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1. Introduction. The problem of estimating the spectral density function of a
stationary time series has been extensively discussed recently (see references).
The present period of research may be said to have commenced about 1945, when
Bartlett and Daniell (see [1]) pointed out that the periodogram needs to be
smoothed if it is to form a consistent estimate of the spectral density. About
1948-49, several consistent estimates were proposed by Bartlett [2] and Tukey
[15]. Later, Grenander [6] and Rosenblatt [9] considered a general class of esti-
mates of the spectral density. The present writer also considered in [11] and
[12] a general class of estimates, treating continuous parameter, as well as discrete
parameter stationary time series.

In the work of Grenander, Rosenblatt, and ourselves, the mean square error
E | f¥(w) — f() |* is adopted as the figure of merit of an estimate f7(w) of the
spectral density function f(w). In our paper [12], the asymptotic bias, asymptotic
variance, and asymptotic mean square error are computed for a certain general
class of estimates. Certain general conclusions are stated as to (1) the highest
order of consistency with which the spectral density function of a given stationary
time series, whose covariance function satisfies certain conditions, could be
estimated, using a suitable sequence of estimates of the form considered, and (2)
the order of consistency which a given sequence of estimates could achieve for
any stationary time series satisfying certain conditions. Conclusions of type
(2) were stated also by Grenander and Rosenblatt [9] for certain estimates whose
asymptotic bias, and consequently whose mean square error, they were able to
evaluate.

In a more recent paper [14], we carry these results a good deal further, and
show how to construct estimates of the spectral density function which achieve
a maximum order of consistency and a minimum asymptotic mean square error.

Nevertheless, these results, as they stand now, cannot be said to constitute a
practical solution to the problem of estimating the spectral density function
of a stationary time series. For while many estimates have been proposed, little
attention has been paid to the question of how to choose among them. Given
any exponent a, 0 < @ < 1, one may construct many estimates f#(w) having the
property that they are consistent of order 7™ °, in the sense that their mean square
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errors are such that limz.,, T°F | f7(w) — f() |*is finite and non-zero. The ques-
tion naturally arises how to form a most desirable (or optimum) estimate of
order of consistency 7 °. In this paper, especially in Sec. 5, we put forth certain
considerations which indicate that the usual discussions of this question (such
as in Grenander and Rosenblatt [9], pp. 154-155) are not adequate to settle
the question. We then put forth certain notions on how to compare two estimates
of the spectral density to determine which is more desirable. More importantly,
we indicate a possible method of designing a spectral analysis.

It is to be emphasized that this paper is open to the criticism that it employs
relations for samples of finite size which are true only in the limit. For this reason,
it is to be regarded as an attempt to obtain, on somewhat heuristic grounds, a
“practical” solution to the problem of estimating the spectral density function
of a stationary time series. The paper contains no theorems.

This paper is to be read as a sequel to our paper [12], whose results form the
base of the present paper. We employ the definitions, assumptions, and nota-
tions of [12], the most important of which will be explained here as they arise.

We discuss only the case of continuous parameter time series, since this seems
to us to be the case of greatest physical interest. In our opinion, in considering a
discrete parameter time series, one should always keep in mind the continuous
parameter time series from which the discrete parameter one was obtained by
means of sampling at discrete times. An interesting problem, which is briefly
discussed in [13] and [14], is the relation which exists between the problems of
estimating the spectral density of a continuous parameter stationary time series,
and estimating the spectral density of a discrete parameter time series obtained
by sampling the continuous parameter one at discrete times.

2. A class of estimates of the spectral density function. Consider a continuous
parameter stationary time series z(¢), with mean m = E[z(f)], and integrable
covariance function

2.) RO) = Byt + 0] = [ o) do,

where y(t) = z(f) — m. One calls f(v) the spectral density function of z(z).
Let 2(¢) be observed for 0 < ¢ < T. Let Y,(f) denote the deviations from the

sample mean defined by

Y(2)

x(t)-——lfo(t)dt 0<t=sT
(2.2) T J ’ -
=0, otherwise.

