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NOTE ON RELATIVE EFFICIENCY OF TESTS
By Couin R. Bryrs!

University of Illinois and Stanford University

1. Summary. This note is concerned with possible definitions of relative
efficiency for two sequences of tests of the same hypothesis. For two examples
of one kind of definition, relative efficiencies of the Student test and sign test
against normal alternatives are calculated for fixed sample size and asymptoti-
cally.

2. Introduction. Consider the following problem of relative efficiency of tests.
Experiments X; , X, - - - and twosequences {A.(X1, -+, Xa)}, {42 (X1, -+,
X.,)} of level « tests are available for testing the same hypothesis. We must
decide whether to use an A test or an A* test. Commonly one sequence, say the
A¥s, gives better power for given sample size, but for some reason such as wider
validity we may prefer one of the ‘“less efficient” A tests.

The general decision formulation for this problem would use three loss func-
tions (i) cost of experimentation (ii) loss from wrong decisions (iii) disadvantages
of using A*. The usual kinds of decision problems for three loss functions could
then be discussed. In practice (iii) is hard to assess and there is no natural com-
parability between (i) and (ii). So what is usually done is to consider (i) and (ii)
only, and having required a bound on one of them, to decide whether the de-
crease in the other is enough to compensate for the disadvantages of using A*
instead of A. More specifically, the following two types of problems are of interest.

(a). Fized power requirement problems. For a given power requirement, shall
we use A, or A%«? Here n and n* are the smallest sample sizes for which the
respective kinds of tests satisfy the given power requirement. Some function
K(n, n*) such as C(n) — C(n*) or 1 — C(n*)/C(n) is chosen as measuring our
loss (extra experimentation cost) from using A, instead of A%« If K(n, n*) is
small enough we will prefer to use 4, because of the advantages (iii) of A tests.
If the given power requirement is a function of an unknown parameter 6, the
loss K(n, n*) will also be a function of 6 and so cannot be used directly for de-
ciding between A, and A%+ Some measure of loss not dependent on 6 is needed.
One natural choice is the worst possible loss sups K(n, n*). (Weighted averages
over 6 and limits over particular sequences of 6’s have also been used.) Asymp-
totic behavior of K(n, n*) and sups K(n, n*) can be investigated for sequences of
power requirements forcing n — o« and n* — . The particular choice
K(n, n*) = 1 — n*/n (with n*/n being called the efficiency of A relative to A*)
and its asymptotic properties has been of wide interest [1], [2], [3], [4].
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(b). Fixed sample size problems. For a given sample size n shall we use 4,
or A%? Let 8, be the power of A, and 8% the power of A%. Some function L(8, , 8%)
such as 8% — B, or 1 — B,/B% is chosen as measuring our loss (extra wrong de-
cisions) from using A4, instead of A%. If L(8, , 8%) is small enough we will prefer
to use A, because of the advantages (iii) of A tests. If the powers 8, and 8% are
functions of an unknown parameter 6, the loss L(8, , 8%) will also be a function of
6 and so cannot be used directly for deciding between A, and A%. Some measure
of loss not dependent on 6 is needed. One natural choice is the worst possible
loss sups L(8x , 8%). This choice appears, with L = 8* — @, in the definition of
stringency. Asymptotic behavior of L(8, , 8%) and sups L(B. , 8%) as n — « can
be investigated.

Though interest has been mostly in type (a) problems, it would seem that type
(b) problems should be about equal in interest and applicability. The purpose
of the present note is to discuss, as an illustration of type (b) problems, the follow-
ing simple example.

