EQUALITY OF MORE THAN TWO VARIANCES AND OF MORE
THAN TWO DISPERSION MATRICES AGAINST
CERTAIN ALTERNATIVES!

By R. GNANADESIKAN?

Unaversity of North Carolina

0. Introduction and summary. In this paper, using the heuristic union-inter-
section principle [4], two tests are proposed, and the associated simultaneous
confidence bounds on parametric functions which are measures of a certain type
of departure from the respective null hypotheses are obtained. The first test is
for the equality of (k + 1) variances (k = 2) of (k -+ 1) univariate normal
populations, wherein we choose one of the variances as a standard (of course,
unknown), and compare the other k variances with it. The alternative to the
hypothesis is that not all the k variances are equal to the standard one. The
proposed test may be called the simultaneous variance ratios test. The well-
known Hartley’s Fumax test [2] for the case of equal sample sizes is not equivalent
to the present test even when all samples are of the same size since the alterna-
tives in the two cases are different. In the alternative in Hartley’s test, aside
from the inequality of the k variances to the standard one, the mutual inequality
of the k variances also plays an important role. The second test proposed in this
paper, is a multivariate extension of the first. This paper also considers the
distribution problems that arise in connection with both the tests: The non-
availability of tables at the moment makes the immediate practical application
of the tests and the associated confidence bounds not possible.

Sections 1, 2, and 3 deal with the univariate problem and Sections 4 and 5
deal with the multivariate extensions.

1. The simultaneous variance ratios test. For (¢ + 1) univariate normal
populatlons we want to test the composite hypothesis Hy i =03 = -0 =
oy = oo . Suppose we have independent random samples of sizes (n; + 1), 1=0,
1, 2, , k, from the (k 4+ 1) populatlons and let s be the estlmate of o} based
on n; degrees of freedom for 1=0,1, , k. Let us choose cro as standard and
compare o, .-+, o with o7, so that Ho 1s equlvalent to Ho :03/o0 = +++ =
a,,/ao = 1. The altematlve hypothesm is Hy: Not Hys, 1e ., at least one
o3/as # 1. For each hypothesis like Hgi :0/ot = 1 against Hiy; t07/05 # 1, we
have the well-known test with the acceptance region,

(1.1) Fyq S Fi(ni,m) < Fa,

where Fi(n:, m) = si/s; has the central F-distribution with n; and no degrees of
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178 R. GNANADESIKAN

freedom under Hy;. It is also easily seen that Hg = ﬂ;.l,...,kHé.' and H; =
Uir,... xH1: . Therefore, by the heuristic union-intersection principle [4], we
shall take for our test of Hy, i.e., of Ho, the acceptance region,

(12) Fu S Fi(ni,ng) < Frp,Foy < Fo(ng,m0) < Fap, -+,
' Fu < Fir(ni , n0) < Fia

which is the intersection (over 7) of the regions (1.1). For the critical region,
therefore, we take thé union (over 7) of the complements of the regions (1.1).

The optimum choice of Fiy, Fie, for ¢ =1, 2, .-+ | k, is not known, and, in
the absence of this knowledge, the following choice is suggested as one possible
way':

Following the usual procedure for -obtaining a Type I union-intersection
region, choose Fy; and Fi such that all the individual regions (1.1) will have the
same size (1 — «*), where o* is such that the size of the intersection (1.2) is
(1 — a), for a preassigned a. In general, of course, (1 — a) # (1 — o*)*, but
assuming non-triviality, given a we can determine o* and vice versa. This con-
dition, however, still does not determine the region (1.2) completely. In order to
do so, we impose the further condition that, for each 7, the test with acceptance
region (1.1) be locally unbiased (in the sense of Neyman). This latter condition,
as will be shown in Section 2, ensures a desirable property of the simultaneous
variance ratios test with acceptance region (1.2).

Fin;,n), for e =1, 2, --- , k, are quasi-independent variance ratios in the
sense of [3], i.e., the numerators, except for constant multipliers, are distributed
independently as x* variates and are so distributed independently of their com-
mon denominator which also, except for a constant multiplier, is distributed as a
x* variate. The joint distribution of such quasi-independent variance ratios is
given in [3] and using an approach which is essentially the same as that con-
tained in that paper we can obtain a recurrence relation to aid us in evaluating
the probability integral associated with the Simultaneous Variance Ratios test
(1.2). It must be noted, however, that the recurrence relation solves the problem
only in theory and for practical purposes tables of the probability integral need
to be constructed.