Let Rr(v) denote the sample covariance function, defined by
T—|v|

Rt) = 7 [ ViOVsl+[v)dy  [o] ST
0

(2.3)
=0, otherwise
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Its Fourier transform

fr(w) = 2% f_ : ¢ "“Ro(v) dt
(2.4) ,

T .
f e""’ Yr(t) dt
0

may be called the sample spectral density function or periodogram.
We consider estimates of the spectral density function of the form

@5) 7@ = = [ T HBR) i,

where the function k(u), called a covariance averaging kernel, is even, bounded,
square integrable, k(0) = 1, and |u |[“®**| k(u) | is bounded in u, for some
¢ > 0. The constants By are assumed to tend to 0 as T — « in such a way
that TBy — . )

In [12] it is shown that the properties of the estimates fz(w) depend on k(u)
and By in the following way. The variance o’[fs(w)] = E |fr(w) — Efr(w) |*
satisfies

(26) lim 7B (/)] = [ ) du f@){1 + 50,0},

where 8(w; , ws) = 1 or 0 according as w; = w; OF w; 7 w, . The bias b[f7(w)] =
Efr(w) — flw) satisfies

27 lim B7'b[f7(w)] = k7f 7 (w)
T->0
if » > 0 is such that
) _ 1 1 —k(u)
(2.8) kY= I:E% Tal r
is finite,
(2.9) F) = 37 [ 10 R@ a
T Y=o

exists as an absolutely summable integral, and

(2.10) 0 < lim inf TB¥* < lim rup TB:"™" < .
. T T

The function f”(w) is to be regarded as a generalized rth derivative of the spectral
density function f(w).

If a kernel k(u) has the property that there is a unique positive number r
such that k™ exists and is non-zero, then r is defined to be the characteristic
exponent of the kernel k(u), and k is defined to be the characteristic coefficient.
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3. On achieving a figure of merit with minimum observation time. As a figure
of merit of the estimate fr(w) one may use its mean square percentage error
7°[f7(w)], defined by (for f(w) > 0),

rer = 2 |f1(w) — f) [* _ olfr(w)] { bzlﬁ(w)]}
(3.1) 77 ()] 70) ) 1+ I

Another figure of merit one may use is the Gaussian range of percentage error,
Alfr(w)], defined by

(3.2) Alf7(@)] = 7,

ol f3(w)] blf7(w)]
7w) {1 + yqa[mw)]}’

where v, is the p percentile of the normal distribution, defined by the relation

0

[ 9 dy = /2 (/2).

Tp

It was shown in [13] that the use of the Gaussian range of percentage error leads
qualitatively to the same conclusions as does the mean square percentage error.
In order not to overload the present paper, we merely mention the existence of
the notion of Gaussian range of percentage error, but do not discuss its proper-
ties, or the motivation for its consideration.

We now make the crucial simplification on which the discussion of this paper
is based. We suppose that the relations (2.6) and (2.7) which are valid in the
limit as T — « may be written as equations valid for finite values of 7. We
then obtain the following expression for the mean square percentage error (which
we write only for the case w > 0 in order to drop the term 1 + §(0, w)):

2 1 °° 2 2 I k(')f % (‘*’) |2
7lf7@)] = 7 | K@) du I 1 + TB:™" =
33) L | @ [ Fw du} :

Now for a given choice of the covariance averaging kernel k(u), and length
of observation time T, (3.3) defines %° as a function of By . Similarly, for fixed
k(u) and 7°, (3.3) defines T' implicitly as a function of By . One may solve for T
explicitly, and one obtains

I;;,% [ : ) du (1 + 80, )

t-Ga) G

where we define the quantity A.(w) by

(34)- T =

1/r
(3.5) () = } f{E—‘(ﬁ)

.

