ESTIMATING THE PARAMETERS OF A DIFFERENTIAL PROCESS'

By HerMaN RuBIN AND Howarp G. TUCKER
University of Oregon and University of California, Riverside

1. Intreduction and summary. Let X denote a differential process, i.e., a
stochastic process with independent increments for which the distribution of
X(t + h) — X(t) depends only on h. The parameter ¢ runs through the interval
[0, 4+ ), and the usual initial condition P[X(0) = 0] = 1 is assumed. Then it
is known that the distribution of X (¢) is infinitely divisible, i.e., the logarithm
of its characteristic function can be written as

+w . 2

(1.1)  log fxy(u) = dvtu + ¢ [w (e"“ -1 - : z_:_mxo) 1_1._2_’3. dG(z).
In this canonical representation, v is a real constant, and G is a bounded, non-
decreasing function, it-being permissible always to consider G(— « ) = 0. In the
usual probabilistic terminology, the probability law of X (¢) is a convolution of
a normal law and a (possibly infinite) number of Poisson laws, or a limit of such
laws. The function @ is called the jump function; its saltus at z = 0, ¢* =
G(4+0) — G(—0), is the variance of the normal component, and its set-of points
of increase for z # 0 gives information as to the nature of the Poisson com-
ponents, viz., the “relative density” of the magnitudes of the discontinuities of
the sample function. The purpose of this paper is to derive estimates for this
jump function G and for the “trend term”, y. Two estimates of G are obtained,
and one estimate is obtained for v.

In the first method of estimating @, considered in §2, it is assumed that the
experimenter can observe a sample function of X at any finite number of values
of ¢ that he chooses. Accordingly, for any integer n, let

x5 () -x(57)

Then the estimate Gx,.(u) of G(u) is defined as

* 18 X
(1.2) Gy.n(u) = N kZ=:l TF X%, Iix,pgus
where

1 if Xnk é U
Txusa =9 o 3 Xk > u,

and N = [Tn], T being the largest value of ¢ observed. It is proved that this
estimate is strongly consistent in the following sense:
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642 HERMAN RUBIN AND HOWARD G. TUCKER

(1.3) P{lim Ilvim Gyn(u) = G(u) forall u e C(G)} = 1,
where C(G) denotes the set of all values of u at which G is continuous. This
estimate is not necessarily an unbiased estimate of G(u) for all u £ C(G).
The second method for estimating @, developed in §3, requires that the ex-
perimenter be able to observe all the discontinuities of a sample function of X
on a finite interval in addition to being able to observe X (¢) at any finite set of
values of ¢. Not only is a consistent estimate obtained for G, but also a consistent
estimate is obtained for the variance of the normal component, ¢ = G(+0) —
G(—0). Let {k,} denote a sequence of positive integers such that

(1.4) Sk < .
Further, let T be a fixed value of time 7', let
kn
(15) S = 2 AX(BTo/kn) — X ((k = 1)To/kn)}’,
and

(1.6) D* = the sum of the squares of the jumps of the sample function during
the time interval [0, 7).

Finally, let ¢

(1.7 Jr(z) = [: ﬁ dNz(b),

where, for every Borel set B, Nz(B) denotes the number of discontinuities ob-
served for X during [0, T] whose magnitudes lie in B. The estimate Go.r(u) of
G(u) is then constructed as follows:

. T (w) i w <0
(1.8) Gn,r(u) = {T"IJT(M) + T3'(S% — D*) if u > 0.

The estimate G, () is an unbiased estimate of G(w) if ¢* = 0 or if u < 0, but
in any case, Gn,7(b) — G. r(a) is an unbiased estimate of G(b) — G(a), pro-
vided 0 £ [a, b]. Also, this estimate is consistent in the following sense:

(19) lim Gnz(u) = G(u)

T>0
n-»00

with probability one for every . In addition, (1/To) [S% — D is a consistent
estimate of ¢ = G(40) — G(—0), the variance of the normal component, in
the sense that lim,..(1/Ts) [S7 — D?] = ¢" with probability 1.

