A NOTE ON THE FUNDAMENTAL IDENTITY OF
SEQUENTIAL ANALYSIS

By R. R. Barapur
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1. Introduction. This note points out that the fundamental identity of se-
quential analysis |1] can be regarded as a special case of a formiila for the prob-
ability that the sampling terminates at some finite stage. This viewpoint, ex-
plored in Sections 2°and 3, provides proofs of the identity, and of its differ-
entiability under the expectation sign, that seem more intuitive than the proofs
in the literature ([1], [2], [3], [5], [6]).

The formula also has application to the well-known problem (cf., e.g.; [7],
[8]) of evaluating the probability of eventual termination of a random walk
on the real line, in the case when there is one fixed barrier and a drift away
from the barrier. Some upper and lower bounds on the probability in question
are obtained in Section 4.

In concluding this introduction, the writer wishes to thank his colleague
L. J. Savage for discussions and suggestions that have made a substantial con-
tribution to this work.

2. A Formula for P(n < ). Let z be a real valued random variable with
distribution function F. It is assumed that the moment generating function

) o) = [: = dF

exists for every real ¢ in some neighbourhood of ¢ = 0. Throughout this note,
t is restricted to real values for which ¢ exists.

Let ¢y = (21, 22, -, ad inf) denote a sequence of independent and identi-
cally distributed observations on z. Consider a fixed sequential sampling pro-
cedure, that is, a set of rules for observing the components z; , z2, - - - , of Z(,)
one by one, such that at each stage the decision whether experimentation is to
continue is a (possibly randomised) function of the observed values in hand
at that stage. (Cf., e.g., [6], [9]). Let n denote the total number of components
Zm Observed in a given instance. It is assumed that the sampling procedure is
closed under F, that is,

2) Pn < o |F)y = 1.
The procedure is otherwise arbitrary.

Write s = 2 + -+ + z, and
(6] ¥(t, n, 8) = [6(O)] "
ifn < o,and writey = 1 (say) if n = «.
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TaeOREM 1. For every t,

4 E@W(, n,8)|F) = P(n < = |GY),
where
(5) dG; = [¢()] e dF.

For each ¢, G, defined by (5) is clearly a probability distribution function, so
that {G.} is an exponential family of alternative distributions of z, with F a
member of this family. Such families of distributions have been studied in var-
ious statistical contexts, including that of sequential analysis (cf., e.g., [1],
[10], [11]). It may be added, however, that the notion of alternative distribu-
tions is not essential to thig paper, and the introduction here of the family {G}
could be regarded as a device in the study of the given sampling rule when F
obtains. This device is, of course, a familiar one in probability theory (cf.,
e.g., [3], [12], [13], [14]).

To establish Theorem 1, for each m = 1, 2, -- < let R"™ denote the nonse-
quential sample space of exactly m observations, that is, of points

(xla te 1xm) = T(m)
say. For each m, let an(z(m)) be the conditional probability of the event n = m
given z(,) . The sequence ay , @, - - - of functions on R®, R®, ... characterizes
the given sampling procedure, and is, of course, independent of the distribution
of z (cf., e.g., [9]). For each m, let F™ denote the distribution function of z(m
when F obtains, that is, F™ (zy, - -+ , m) = Llr F(z:).

Let » denote the total outcome of the sequential experiment, that is, v =
(@1, - ,Za)ifn < w0 and v = 2, if » = . We note that if & is a real valued
function of v such that E(|h || F) < «, and (2) holds, then

©) ER|F) = Y [ ., @ A
m=1 JR(M
where hy, hy, ---is the (essentially unique) sequence of functions on R™,
R®, ... such that hn = k when n = m, (cf., e.g., [9]). The right side of (6) is
an absolutely convergent series; in fact, h is integrable if and only if
meam°| hm l dF("') < oo,

In accordance with the above notation, for each m = 1, 2, - - - let s,, denote

the nonsequential random variable 2, + - -- + z. . Then it is easy to establish
(4) thus:
Pn < »|@) = 2. P(n = m| G)
m=1

> [ awact®
@ " Rm

EW|F) by (2),(3), and (6).
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3. Wald’s identity. It follows from Theorem 1 that Wald’s identity, namely

(8) Ely(@, n, s)| F] = 1,
holds for a given value of ¢ if and only if
9) Ph< o |@) =1

for the same ¢ value.

