) 0.0401 { 0.977 | 0.985
15 | 0.288 | 0.0474 | 0.766 | 0.1352(w + we) + ww)) 0.0372 | 0.977 | 0.985
16 | 0.283 { 0.0451 | 0.751 | 0.1311(w + w2 + w)) 0.0347 | 0.975 | 0.983
17 | 0.279 | 0.0430 | 0.738 | 0.1050(w + w2 + wa + we) | 0.0325 | 0.978 | 0.985
18 | 0.275 | 0.0412 | 0.725 | 0.1020(w + w2 + we + we) | 0.0305 | 0.978 | 0.986
19 | 0.271 | 0.0395 | 0.712 | 0.09939(w + wey + way + W) | 0.0288 | 0.979 | 0.986
20 | 0.268 | 0.0381 | 0.700 | 0.10446(w + w) + wuy + wee) | 0.0272 | 0.980 | 0.987

* B = Var (BLSS)/Var(s’).

smallest. Interest in this statistic arises when the extreme observations are
poorly determined or not available. References [1] and [2] refer to this condition
as doubly censored and develop best linear systematic statistics (BLSS) for vari-
ous amounts of single and double censoring of the sample. The decrease in effi-
ciency of the simple unweighted mean X~ compared to the BLSS based on
the same observations is not great. In no case is the loss in efficiency more than
1 per cent. This can be noted from the ratio Var(BLSS) / Var(X);,~¢) given in
Table I, since this ratio is never less than 0.990. It seems likely that for many
applications, one could dispense with the use of unequal weights for the sys-
tematic statistics in this case. It can be seen that the efficiency is not greatly
affected by the use of coefficients differing greatly from the optimum. The
column head “Eff.” is efficiency of X')l,y( compared with the mean of all ob-
servations and is approximately the same for the BLSS.

2. Estimates of standard deviation. The efficiency of the range, w, as an esti-
mate of the standard deviation in small samples, is well known. Similar esti-
mates using additional observations will also give high efficiencies for larger
sample sizes. Table II contains the efficiency of the range estimate compared
to the unbiased estimate based on the sample standard deviation. The quantity
k which satisfies E(kw) = ¢ is tabled for reference. Let us denote the subranges
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Xy-iz1 — X; by wy and wg = w. The unbiased estimate of the type
s = k' (3 w), where the summation is over the subset of all W) which gives
minimum variance, is indicated in Table II. The column headed “Eff.” refers
to the comparison with the unbiased sample standard deviation. The final col-
umn gives the ratio of the variance of the best linear systematic statistic as
given in [2] to the variance of s’. By examining this ratio we can see that the loss
in efficiency due to the use of “zero or one” weights for each range rather than
the optimum weights given in [2], is not great.
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THE INDIVIDUAL ERGODIC THEOREM OF INFORMATION THEORY!

By LEo BREIMAN
University of California, Berkeley

1. Introduction. Information theory is largely concerned with stationary sto-
chastic processes -, x, 71, -+ taking values in a finite “alphabet,”
a, *-+, 6. In addition, it is usually assumed that the processes are ergodic,
that is to say, the shift operator T, defined on the sequence space Q of the process
by shifting each coordinate of a sequence once to the right, is metrically transi-
tive with respect to the probability measure p on Q.

A question of importance in information theory regarding these processes is
the nature and existence, in some sense, of the expression

(a,) lim <— % 10g2 p(xO’ ftty xn—l)) .

In 1948 Shannon [1] showed that for stationary, ergodic Markov chains (a)
exists as a limit in probability and is equal to a constant. This limiting constant
was termed by Shannon the “‘entropy” of the process. In 1953 McMillan [2]
lifted the restriction to Markov chains and proved that if the process is merely
stationary and ergodic, then (a) exists as a limit in Z, mean and is constant.
The purpose of this note is to prove that under the same conditions the limit (a)
exists almost surely (a.s.).
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