In §4 a comparison is made of the two estimates for G'(z) obtained in §§2 and
3. It is found that both estimates do agree in a special limiting case. In particular
it is proved that

(1.10) p lim Gy . (u) = lim @n,N(u) for all u & C(Gn.x).
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Finally in §5 a consistent and unbiased estimate is derived from the “trend
term”’, v. This estimate is

+o0 3
(111) 1) = Hxw - [T g avw).

It is consistent in the sense that
(1.12) ., P{lim4(#) =} =1
t»0

Another way of writing this estimate is as follows. Let Jy, J2, +-+, Jp, -+ de-
note the discontinuities of the sample curve up to time ¢ (not necessarily in
order); then

V0 = Hx@ - = P

2. The first method for estimating G. This method of estimating G is based
entirely on necessary conditions for one of the most general central limit theorems.
The statement of the theorem is found on page 121 of Gnedenko and Kolmogorov
[2], which we restate as follows:

In order that for some suitably chosen constants A;, Ay, ---, A,, «-- the
distribution functions of sums
(21) Yn= nl+Xn2+"‘+Xnk—'An

of mdependent infinitesimal random variables converge to a limiting distribution
function, it is necessary and sufficient that there exist a bounded, non-decreasing
function G such that

kn % 2
(22) > f_ ] l_jr’”—xg AF oz + am) = G(u) as n— ®

at all points w at which G is continuous, i.e., at all u £ C(@).

In this theorem, F,.(x) is the distribution function of X,x, and aw =
JZ. x dF () for arbitrary 7 > 0. One result of the theorem is that A, can be
selected as A, = an + o2 + -+ + am, . The limiting distribution referred to
in the theorem is necessarily infinitely divisible, and the logarithm of its charac-
teristic function is of the form

(2.3) log f(u) = iyu + [:w <e’.“z -1 - %2) 1 + 2 dG(z).

The function G in (2.3) is the same function G in (2.2). The couple (v, G) de-
termine and are determined by this limiting distribution. In case the limiting
distribution has finite variance, then it is known that there exists a real constant
a and a bounded non-decreasing function H(z) such that

+o0 5 ) 1
(2.4) log f(u) = i + f_ (e = 1 — i) S dH (@),
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In this case the limiting distribution determines and is determined by the couple
(e, H). It is easily verified that the limiting distribution has finite variance if
and only if ‘

+o0
2.5) f (1 + 2% dG(z) < .
In this case the relation between G and H becomes
(26) He) = [ (1+2) d6(a).
Also
+o0
2.7) o=+ [ z dG(z).
In the case of the differential process X (), let
258) X,.,,,=X<’-“)—X<k"1), k=1,2--,n
n n
Lettingn = 1,2, - - - , we see that we have an infinitesimal system of independent,

random. variables for which
X+ X2e+ -+ + Xn.n = X(l)

for every n, and hence the distribution of X (1) is the limit law of the distribu-
tions of this sequence of sums. In this case, F.:(x) is for fixed n the same for all
k and is denoted by F,(z); likewise, o, = an for 1 < k = n. Then by (2.2),

% 2
29)  Gu(w) =n [J__’I”?.x_zdp,,(x +on) o> G(u) as n—

for all w € C(G). The only deterrent to establishing an estimate for G'(u) is the
presence of a, in (2.9). The problem then remains to eliminate the need for o, ;
i.e., letting

(2.10) G.(w) = n L% dF.(z),

the problem is to show that
G.(u) — G(u) asn — »

for all u £ C(G@). Accordingly, let

* _ “ (1? - O’n)2
G: (u) =N ° m2 an(x).