2. Properties of the power of the test proposed in Section 1. We shall first
note that the power, or, equivalently, the probability of the second kind of error,
B8, of the test could involve as parameters only the k ratios &; = o3/0s, (& =
1,2, .-+ ,k).

B = P[Fu < Fi(n1,n0) £ Fray +++ , Fia £ Fi(n, mo) = szlH;]

Hs],

where for =1, 2, ... ,k, Fi{ni;,no)/6; has a central F-distribution with
degrees of freedom 7; and no and the different F’s are quasi-independent. It now
follows that 8 could involve as parameters only 8;,8:, <+« , 8.

.—_P[&!<FM<EE &‘.‘<M5F_"2
o 1 =8’ T T O B
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We shall next show that, for the choice of F, , Fi» mentioned in Section 1, the
power of the test has the monotonicity property, i.e., that as each &;, (z = 1,
2, - -+, k), tends away from unity the power monotonically increases. It is to be
noted that Ramachandran [3] has proved a similar property of the simultaneous
analysis of variance test.

Let us write v; = 8.2/07,4=0,1,2, ---,k, and let p(v:) denote the prob-
ability density function of x* with n; degrees of freedom. Then we have

Figvg
_aﬁ _ i fm k j [ ; .]
36, 98 Jo p(v0) [H ,zl‘vo p(v;) dv; | dve

(2.1) Figvo
= j; p(vo) dvo — 7. [H fr‘m p(v:) dv,:l,
this being valid,
» _ 3 F13v¢0 F.zvo
[}
= [ o0 (& fr e 2 an) x 11 f D00 do: | di
@© = Jad jut } _nltuvo
= f p(vo) (ﬂ) :, ._.L.... . }_{(Fu vo) z e &1
o 2 r (nl) o o
i 2
ny Figvg
Fn % M;Bl:'o ‘ ‘
- ( o ) H.,;uvo p(v.) dv; | dvo
= const. f p(v0)f (vo) dvo ,
0
say, where

"1 _1 _niF11v n1 "1'1:’0]
fw) = Fy? W — Fp? 20
';zvo

fo

F:nvo

p(vc) dv; ,

a.nd the constant factor is non-negative. Noticing that vo , 8;, Fa > Fa, 1 =1,
k)  are all essentially positive and that each of the integrals in the product

H" . is positive (lying between 0 and 1), we may apply a well-known result
in Ca.lculus to obtain, 8/08, 2 0 according as
#1 _n1F117 n1 _miFi1390
Fu®e 21 — Fple 20 20.

i.e., according as

22) <FH)TI 2 T Y,

Fr
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It can be shown that the condition of local unbiasedness of the region,
Fyu £ Fi(m ,no) < Fyz, reduces to,

(2.3) (&)”T P
F 12
Substituting in (2.2), we see, after some simplification, that
(2.4) 3B/38, 2 0 according as 8; S 1 (irrespective of vy > 0).

Hence, the power is a monotone increasing or decreasing function of 8; ac-
cording as & 2 1. The same property with respect to 8;, - -+ , 8 can be proved
similarly.

Also, if (1 X k) = (8,82, -+, ), then from (2.1) and (2.3) it appears
that if Fy , Fi are chosen so as to make the region (1.1) locally unbiased, then

a8
2.5 — = 0.
(2.5) 30; |s'=q1,---,1)
Therefore, the proposed test is locally unbiased, and, as a consequence of its
monotonicity property, it» will be completely unbiased.

3. The associated simultaneous confidence bounds on ¢3/03 , (i = 1,2, - - - , k).
Under the alternative hypothesis it is known that Fi(n;,n)/8;, for 7 = 1,
2, -++, k, are distributed as quasi-independent variance ratios. Hence, we can
make the following simultaneous statements:

(3.1) Fugwépn,...,pk<wépu’

o1 - 0
where Fy ,Foo (1 = 1,2, - -+, k) are such that
(32) PlFu=<Fi(m,m) S Fr, - ,Fia £ Fr(m,m) = Fro] = (1 — ),

so that the probability associated with (3.1) is (1 — «).

By inverting the statements (3.1), it is easily seen that we obtain the following
simultaneous confidence interval statements,

2 2

8 8

£46; =

ng,-z S ngﬂ’
with a joint confidence coefficient (1 — a).

These results are valid for all choices of Fy, Fip, (1 = 1,2, - - - , k), satisfying
(3.2). However, if Fu, Fie, (¢ = 1,2, -+, k), are chosen as in Section 1, then,
from the unbiasedness and monotonicity properties of the associated test,
(proved in Section 2), we shall have the desirable property of monotonically

increasing shortness (in terms of probability of covering wrong values) for the
confidence bounds (3.3).