It follows easily from the preceding remark that a sufficient condition for the
validity of (8) for all ¢ is that there exist a finite & such that P(n < k | F) = 1.
The sameé remark, together with the strong law of large numbers and the law
of the iterated logarithm (cf. e.g., [15]), also yields the following sufficient con-
dition for the same conclusion (assuming that F is a non-degenerate distribu-
tion): there exists anh, —» < h < «, and two sequences {an.} and {b.} such
that

() am = mh + o(n/m log log m), b = mh + o(v/mloglog m) as m —
and

(ii) for each z(,y = (x1, 22, - ), either n < © or @m < sm < b for all
sufficiently large m. This condition seems weaker than other structural con-
ditions of the same type in the literature for the validity of (8) for all .

It may be noted here that the first paragraph of this section also suggests
examples where Wald’s identity fails to hold for all £. This was pointed out to
the writer by L. J. Savage. The discussion in Section 4 concerns a general ex-
ample of this sort.

Next, we shall describe an alternative sufficient condition for the validity of
(9) (and thereby of (8)) in an assigned neighbourhood of ¢ = 0, given (2) and
(5). This condition does not depend on the detailed structure of the sampling
rule; it is, essentially, that under F the joint moment generating function of n
and s exist in a sufficiently large neighbourhood of the origin. As it happens,
the condition also assures the validity of differentiation under the expectation
sign in (8), that is, D*Y(¢, n, s) is integrable and

(10) ED"|F)=0 for k=1,2,---

and each ¢ in the neighbourhood, where D* = d*/ df*.
Let I be an open interval including ¢ = 0 such that ¢(#) exists for each ¢ in I.
THEOREM 2. Suppose that corresponding to each ¢ in I there exists a

(11) z > —log, ¢(?)
such that
@12) E@E**" | F) < ».

Then (8), (9), and (10) hold for ¢t in I.

The proof of Theorem 2 will be indicated later, but first some remarks by
way of discussion of its hypothesis.

ReMArK 1. Let C denote the set of all points (¢, z) in the plane such that
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(12) holds. Then (a) C is a convex set, (b) (¢, 2) ¢ C implies (¢, z) ¢ C for all
2 = z, since 7 is non-negative, and (c) each point on the graph of the function
z = —log¢(f) is in C, by (3) and (4). It follows, in particular, that (d) the
hypothesis of Theorem 2 is that the graph of —log #(¢) lie in the interior of C,
at least when ¢ is restricted to I. It should be noted also (e) that z = —log ¢ is
a concave function of ¢, possessing derivatives of all orders, with z(0) = 0,
and 2/(0) = —E(z | F), by (1). The facts (a), (b), (c), (d), and (e) are useful
in the. proof of Theorem 2, and also in the deduction of special sufficient condi-
tions for the validity of (9) and (10). (Cf. remarks 3 and 4 below).

ReEMARK 2. In the statement of Theorem 2, as also in remark 1(d) above,
the hypothesis is stated in terms of the given distribution F. The hypothesis
can also be stated in terms of the associated distributions G., as follows: for
each ¢ in I, the conditional moment generating function of n given n < « exists
in some neighbourhood of zero when G, obtains, that is, E(e™ |G:, n < ®) =
Y ome™Pn=m|G,n < ©) < o for somed > 0. This alternative formula-
tion follows readily from (5), (6), (11) and (12).

ReEMARK 3. Suppose that ¢ exists for all £ If

(13) E@E"|F) <
for some z > sup {— logo(f): —o <t < o}, and if
(14) E@E"|F) < o

for all ¢, then (8), (9), and (10) hold for all ¢&. A stronger sufficient condition
for the same conclusion is that (13) hold for all z.

ReEMARK 4. If (13) holds for some z > 0, then n and s possess moments of
all orders, and there exists a neighbourhood of ¢ = 0 in which (8), (9) and (10)
hold. A stronger sufficient condition for the same conclusion is that E(z | F) =
0 and (14) holds for some ¢ of the same sign as E(z | F). These conditions are
of interest since the validity of (10) in a neighbeurhood of ¢ = 0 is sufficient
for most applications (cf. [2]) of differentiation.

REMARK 5. A theorem of Albert (3], [4] states that if ¢ exists for all ¢, if

Pz>0|F)>0

and P(zx < 0| F) > 0, and if the sampling procedure is a random walk based
on the cumulative sums s, (with fixed barriers a and b, a < 0 < b), then (8)
and (10) hold for all £. It can be shown (c¢f. Lemma 2 of [3] and Remark 3 above)
that in this case the hypothesis of Theorem 2 is satisfied by I = (— o, ), so
that Albert’s theorem is a special case of Theorem 2.