We now prove

(2.11) Lemma: G3*(u) — G(u) asn — = for all u £ C(G).
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Indeed, for fixed u ¢ C(G) and arbitrary ¢ > 0 there exists a 6 > 0 and an
integer N such that
u £ 8 e C(@),
G(u +8) — G(u — 8) < ¢/2,
[{Ga(u + 8) — Gu(u — 8)} — {G(u +8) — G(u — 8} | < ¢/2,
and |a, | < dforalln > N. Hence foralln > N

uta, _ 2
w7 gl -0 e - atw)
< [{Gu(u + 8) — Gu(u — 8)} — {G(u + 8) — G(u — 8)} |

+|Gu+8) —Gu—28)|<e

which proves the lemma.
We now prove:

(2.12) Lemma: If u < 0 and if u £ C(G), then Go(u) — G(u) asn — o.
In order to prove this we consider the function

1+ (x— @)
1+ 2 (x— an)?

(For all sufficiently large n, f.(x) is finite for all + < u.) Then

fn(x) =

Galw) = [_fu(a) d6¥(2),

and

G — 6| 5 | [ fu(@) 63 @) = [ aax*(a)

[ 46 (z) — G(u)

< sup |fu(x) — 1| G¥*(u) + [Gn¥(u) — G(w) |

rzsu

+

which converges to zero as n — « because of Lemma (2.11) and the fact that
fn(x) converges uniformly to 1 over any closed set not containing zero.
In precisely the same way one can prove

(2.13) Lemma: If0 < a < band if a, b £ C(@), then G, (b) — G.(a) = G(b) —

G(a) asn — .
With Lemmas (2.12) and (2.13) we can now prove the following:

(2.14) Tueorem: If u ¢ C(G), then G.(u) — G(u).

Proor: Because of Lemma (2.12) we need only prove this in the case where
u > 0. From the two inequalities
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1 "o — 200’ + nal(Falr) — Fu(=7 )}
ﬁ(_rm{n [7 z° dF,.(z) — 2na; + ne’ (F.(7) (=7)
1 ' 2
= - & an
(2.15) 14+ (r+ la,.|)2“L (@ ) (@)
=n i—% dF.(z) = n l (x — a,)" dF,(z)
=n [ & dF,(z) — nal ¢
and ,
n [ 2 dF.(z) < (1 + P [ R @)
2. T T .
(216) <1+ f & dF.(z)
one obtains

T xZ T 2
n‘[,mdﬁ',,(x) <n ‘Lx dF.(z)

S+ (ot el [ =) ap o)

+ 1 + (x -_ a,.)
+ {2 - F,.(T) + F”(—T)}naf‘
(2.17) < {1+ (v + |an )Y L 2* dF,(z)

+ {1 = (s + | )’ = Fu(7) + Fu(—7)}nal
+r xz
SA+A0+ 6+ ladn [ 12 dFu(a)

+ A+ D = (¢ + |an])® = Fulr) + Fu(—1)inal.

Now, in the particular situation of this differential process, it is easily seen that
the sequence of constants {4,} must necessarily be convergent, and hence 4, =
na, are bounded. This in turn implies that a, — 0 as n — « and consequently

(2.18) nan —0 as n— o,
From the inequality (2.17) and for r always selected such that r, —7 ¢ C(Q),
one easily obtains

i [ 2R s 4+ D166 - 6(-n)

T x2
=qQ + 1’2)21111_1”’[ 1+ 22 dF"(x)

Nowlet 0 < 7 < u. Then

li._l'n n ‘[‘ ﬁdﬁ‘,.(x) g G(u) - G(T) + '1—_‘1_7 {G(T) - G(_T)} + G(—T)y
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and taking the limit of both sides as » — 0, one obtains
u 2

. x

l%_n n Lﬂ Tz dF,.(z) = G(u).
In a similar fashion,

. u x?

lim 7 Lo mdﬂ.(w) < G(u),

and the theorem is proved.
Theorem (2.14) asserts that

2

n(u) = 28{1 + Xz I[Xukéu]}_)(’v(u)

as n — = for every u € C(@), or
2

~ X,n
G',.(u) = né {T;{i‘l‘ I[x,.léu]} - G(u)

asn — o for all u ¢ C(G). By the strong law of large numbers,

1 nN X -
(2.19) GN W(u) = ;1 iF Xz Iix,<a — Gn(u)

as N — = for every value of u with probability one, for every fixed n. Since
G(u) and G¥..(u) are nondecreasing in u, one can then write