It is clear that A\.(w) has the dimensions of bandwidth (i.e., of the reciprocal of
time). It may be shown, by a consideration of examples, that A,(w) is related to
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the notion of bandwidth of a spectrum as it is usually defined in the physical
literature. Consequently, \.(w) may be interpreted as an extension of the notion
of bandwidth, and we call \.(w) the’ spectral bandwidth of order r at the frequency w.
Equation (3.4) gives the observation time required in order that the estimate
fr(w), given by (2.5), with a specified value of the constant Br , have a mean
square percentage error equal to n’. We now consider kernels k(x), and r > 0
such that & s 0. Oné may determine the value Buin of B which minimizes the
observation time 7', and the value Tm;n of T at this minimum. One obtains

1 1 1
B Tuwm = s i TOCO) (14 ) 1+ 50,0)
(37) Bmin = >\1'(“’)771/" 1

| k@ [t C(r)’
where we define, for a kernel k(u) for which k7 5 0,

38) 70 = |k 1 [ () du

and where, for r > 0,
(3.9) C(r) = (1 + 2",

One could also give a formula for the minimum mean square percentage error
7emin Obtainable with a fixed observation time T (compare Grenander and Rosen-
blatt [9], pp. 154-155). However, there is no need to write this formula explicitly,
for a calculation of 7min shows that it may be obtained from (3.6) by replacing
Twnin by T, and 7 by %min .

Equation (3.6) may be used to make a comparison of the effect of using differ-
ent kernels k(u). Before making this comparison, we introduce some possible
averaging kernels.

4. Some possible covariance averaging kernels. There are very large numbers
of possible functions which one may consider as possible covariance averaging
kernels k(u) in the formula (2.5) for the estimated spectral density function

().

To begin with, one may consider the following 3-parameter families of

functions.
The algebraic family, defined forr > 0,y > 0,and 0 < p = 1/v:

(4.1) kaCusv,m, ) =1 = (ylul) for |ul S u
=0 otherwise.

The cosine family, defined for r > 0,y > 0,and 0 < u < =x/2v:

2 J. W. Tukey has suggested the alternative name of spectral bandscale, rather than
spectral bandwidth.
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_ 1+ cos 2y |u])”

(4.2) kc(u; v, u, 1) 3 for |u| < u
=0 otherwise.
The exponential family, defined for r > 0,y > 0,and 0 < p £ oo
(4.3) ke(usv, u,r) = ¢ "*P" for |u| S u
=0 otherwise.
The geometric family, defined forr > 0,y > 0,and 0 < p £ o
1
k(u;y)ﬂ'yr) =—>"— for ul| =
(4.4) ° ¥ Grapy vl E e
=0 otherwise.

The name “the geometric family” is motivated by the fact that the expression
in (4.4) is the sum of a geometric series.

By expanding these functions in power series, it is immediately clear that
each or these kernels has characteristic exponent r, and characteristic coefficient
B = 4

Another kernel that should be considered is given by

(4.5) ky(w) =1 for |u| <1
= (0 otherwise

which can be regarded as the limit of k4(1, 1, 7) as r — . This kernel give rise
to the “truncated” estimate of the spectral density (see Grenander and Rosen-
blatt [9], p. 148).

The estimates for the spectral density which have been suggested by Bartlett
(see [9], p. 146) and Tukey (see [15], or [10], or [9], p. 149, for similar estimates)
can be obtained from (2.5) by using respectively the kernels

(4.6) ks(u) = 1 — |u| for |u| =1
=0 otherwise
and
1 4 cos 7u
kr(u) = ————— for |u| =1
(47) ) 2 |
=0 otherwise.

These kernels are the same as k4(u; 1, 1, 1) and ke(u; 7/2, 1, 2), respectively.
Another estimate, which has been suggested by Daniell (see [1], or [3], or
[9], p. 147, where it is called the rectangular estimate), corresponds to using the
kernel

(4.8) () = §“;2_“
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This kernel may be written as the Fourier transform of k_(u), defined by (4.5),
in the following way:

[ " k() do
(4.9) ho(w) = 22—
[ . keolw) do

In a similar way, from the families of kernels k4 , k¢ , ¥z and k¢ , one may ob-
tain new families of kernels & , k¢ , kx and kg . One gives only the definition of
k4 , since the others may be defined similarly:
) ¢™“ka(w; v, 1, 1) do
(4.10) kaCus v, p,r) = —
[ kA(w; Ys Ky /’-) d“’

To determine the properties of these primed kernels, one considers a general
kernel h(u), defined by

f ) ¢““H(w) dw

(4.11) h(u) = —f——, :
[ _H(w) do .

where H(w) is a function satisfying the conditions

(412) [0 a0 < », [ B do < .