(3.3)

i=1,2 -,k

4. The multivariate test. The notation used in this and the following sections
is fairly standard and, for example, is the same as that used in [6], [7], [8]. The
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case k = 1 is treated in these papers but now we shall proceed to consider the
case k = 1, and, as will be seen, the results for the case £ = 1 are similar in
form to those for the case k = 1.

In the multivariate situation we need a test for the hypothesis of equality of
the dispersion matrices of (k + 1) non-singular p-variate normal populations,
N[, 21,7=0,1,2, - k. That is, the null hypothesis is Hy :Z) = 23 = -+
= 3, = 2. Suppose that X,[p X (n: +1)],2 =0, 1, --- , k, where p < n; for
i=0,1, -, k, are mutually independent random samples respectively from the
(k + 1) normal populations. Let

(4.1) nSi(p X p) = X:Xi— (i + )&, 1=0,1,2,---,k,
where Z;(p X 1)’s are the sample mean vectors and So, Sy, - -+, Sk are sample
dispersion matrices estimating =y, =1, --- , Zx respectively. The sample dis-

persion matrices have independent Wishart distributions with S; having the
distribution,

—ng n¢—p—1

(4.2) p(S,") daS; « I Z; IT €exXp [—% tr ZFlSi] | S,l 2 dS.',

fort=20,1,2,--- k.

Just as in the univariate case discussed in Section 1, we may, for the multi-
variate case, choose Z as standard and compare the k matrices 2, , - - - , Z; with
o . Notice that So, S1, ---, Sy are symmetric and almost everywhere (i.e.,
except on a set of probability measure zero) positive definite, and Zo, 21, -+ , 2
are symmetric positive definite matrices being dispersion matrices of non-
singular p-variate normal distributions.

Consider, in analogy with (1.2), the test for Ho 12, = -+ = Z; = Zy, whose
acceptance region is

cmin(S.i) < cmax(Sj)
Cmax(S0) ~ Cmin(So)

Here also the optimum choice of Aj1, Aj2 ,forj = 1,2, - - - , k, isnot known. We
shall, however, consider a choice in analogy with our choice, discussed in Section
1, for the univariate case. Let us choose A j1, Njz, forj = 1,2, - -+, k; so that all
the individual regions,

(4.3) le é é ng, J = 1’ 2’ cee, k.

cmin(Sj) < cmnx(sj)
cmax(SO) - cmin(SO)

are of the same size (1 — a*), where o* is such that the region of intersection,
(4.3), is of size (1 — ). Here again, in general, (1 — a) (1 — o*)*, but we
shall assume non-triviality, i.e., given @ we can find o* and vice-versa. As a
further condition to determine the N’s completely, let us impose the condition
that the individual tests with acceptance regions (4.4) are to be locally unbiased.

Investigations, similar to those of Section 2, for desirable power properties,

(44 A = = Mo,
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which might follow from the second condition on the A’s, have not been made in
this inquiry due to the difficulties involved.

A method of evaluating the individual probability integrals like (4.4) is given
by the author in [1]. The probability integral associated with (4.3), however,
needs to be studied with a view to tabulation.

6. The associated simultaneous confidence bounds on ¢(Z;Z") for ¢ = 1,
, k. Since So, S1, - - - , Sk are independently distributed, the joint distribu-
tion of the S’s is obtained by taking the product of the distributions in (4.2).
Next let us make the following transformations,

(5.1)  Zdp X p) = Ai(p X p) Dvi(p X P) AP X P), i=0,1,2,---,k
where each A; is an orthogonal matrix, and the p diagonal elements of each D,
are the p characteristic roots, yi1, - -+ , vip, of the corresponding =; (for ¢ = 0,
1,2, .-, k).

Then the joint distribution of 'Sy, -+ -, Sk and S, may be rewritten as

n.—p—l

k
const. H H Vij ) exp l:—% tr{zo n,-AﬁDl,.“A.-S,-}] H [8:| T dS;,

=0

or, remembering that tr [A(p X ¢)B(g X p)] = tr [B(g X p)A(p X @)}, (e.g. [5],
p. A-1), as

k
(5.2) const. exp [—% tr {Z_; n,-Dl,\/:,_‘ A:Si A Di'\/’f.}] H | S:]

Let us next make the transformations

(5.3) ASADI,\/' St i=0,1,--,k

n‘—p—-l

Dy, v
Then the joint distribution of iy , e Sk and Sg is seen to be

p -1

(5.4) const. exp l: 1tr {Z n; ,}] H | 87 l das?,

which is of the same form as the joint distribution of S;, -, Sx and S, under
H,.