(2.20) P{lim hm Grn(uw) = G(u) forall ueC(Q)} =

The estimate to be used is Gy, () as defined in (2.19). It is strongly consistent
in the sense given by (2.20). This estimate, however, is not necessarily an un-
biased estimate of G'(«) for all values of u £ C(G). This is the case when X (¢) is
a pure Poisson process, i.e.,

10g fxin(u) = tuat + N(e™ ~ 1),
where, say, a > 0 and b > 0. In this case
_Jo if z<b
G(2) = {)\b"'(l +) i 2> b
If u < 0, then for every n, N, it is easily checked that §(G¥..(u)) = 0. However,
if 0 < 2 < b, then for those values of » for which 0 < a/n < x, one obtains

2
&(Gra(x)) = + ->0, forallN,
and if x = b, then ‘
2 2 e—2
* ) @ (a + nb) ( [ ] (\/n)
8(Grn(2)) = ne {n2+a2+n?+(a+nb)2 +_ ~ = il

(a4 mb) )}
n? + (a + nb)?

which is clearly greater than Ab*(1 + b*)™".
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3. The second method of estimating G. Because of the fact that X is a differ-
ential process, once the probability distribution is given for, say, X (1), then it
is known for X (¢) for every ¢. Furthermore, for every finite set of values of ¢, say,
h,t, -, tn, the joint distribution of the random variables X (%), X (%), - - -,
X (tn) can be derived from the distribution of X (1). From a probabilistic point
of view, two stochastic processes are the same if their corresponding finite di-
mensional marginal distributions agree. Accordingly, it is found convenient to
construct and prove properties of an estimate of G by constructing a process
equivalent to X which, because of the equivalence, shall be labeled X.

Using the ¥ and G(z) in (1.1), a stochastic process in two variables, Y (b, t), is
considered, where b £ (— o, + ) and ¢ £ [0, «]. It is assumed that Y (b, t) is
a process with independent ‘‘generalized increments” on the (b, ¢)-half plane
over which it is defined, i.e., if {A,:u &€ M} is a disjoint family of Borel sets on
this plane, then the random variables

{f Y(db,dt),ueM}

are independent. The probability distribution of Y (b, ¢) is assumed to have a
characteristic function fy@,,(u) for which

lngY(b,t)(u) = itu’Y(G( ©) — 0'2)—1 . z:oo dG(zx)

N dwr \1+ 2
+ tf_eo (e -1 m‘) -x—z- dG(x),
where o° = G(+0) — G(—0) is actually the variance of the normal component
of X(1). (Incase G(+») = ", then the results stated in this section concerning
the estimates of G(x) hold trivially without using Y (b, t).) Then for every ¢ we
have

(32) X = [ ¥,

—00

(3.1)

the integral existing with probability one since it converges in distribution. From
the process Y (b, t) we construct a sequence of independent stochastic processes,
each one in this sequence being a process with independent increments. Let

i.e., Yo(t) is a normal process with mean zero and variance to*, and let, for fixed
positive integer n,

y %t) —Y(40,8) if k=1

Y(-—,t)—Y(————,) if k=0,—-1,+2 43, ---.
L \n n

Then for every t
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+e0

(3.5) X(t) = Yo(t) + ,,;_w You(t)

with probability one, since this series of independent random variables does
converge in distribution.