3. Sign Test vs. Student Test. Let X1, X,, - -- be independent, each with
Normal (6, ¢*) distribution. We are to test at level « the one-sided hypothesis
{6 < 0} against the alternative {6 > 0}. Let 8 = /o and p = p(8) = P(X: > 0)
= F(8) where F is the Normal (0, 1) cumulative. Then the number R, of positive
observations among X;, ---, X, has a Binomial (n, p) distribution. And

T, = n'X/[2(X: — X)*/(n — DI

has a Student ¢ distribution with n — 1 degrees of freedom which is central
when & = 0 and non-central with parameter #'s in general.
The sign test A, of {6 < 0} s

Reject when R, — n/2 > k,
{Reject with prob. v, when R, — n/2 = k,,
where k., , v are constants determined by
PR, — n/2 > ka|d =0) + yoP(Rn — n/2 = ks |6 = 0) = a.
The power function of this test is
Bn(8) = P(Rn — n/2 > ky) + ¥nP(Rn — n/2 = ka).

Values of k., , ¥a , 8(8) can be obtained from tables such as [5] of the binomial
distribution. For large values of n the normal approximation to binomial gives

(1) Bn(8) = F (\/;;\(/2:(;‘__1)1,; ‘c) where Fo) =1 — a.

The Student test A% of {6 < 0} 4s
Reject when T, > ¢,
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F1e. 1. Power functions 8* of Student test and 8 of sign test fora = 05, n = 11; L, =
ﬁ* - By L2 =1- B/ﬂ*'

where ¢, is a constant determined by
P(Th > c,|6=0) =
The power function of this test is
Br(8) = P(Tn > cu).

Values of ¢, can be obtained from tables of the Student ¢ distribution, and values
of 8%(8) from tables such as [6] of the non-central Student ¢ distribution. For
large values of n the normal approximation to non-central Student ¢ gives

@) Bn(®) = F(/n6 — c¢) where F(c) =1 — a.
Loss functions such as
L1 (8) = Ly(Bn, B7) = B7(8) — Bx(5)
Li(3) = Lu(Ba, B) = 1 — Ba(8)/82(3)

can easily be plotted for particular values of # and . This is done in Figure 1
forn = 11, a = .05. As § increases from 0 each function Li(8), 7 = 1, 2 increases
from 0 to a maximum and then decreases toward 0.

For fixed «a the change in appearance of these curves with increasing n differs
only slightly from a simple horizontal compression. The curve L] (3) rises more
quickly to its maximum and then falls more quickly toward 0, with i mcreasmg
n. The position of the maximum tends to 0 at the rate 1/a* but the maximum
value changes very little and has a limit. Table 1 gives values of sup; L{(5)
fora = 05and n = 2, 3, -- -, 13. These values are computed from tables [5],
[6] using interpolation and should be in error by not more than one or two units
in the third decimal place. The cases n = 2, 3, 4 are special because for these
the sign test does not reject with probability 1 even when R, = 0 and so the
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TABLE 1
Mazima of Ly, = power loss, L, = 1 — power ratio, of sign test relative to' Student
test, « = .05
” sup L1 sup Le
2 .800 .800
3 .600 .600
4 .200 .200
5 .130 .197
6 .189 .263
7 .150 .212
8 .153 .238
9 .180 .261
10 .142 .213
11 .167 .252
12 171 .260
13 .151 .227
o .1686 .2610

power of the sign test does not —1 as ¢ — o, Forn = 5, 6, - - - sups Li'(5) tends
to be smaller if there is a non-randomized sign test with size close t0.05 [n = 5, 8,
10, 13] and larger if there is no such sign test [n = 6, 9, 12]. Even for the smallest
of these n the différences from the asymptotic values lim,. sups L{(8) are not

large.
Discussion of this example is concluded with the calculation of these asymp-

totic values. The following easily proved result is used:
LeMMA.
lim sup L.(6) = sup lim L,(s,)
A

n-»00 n-»00

if the former exists, where A s the set of all sequences {5,} for which limp—« Ln(85)
exists. [If lim be replaced throughout by lim inf or lim sup the same result holds,

with existence provisos unnecessary.]
Writing 8, = a./n} it easily follows from (1) and (2) that if a, — a then.