Therefore, it follows that we can find constantsAj1, A2 (j = 1, 2, -+ - , k) such
that the simultaneous statements

cmin(S;'k) S cmax(‘sj)
Cmex(S0) = €min(Se) T

have a joint probability = (1 — a), for a preassigned a. It is well known that all
non-zero c¢(AB) = the non-zero c¢(BA) (e.g. [5], p. 138). Hence, c(A:S; A7) =
¢(8S;), since A; is orthogonal. Furthermore,

o(87) = e(Dy,, AsSiA), where Si(p X ),

=< \j, forj=1,2,:--,k,

(5.5) A =

for ¢ =0, 1, ---, k, are symmetric and almost everywhere positive definite
matrices.
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Consider, for any j = 1,2, --- , k,

Cmin(S;) < cmax(S;'k) 3
() = (S = M

(5.6) AL S

which is equivalent to

1 omax(87TY) S cann(S]T) 1
it = Cmin(S:—l) - cmnx(S(’)k—l) - )‘1‘2’

or to
i > me(D'yi AJ'S;'-I ;) > cmin(D'yi AJ'S;I ;) > i
le - Cmin(D-yo AoSo_lA()) - cmnx(DyaAOSFlA(l)) - )‘J'z )

It is known that if A;(p X p) and A.(p X p) are two matrices such that A, is
symmetric positive definite and A, is symmetric at least positive semi-definite
then Cmax(41) t,:m,,,(Ag) > c(fllAz) = Cmin(A1) Cmin(A42). Using this, we have
CmQX(D1fAiS;1Aj) Cmax(AijAj) = cmsx(D‘yi), So that,

cmnx(DviAiSJTlA;') = cmax(D'v,')/cmaX(AiSJ‘AJ,') = cmaX(D‘v;)/cmu(Sl)n

and similarly,

(5.7)

cmin(D‘yo) — Cmin (D‘/o)
cmin(AO So A(,)) cmin(So) ’

and hence we see that the first part of (5.7) implies that

]. > Cmax(D‘yi) cmin(SO)

M Cmin(Dyy) Cmex(S))
Again, using the above mentioned result, we note that

cmin(D‘f,')
cmin(SJ')

cmin(D‘yo A!)SO‘ A(;) é

cmin(D‘yi AJ' SJ_IAJ') §

and
Cmax (D 'Yo)

' 1A0) > Zaxirre]
cmax(D'yoAOSO— AO) = cm“(so) ’

so that the second part of (5.7) implies that,

cmin(D1,~) cmax(SO) > i
Cmax(D‘Io) cmin(SJ') - )‘J'z
Therefore, we observe that (5.7) implies the statement,

1 me(sj) > me(D‘yi) > cmin(D1,~) > 1 cmin(Sj)

)‘—J'l Cmin (So) = Cmin(D'yo) = cmBX(D'Yo) = N2 Cmax(So) )

(5.8)

We also have

cmax(D ,') _ —1 —1
a;n—(D'—':‘)— = cmnx(D‘y,-)cmax(Dl/.yO) = cmax(zj)cmax(zo ) = cmx(zizo ’
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and,
cmin(D i) — —
'(;n'ax(T:o)' = cmin(D‘Vj)cmin(Dl/o,o) = cmin(zi)cmin(zo 1) = cmin(zizo l)-
Therefore, we observe that (5.8) implies the confidence statement,
1 cmax(Si) —1 —1 1 Cmi (S )
5.9 —_— ey = 'max bFD)) g min Z;Z = "“‘u-
( ) " cmin(SO) = C ( j &0 ) C ( j 20 ) < Cmax(So)

Combining all statements like (5.9) for j =1, 2, --- , k, we see that the
statements (5.5) imply the simultaneous confidence statements,

1 cmax(‘sl) > —1 1 cmin(Sl)

— = 2 all ¢(Z,> > . Zmin\l/

Mt Cmin(S0) = “&:%) 2 Mz Cmax(So)
(5.10) : : :

_1- cmax(‘sk) > 3:11 c(EkEo_l) > 1 cmin(Sk)

AIcl cmin(‘so) - = >\_k.2 cmax(SO)
with a joint confidence coefficient = (1 — «).

6. Concluding remarks. Hartley’s test is more involved but has a more de-
tailed structure of alternatives. A generalization of Hartley’s test to the case
of unequal sample sizes, and a multivariate extension of that, are under investiga-
tion and will be discussed in a later paper.
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