The most difficult problem that occurs in this section is to find an estimate for
the saltus of G(z) at z = 0, i.e., to find an estimate of the variance of the normal

component, Yo(t), of the process. Let ki, k2, -+, k,, - -+ denote a sequence of
integers such that
(36) Ykt < w.
Also let

Y(t) = X(t) — Yo(t), or

400

(37) Y() = £V 1) = 3 VaslD),
and let

@ = 3 (X(i/ke) = X(G = D/ko))
(38) - -
= 2 Y G/ky) = YU = Dot

We can now prove

(3.9) Lemma: P{Qy — ¢’ as N — o} = L.
Proor: From (3.7) and (3.8),

kN

Qv = 2 1¥o(i/kw) = Yo((§ = D)/kw)} + 2, where

Il

J=!

kn +o0
,-Z_:l {(Yo(§/kw) = Yo((j — 1)/kn)) k;_:w (Yar(3/kn)
= Yul(G = 1)/kx))}.
Since Q¥ — 2Zy has mean o and variance 2¢*/ky , it converges to o with
probability one. It remains to prove that Zy — 0 as N — o with probability one.
Tt remains to prove that Zy — 0 as N — o« with probability one. Toward this
end, let, for every fixed k,

(3.10) Zwy

Il

kN

Zyw = 25 1Yo(i/kn) = Yo((G = )/kw

(3.11) ' =
X {Yai(i/kn) = Yau((G — 1)/kn)}.

The expectation of each summand is zero, since it is the product of two inde-
pendent random variables of finite expectation and §Y,(¢) = 0. Hence
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(3.12) &Zyy =

We may write Zy;: = 2% U,;V;, where U; = Yo(j/kn) — Yo((G — 1)/kx),
and V; = Yu(j/ky) — Yu((j — 1)/kx). Then one easily obtains Var (Zy:) =
(1/kx)o* 232, &V; = o°6(Vi). But

sv) = { [+ 6@ + L (vena+ [ 2@},
where
v = F/) = O~ 1)/m),
" G(+ =) —
Hence for fixed &
(3.13) Var (Zws) = (¢*/kn) (R + S/kx),

where R and S are both finite and do not depend on N. Hence, for arbitrary
¢ >-0 and because of (3.6), (3.13) and Chebishev’s inequality,

(3.14) S P Zxa—0]2 ¢ < elz-Nzl Var (Zws) < ®,

which in turn implies (by applying the Borel-Cantelli lemma) that
(3.14a) Zyr—0 as N —> o

with probability one for every fixed k.
We now show that Zy = ) 1=, Zy. converges with probability one to zero
as N — «. From (3.1) and (3.4), we have, for k =< 0, k = 1,

. k/n fuzr 1 + x
(3-15) lngY”,k(t)(u) = "'utﬂn,k + ¢ et/ ( 1) dG(CL'),
where
_ 2(GG/n) = G((k = 1)/n)) [ 1
s = e +]_,. 396
(3.16) Let Wau(t) = Yur(t) — t8ur.
Then since
GBI p= 3 |8l S g2l 4 G(m) < =,
P R G(») — &2 ) —

the series of independent random variables

Z Wnk(t)

k70,1

converges in law and hence converges with probability one. This implies that
| Wak(t) | = € for only a finite number of values of k with probability one for
arbitrary e > 0, in particular for ¢ = 1/n. Also note that if | W..(¢) | > 0, then
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| War(?) | 2 (k — 1)/n. Now let A; denote the event that 7 is the largest value
of | k| = 2 such that W,..(t) # 0, ie., | Wa(t) | 2 1/n, and let 4, denote the
event that W,.(t) = Oforall | k| = 2. Because of the fact that | W..(¢) | 2 1/n
for only a finite number of values of k£ with probability one, we obtain

(3.17a) > PA; = P( U A;) =1.
f=l =1

Now we may write

(3.18) Zy = Sy + TN+ ZN,l + ZN,o ’

where

Sy = i {(Yo(g/kn) — Yo((G — 1)/’°N))’G§’I(Wn,k(j/kﬂ) = War((G = 1)/kx))},

=1

kN

T = B{ L (3, 80 (Toi/ka) = oG = /b))

=1

Because of (3.17) and the fact that 8Ty = 0,
0 ) 2
Y PTwlzd =BT 0 <=,
N=1 € N

and consequently Ty — 0 as N — « with probability one. By (3.14a), Zy,1 +
Zyo— 0as N — « with probability one. Now

M ©
SN = ZISNIA‘. +Snl( U Ai),

=2 . N T=M41
where, as before, Iis the indicator of S. By (3.14a), P{SyIl 4, —>0asN — o} =1
for every integer 7. Hence Zy — 0 as N — « over the set Uil A; for every M
except for a set of measure zero, and hence we can conclude by (3.17a) that
P{Zy—0as N — »} = 1. Thus the lemma is proved.