Ba(8.) = F(aN/2/z — ¢),  Ba(d.) = F(a — ¢)
where F(¢) = 1 — «. This gives

3) lim L7 (3,) = Fla — ¢) — F(av/2/x — ¢)

n-»00

(4) lim L7 (5,) = 1 — F(a\/2/x — ¢)/F(a — ¢).

Because of the lemma we can find lim,.,» sups L: (8), » = 1,2 by finding the value
of a giving a maximum in (3), (4). Differentiating (3) witk respect to ¢ and
equating the result to zero gives
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TABLE 2

Asymptlotic maximum power loss Ry and proportionate power loss Ry for sign
test relative to Student test

a a’ ' Ry R,
.25 1.5514 1.1784 .0963 .1268
.10 1.6245 1.4086 .1405 . 2056
.05 2.3570 1.5593 .1686 .2610
.01 3.0019 1.8574 .2229 .3765
.001 3.7676 2.2087 .2844 .5128

0 © © 1 1

@) e (—3a - ) = 4/ o (—1@V/37r — o)

which reduces to
(@ — ¢)* = (aV/2/7 — ¢)* + log (x/2).

The root of this quadratic at which the maximum of (3) occurs is

o = ﬁ\"/.Q__/; {14+ V1 + (og»/2)(A + vV2/m)/0A — V2/m)¢ ).

The maximum value R, = lim,..» sup; L1 (¢) can now be found by substituting
@ for ain (3). For example a = .05 gives ¢ = 1.6449, a’ = 2.3750, and R; = .1686
for the asymptotic maximum loss. Differentiating (4) with respect to a and
equating the result to zero gives

F(a — ¢) "/?r \/lﬂ exp {—31(av/2/7 — ¢)*}

@)

= F(av/2/m — ¢ \/lé; exp {—1(a — ¢)%}.

For given a the solution a” of (4’) can be found numerically and shown to
maximize (4). The maximum value B, = lim,.. sup; Lz (8) can now be found
by substituting a” for a in (4). For example a = .05 gives ¢ = 1.6449, a” = 1.5593,
and R; = .2610 for the asymptotic maximum loss.

Table 2 gives a’, a”, R, (the asymptotic maximum power loss), R. (the asymp-
totic maximum amount by which the power ratio falls below 1) for several values
of a. The most noticeable feature of this table is the strong dependence of R,
and R, on the value of a. For small @ use of sign test instead of Student test
results in very severe loss of power at some alternatives. For example when

= .001 there is an alternative where 519, of the power is lost by using sign
test instead of Student test, and an alternative where the amount of power lost

is .28.
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A NOTE ON CONFIDENCE INTERVALS IN REGRESSION PROBLEMS

By JoHN MANDEL

National Bureau of Standards

This note deals with the construction of confidence intervals for arbitrary real
functions of multiple regression coefficients.
Consider the usual model

(1) Ya = ;Bixia + €q

in which the e, are independently and normally distributed with mean zero, and
common variance o”.

It is customary to construct confidence intervals for the 8;, using Student’s
¢ distribution. Alternatively, a joint confidence region can be constructed for the
6, using critical values of the F distribution. In both cases the usual statistic
s, based on N — k degrees of freedom, is used as an estimate of o

Durand [1] has discussed the use of the joint confidence region of the 8;, an
ellipsoid in a k-dimensional space, for the construction of confidence intervals
for linear functions, @ = D_: hi8; of the regression coefficients. He points out
that the chosen confidence coefficient (corresponding to the ellipsoid) is a lower
bound for the joint confidence of any set of intervals thus derived.

Our first objective is to generalize this procedure by removing the restriction
of linearity. Let

(2) z=f(ﬂl)ﬁ2)"'yﬁk)

be any real function of the coefficients 8; . The form of the function is arbitrary

but known.
For any arbitrarily selected value of 2, say 2z, equation (2) represents a
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