Then

1) [: W) du = 2 f_w H*(w) dw

(o]

One determines the characteristic exponent of h(u) under the assumptions that

00

(4.14) [ : H@)do =0, [ WH@) do < .

By expanding ¢““ in Taylor series, it follows immediately that the character-
istic exponent is r = 2, and the characteristic coefficient is given by

[ : w'H(w) do

(4.15) B® =

12[:H(w)dw.

Now each of the kernels k, , k¢ , and kg satisfy (4.12) and (4.14). Therefore,
the primed kernels k4 , k¢ , and kx have characteristic exponent 2, with char-
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acteristic coefficient given by (4.15). The kernel k¢ does not satisfy (4.14) for
r < 3; therfore the kernels k¢ , for r < 3, will have a characteristic exponent
less than 2.

One next evaluates the coefficient 7'(k), defined by (3.8), for some of the kernels
that have been introduced. One notes first that T'(k) remains unchanged under
a change of scale; i.e., if two kernels k;(u) and ks(u) are related by the formula
ki(w) = ky(Bu) for some positive number B, then T'(k,) = T(ks).

It is noted next that for the kernel i(u) defined by (4.11), if (4.14) holds,

2 [: WH(w) do ( [: ) dw>2

< (R dwy

Consequently, for the kernels k) (u; 1, 1, 7), one obtains

(4.16) T*(h) =

—re _7r2(1‘+1)3<__ r+1>2
(4.17) T[kA(u,]’l’r)]—B-’l“’(T—-l-gj r 1+27—+-—1- .

For the algebraic kernels, one obtains

. _ 2 r+1 1 2r+1
(418) Tlkatus 1) = 2{0m) = 20 ()™ o g2 G
For the exponential kernels, one obtains

1\¥r wy@emtr .
(4.19) Tlee(u; v, n, 7)) = 2 (27) f e+ dt.
)

For the cosine and geometric families of kernels, the results are given only
forr = 2:

(4.20) Tlke(u; v, u, 2)] = $wy + % sin 2py + % sin 4uy,
. _ o omy -1
(4.21) Tlke(u; v, 1, 2)] = TF G + tan™ (uy).

6. On choosing a covariance averaging kernel. In this section, we argue the
major proposition with which this paper is concerned, namely, that the notions
of order of consistency and of asymptotic mean square error do not by themselves
provide a basis for choosing between competing estimates of the spectral density.
This is a negative statement. We also consider the positive question of how to
make the choice.

In order to put this proposition in its clearest light, we shall consider the
effect of using covariance averaging kernels of different functional forms but with
the same characteristic exponent . To compare two kernels of the same character-
istic exponent r, we see from (3.6) that it is only necessary to compare T'(k),
since the minimum observation time Twin is directly proportional to T'(k), for
fixed r and »°.
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¥1c. 1. The coefficient I'(k) defined by (3.8) plotted, as a function of uy for the algebraic,
cosine, exponential, and geometric families of kernels of characteristic exponent r = 2, denoted
respectively by k4 (w; v, 1, 2), ko (v, 1y 2), kg (u; v, 1, 2), and kg (w5 v, 1, 2).

In Fig. 1, we plot T(k(u; v, &, r)) for the algebraic, cosine, exponential, and
geometric families with characteristic exponent 2. It turns out that T'(k) is a
function only of the product of the parameters p and v. Further, T'(k) may be
made as small as we please by choosing wy sufficiently small. This fact cannot be
correct, of course, and emphasizes that (3.6) is not valid for uy close to 0, which
is not a case where T is large and By is small.

However, even if we confine our attention to T'(k) for values of uy > 3, say,
the graphs in Fig. 1 are still disquieting. They seem to imply that the functional
form of the kernel k(u) is not too important, since if ko(u; vo , po , 2) is a kernel
belonging to the family of kernels ko(u; v, 4, 2), then given any other family of
kernels ky(u; v, p, 2), there will exist a choice of parameter values y; and w such
that the coefficients T'(k) corresponding to the kernels ki(u; vi, p1, 2) and
ko(u; o , #o , 2) are equal. Thus there appears to be a need for a principle which
would provide a means of choosing the parameters u and v. Such a principle
‘may provide a means of choosing between kernels of different functional form.