ReMark 6. In his applications of martingale theory to sequential analysis,
Doob [6] derives from Theorem 2.2 of [6] a sufficient condition for the validity
of (8) for a given £. It can be shown that if this condition holds for each ¢ in I
then the hypothesis of Theorem 2 is satisfied. A fuller discussion of the relation
between Doob’s Theorem 2.2 in its application to the present case and Theorems
1 and 2 of this note would be worthwhile, but cannot be undertaken here.
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REMARK 7. It is easy to see that P(n < k| F) = 1 for some finite k implies
the hypothesis of Theorem 2. L. J. Savage has constructed examples showing
that the other condition stated in the second paragraph of this section does
not imply the hypothesis of Theorem 2; in fact, (10) fails for £ = 2 in these
examples.

We turn now to the proof of Theorem 2. The first step is to show that (9)
holds in a sufficiently small neighbourhood of zero, that is,

s > pald = 1

me==l

for all ¢ in the neighbourhood, where p.(¢) is an abbreviation of P(n = m | Gy),
so that

(16) Pm(t) = f o {¢(0) )™ e dF™

R(m)

by (5). Write fm = 1 — > me1 i, and p(f) = ¢(2£)/¢'(?). Then, for any ¢ in I
and any m,

Pln > m|G) = f Bm dG™ since Bn = P(n > m|Tem)

R(m)

=™ [ Buc™aFr™ by )

R(m)
< ¢""'{ f Bm alF""’}”2 : { f em dF"’"}*
(17) R(m) R(m)
1/2
- pmlz{ f 6'2n dF(m)}
R(m)

1/2
< p""2{ f Bom dF('”)} since 0 <Bn <1

R(m)

= V@™ P(n > m|F).
It follows from (11) and (12) with ¢ = 0 that, for some A > 1,
A"P(n > m|F)—0

as m — «. Hence, by (17), P(n > m | G;) — 0 as m — «» for each ¢ such that
p() S . Thus (15) holds whenever p(f) = A. This establishes the desired con-
clusion, since A > 1, p is continuous, and p(0) = 1.

The next step is to extend the validity of (15) to all £ in, I by analytic con-
tinuation, as follows. Let w denote the complex variable ¢ + u, and let ¢(w)
be defined by (1) in the strip {w:¢ ¢ I'}. For each m let p.(w) be defined by (16)
whenever ¢(w) is defined and 0. It follows from the differentiability of moment
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generating functions that the functions p. are differentiable everywhere in
their domain of definition. A straightforward argument based on the continuity
of ¢, Remark 1(d) above, formula (6), and the convexity of the exponential
function shows that corresponding to each ¢ in I there exists a complex neigh-
bourhood of #, N(¢) say, and a convergent series of positive terms, Z,,.c,,.(t)
say, such that | pm(w)| < cm(f) for all w e N(f) and each m = 1, 2, --- . The
details of this argument are omitted. It follows hence that D _n.pm(w) is a uni-
formly convergent series of analytic functions, so that Y .pm(w) is well defined
and analytic in N (¢). (Cf. e.g., [16]). Since this holds for each ¢, it follows from
the preceding paragraph that D .pm(w) = 1 for w e N(£) and ¢t e I ; in particu-
lar, (15) holds for all ¢ £ I.

It follows from uniform convergence (cf. [16]) and the conclusion of the pre-
ceding paragraph that for each fin I and every k = 1,2, - .-,

Zm (dk/ d'wk)pm('w)

is well defined and = 0 for w ¢ N(f); in particular, >_.D*pn(f) = 0. Since, as
is readily seen, D* commutes with the integral sign in ( 16), we have

DonDpult) = 2w f am-DF{p et} dF
R(m)

=0fork=12,---

(18)

and each £ in I. Assuming for the moment that each of the functions D*y(t, n, s)
is integrable when F obtains, it follows by inspection from (3), (6), and (18)
that (10) holds for each ¢ in I.

The next and final step in the proof is therefore to verify that each

D*y(t, n, s)

is integrable. Since D*y is of the form ¥-n where 5 is a polynomial in n and s,
it suffices to show that, for each ¢, ¢-| s |'-n/ is integrable for ¢, j=012 --.,
This may be established by showing that corresponding to each # in I there
exist positive numbers ¢ and 6 such that ¢(¢, n, s)-exp (e | s | + on) is integrable.
Since exp (e|s|) < exp (es) + exp (—es), it4is easily seen from (3) and Re-
mark 1(d) that this last condition is satisfied.

In concluding this section, we remark that Theorems 1 and 2 can be gen-
eralized, by straightforward extensions of the arguments used here, to the case
when z;, 2,,--- is a sequence of independent but not necessarily identically
distributed random variables, and each z, takes values in k-dimensional Carte-
sian space, 1 < k < o. Another straightforward generalization that may be
worth mentioning here is to the case where the sampling rule is defined for a
sequence wi, wz, - -- of independent abstract random variables, and for each
t=1,2, ... z;is a real (or vector) function of w;.