One such principle may be obtained as follows. An estimate f#(w) of the form
of (2.5) may achieve a small mean square error at the price of averaging over a
large band of frequencies. This fact is important if we desire to estimate the
difference f(ws) — f(w1) between the values of the spectral density at two ne1ghbor~
ing frequencies w; and w, . As a measure of the ability of the estimate fr(w) to
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estimate such differences we compute the mean square percentage error

sk 2
61)  aDufte) = ELUHe £ 88D = i)} = flo + dB) — 1) |
of the increment Dafr(w) = fr(w + dBr) — fr(w), where d > 0 is fixed. One
may show that

(5.2) ITim TBr4'[Dafr(w)] = 2 f_ ) (1 — cos du)k*(w) du {1 + 8(0, w)}.

If one regards (5.2) as holding approximately for large values of T and small
values of Bz one has, for w 5 0,

(53) 7 Dafi(@)] =

TBr

If one takes T = Twin and Br = B , given by (3.6) and (3.7), respectively,
then

2 /: ) (1 — cos du)k*(u) du.

2 /w (1 — cos du)k*(u) du
(54) 1'Daftgin(@)] = —T— 2=%

<1 + -Zl—r) ‘[: ©(w) du

The mean square percentage error in (5.4) is of the estimate of the increment
flw £ dBui) — f(w). If one desires the mean square percentage error of the
estimate Agfr(w) = f7(w + B) — f(w) of the increment Agf(w) = f(w + 8) — f(w),
one has, by setting d = 8/Buin , that

2‘)72

[n {1 — cos (8 | & " w)}k*(u) du
(5.6) Sp(k) = =

1A f7 5 (@)] = Sgr (k)

(5.5)

where we define

[ : k*(w) du

and @’ is defined as a function of 8 by

(57) g = )\fw) %f,i)

Next, consider a kernel k(u) defined by
(5.8) k(u) = h(yu), |u| S p
=0, otherwise

in terms of a kernel h(u) of characteristic exponent r and characteristic coefficient
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B® = 1. ¥or k(u) defined by (5.8) we obtain from (3.8), (2.8), and (5.4)

(5.9) T(k) = 2 fo " W) du,
(5.10) l k(r) ll/r —
/M (1 — cos Bu)k’(uw) du
(5.11) Spr(k) = = e :
B () du

We see from (5.9) and (5.11) that the properties of the kernel k() depend
only on the product uy. We consequently take y = 1. Next, let us consider how
to choose x. One sees that, as u — 0, T(k) — 0 in (5.9) and Sg.(k) — 1in (5.11).
Now T(k) is proportional to the minimum observation time which can be at-
tained using the kernel corresponding to u, while Sg. (k) is proportional to the
mean square error of the increment Agf(w), using the kernel corresponding to .
Thus x must be chosen so as to strike a balance among these quantities.

Our criterion for choosing x will follow from the following assumption on how
to design a spectral analysis. To our mind, in order to design a spectral analysis,
one must first specify a quantity »°, which one desires the mean square percentage
error of one’s estlma.te of the spectral density not to exceed. One next specifies
quantities 8 and 7; , such that one desires to estimate the mcrement flo + B) —
f(w) with a mean square percentage error less than or equal to 71 . One finally
assumes that the spectral bandwidth, of order r at the frequency w, of the spectral
density function being estimated, is greater than or equal to a known quantity
M(w). Given a kernel k(u) of functional form (5.8), with v = 1, one chooses u
so that 7 [Apfrm(w)], given by (5.5), is = 7: . One then lets T = T, given
by (3.6), and By = Buin , given by (8.7). The estimate f7(w), given by (2.5), is
then completely defined. It will have the desired properties.

Finally, we may compare the properties of two families of estimates hi(uu)
and hy(uu). To each family h;(uu) by the foregoing procedure one obtains a mini-
mum observation time Thin . One chooses that family of kernels which leads to
the smaller minimum observation time.

The foregoing procedure can be made routine if suitable tables and graphs
are constructed. However, we have not made such computations. Before such a
computational effort is made, it seems to us that the methods proposed for
choosing an estimate of the spectral density function and for designing a spectral

_analysis, which after all are somewhat heuristic, should receive some public
acceptance.
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