4. An application. Let ¢ be a positive constant, and let the sampling rule be
defined thus: for any sequence z(, = (21, 21, --- ), n is the smallest integer.
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m such that sm = 21 4+ --- 4+ z. > ¢, and n = o if no such integer exists.
Let G be a given distribution function such that P(z > 0|G) > 0 and

P <0|®) >0,

and such that E(z | @) exists and is negative. It is shown in this section that if
G admits a moment generating function, Theorem 1 can be used to obtain upper
and lower bounds for P(n < « |'G). In certain special cases this method yields
the exact value of P(n < «» | @).

The probability in question can be interpreted as the probability of ultimate
ruin in playing an advantageous gamble long enough (with z, the amount
lost in the mth play, each z., distributed according to G, and ¢ the initial fortune
of the player), and has been studied in connection with insurance theory (cf.
(8], [12]). In [8] Dubourdieu has given derivations and original references to an
upper bound, due to de Finetti, for this probablhty The upper bounds ob-
tained here are improvements of de Finetti’s.

It is assumed henceforth that

(19) n(h) = f “ e dg

exists in a neighbourhood of A = 0. It then follows from the preceding hypoth-
eses concerning G, by well-known properties of moment generating functions,
that there exist uniquely determined points ¢ and b (say), in the interior of the
interval in which % exists, such that 0 < a < b, 3’(a) = 0, and 5(d) = 1. We~
note that

(20) 7(h) =0 forh = a
and that

<1 (@ =h <b)
(21) n(h)4 =1 (h =

>1 (h > b).

In (20), (21), and in what follow$, & is understood to be restricted to the interior
of the interval in which 5 exists.
Now choose and fix an » = a and define

(22) dFy = [n(W)]7'¢" d
Then the moment generating function of F; , say ¢, is given by

o) = 2@t + h)/n(h).

Since E(z | Fi) = ¢'(0) = 75'(h)/n(h), it follows from (20) and the choice of h
that E(x | F5) = 0. Consequently, by well-known properties of cumulative
sums, P(n < « | F,) = 1. Since dG = n(k)e™ dF) by (22), and

n(h) = [6(—h)17
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Theorem 1 yields the identity

(23) P(n < o | @) = E@™[n(R)]"| Fa),
valid for all & = a.
Letting & = b in (23), we have

(24) Pn < o |@) = E(™"” | ),

by (21). Since n < =« implies s = ¢, since P(n < = | F,) = 1, and since b > 0,
(24) yields

(25) Pn < » |G) £ e,

which is de Finetti’s inequality.

It is clear from the preceding derivation of (25) that the equality sign holds
in (25) if and only if P(s = c¢| F,) = 1. This condition can be shown to be
equivalent to the condition that x be a discrete random variable taking only
one positive value, say d, and that the negative values of 2 be integral multi-
ples of d°. The condition is satisfied, in particular, if 2 takes only two values.

We turn now to the case when s can exceed ¢ with positive probability. In
this case, the effect of the ‘excess over the boundary’ can be estimated by means
of an argument due to Wald [1}’. It is possible and advantageous to apply
the argument to (23) rather than (24), as follows.

Suppose that F, obtains. Write y = cif n = 1, and

y=c— (@ + -+ 2n)

if 1 <n < . Then y is well defined and 0 < y < o« with probability 1. Let
£ denote the conditional expectation of ¢ "™ given n and ¥. It is not difficult to
see that ¢ depends only on y and k; in fact

(26) g=EE™ |z zy F).

We observe next that s = ¢ — y + =, with probability one. Consequently, the
right side of (23) can be written as ¢ - E(¢-£(y)-n" | F1). It follows hence,
by regarding y as a real variable confined to positive values, and setting

@0 f(h) = inf, (-8}, g(h) = sup, {8},
that
(28) e—hc'f(h)'E(ﬂ" I Fh) = P(n < ® I G) < e_hc,g(h).E(ﬂn [ Fh).

2 In this case a slight extension of the methods of this paper can be used to obtain the
probability distribution of n, with « a possible value of n.

3 Wald used the argument, in the context of a random walk with two absorbing bar-
riers, to find the maximum possible effect of the excess over a barrier on the probability
of absorption in that barrier. However, the argumeat also yields the minimum possible
effect, in Wald’s context as well as in the present one.
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Next, an easy calculation using (22), (26), and (27) shows that
f(h) = inf, (/B |z 2 y, B},
g(h) = sup, {"/E(" |z 2 y, @)},
Finally, since n = 1, we see from (21) and (28) that

(29)

(30) Pn < o |@) = ¢™-g(h)-n(h)
fora = h = b, and

(31) ‘ P(n < © |G) 2 ¢ f(h)-n(h)
forh 2 b.

The infimum of the right side of (30) with A restricted to [a, b] gives, of course,
the best upper bound obtainable by this method, while the supremum of the
right side of (31) with & restricted to [b, ] gives the best lower bound. In par-
ticular, taking A = b in (30) and (31), we have

(32) e f(b) £ P(n < o |G) £ e-g(b).
Another special bound is
(33) P(n < » | @) £ infachgs {€7™n(h)};

this follows from (30) since 0 < g=1

It is easy to see from the preceding argument that in case z is bounded from
above, 7 can be replaced by 7 in (30), (31) and (33), where % is the least posi-
tive integer such that P(n = k| G) > 0.

In concluding this section let us consider an example. In this example,

(34) G =pH+ (1 - pkK

where 0 < p < 1, H is some distribution function (possibly degenerate) con-
fined to (— =, 0], and

N dr for x>0
(35) dK(z) =

0 otherwise,

where \ is a positive constant. It is assumed that H (and.therefore G) admits
a moment generating function in a neighbourhood of the origin, and thst

E(z|@) = pE(x|H) + (1 — p)/x < 0.
It then follows that the equation
(36) n(b) = pE(” |H) + (1 — p)(A/(A — b)) = 1

has a unique non-zero solution b, with 0 < b < A.

A simple calculation, which is omitted, shows that in the present case we
have f(h) = g(h) = (A — h)/X for all h, where f and g are defined by (29). Con-
sequently, it follows from (32) that

(37) Pn < o |@) = ¢ (A — b)/A.



SEQUENTIAL ANALYSIS 543

REFERENCES

[1]1 A. WaLp, Sequential Analysis, John Wiley and Sons, Inc., New York (1947), pp. 157-
164.

[2] A. Wavp, “Differentiation under the expectation sign in the fundamental identity of
sequential analysis’’, Ann. Math. Stat. Vol. 17 (1946), pp. 493-497.

[8] G. E. ALBERT, “A note on the fundamental identity of sequential analysis”, Ann.
Math. Stat., Vol. 18 (1947), pp. 593-596.

[4] G. E. AuBerT, “Correction to ‘A note on the fundamental identity of sequential
analysis’,”” Ann. Math. Stat. Vol. 19 (1948), p. 426.

[6] D. BrackwELL AND M. A. Girsmick, “On functions of sequences of independent
“chance vectors with applications to the problem of the “random walk’ in &
dimensions”’, Ann. Math. Stat., vol. 17 (1946), pp. 310-317.

[6] J. L. Doos, Stochastic processes, John Wiley and Sons, Inc., New York (1953), pp.
350-352.

7] W. FELLER, An introduction to probability theory and its applications, John Wiley and
Sons., Inc., New York (1950), Chap. 14.

[8] J. DuBouRDIEU, Theorie mathématique du risque dans_les assurances de repartition,
Gauthier-Villars, Paris (1952), pp. 163-174.

(91 R. R. BanADUR, “Sufficiency and statistical decision functions,” Ann. Math. Stat.,
Vol. 25 (1954), pp. 423-462, Section 8.

[10] M. A. GirsuIck AND L. J. SAvAGE, ‘“‘Bayes and minimax estimates for quadratic loss
functions”’, Proc. Second Berkeley Symp. on Math. Stat. and Probability, Uni-
versity of California Press (1951), p. 53.

[11] B. O. KoormaN, “On distributions admitting a sufficient statistic,”” Trans. Amer.
Math. Soc., Vol. 39 (1936), p. 399.

[12] A. WarLp, “‘Some generalizations of the theory of cumulative sums of random vari-
ables,” Ann. Math. Stat., Vol. 16 (1945), pp. 287-293.

(13] M. A. GirsHick, “Contributions to sequential analysis. I, III,” Ann. Math. Stat.,
Vol. 17 (1946), pp. 291-298.

[14] H. CrERNOFF, ‘“A measure of asymptotic efficiency for tests of a hypothesis based
on the sum of observations,”” Ann. Math. Stat., Vol. 23 (1952), pp. 493-507.

[15] P. HARTMAN AND A. WINTNER, “On the law of the iterated logarithm’, Amer. J.
Math., Vol. 63 (1941), pp. 169-176.

[16] E. C. TrrcamarsH, Theory of functions, Oxford Univ. Press., New York, (Second
Edition, 1939).