Unfortunately, Q¥ is not an observable random variable. In the definition of

Q% in (3.8), the part that is not observable is

L= Jg"l{m/kn — V(G — 1)/kn)}

We show now that L} converges with probability one to a bona fide random
variable D’, which is the sum of the squares of the “jumps”, i.e.,Ly — D* =
fo (Y (dt))*. From a practical standpoint D* can be considered as “observable’
while L} is observable only if o* = 0. Thus we prove

(3.19) Lemma: Ly — D? as N — « and D*1s finite, with probability one.
Proor: Let us define
(3.20) M, = k;t
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Then from (3.6) and (3.20) we obtain
(3.21) D Mi< o and X EPIM: < w.

Then for every positive integer n we define two independent differential proc-
esses, U,(t) and V,(¢), for which the logarithms of their characteristic functions

are

—M, +0 . 2
log fr.w(u) = t{f + f (e —1) 1+qx dG(x) },

— +M, X

and

. M iuz UL 144
log fu,w(u) = duty, + ¢ £z (™ — 1 — [T = dG(x),
+ x’
where

([0 [ tao
Yo = L + . ;:d (x)}.
Clearly one can (equivalently) write Y (t) = U,(t) + V.(¢) for every n, and
Va(t) has sample functions which are step functions, the jumps of which in
absolute value are not less than M, . Now let

kN

2 N UG/k) = Un((G = /R,

J=

R,

kn

(8.22)  Su = 2 {Ua(/ka) = Un((G = 1)/k)HVa(i/kn) — V(G = 1)/ka)}

=1

<.

kN

Tu= 2 {Valj/kn) = Va(G = 1)/kn)}’.

=1

<.

Then
(3.23) L) =R, + 28, + T..
For € > 0, we define

JG(x) if =< —e
G(z) =4G(—e) If |x]| <€
G(x) — G(e) + G(—¢) if 22 e

The proof of the lemma will be accomplished by proving that the following three
statements are true with probability one:

1) for sufficiently large values of n, T, is the sum of the squares of the jumps
during [0, 1] which are in absolute value =M, .

ii) R, —>0asn— «,and

1) lim, 7, is finite.
Once we prove i), ii), and iii), the lemma will follow easily. For by i) and (3.20),
we have that T, — D* = [} (Y(dt))* as n — « with probability one. By the
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Cauchy inequality, S5 < R,T., and thus because of ii) and iii), we have that
S, — 0 as n — oo with probability one. Hence the lemma would easily follow.
We first prove (ii). Let g(u) denote the characteristic function of

Uin = Un(§/kn) — Un(j — 1)/kn).
Then

08 0(0) = 60k {3+ Saugio dg<x>}

The first four semi-invariants of U, are

= {‘Y + f[z[zu,.x dG(z) + f—u,.xdG(x)} ’
xe = —ka' F2%, (142 dG(2)
ws = — ik F¥5 2(1 + %) dG(z), and

= kn' FEp (1 4+ o) dQ(z).
Since Var (UZ) = x4 + 2x3 + daxs + 4xne , We obtain
Var R, = £%,2°(1 + %) dG(z) + (1/k,)B.,

where the sequence of B,’s is bounded by a finite number, say B. Thus
(324) D VarR, < {G(M,) — G(—M)}(Z M2+ > ML) +BY ki' < =

because of (3.21). Consequently (3.24) implies that
PR, — &R,—0asn— =} =
But
ER, = 5, (1 + 2°) dG(2) + k' {v* + 2y Siz12u, 7 dG()
+ [Sizizm, 270 dG(2)] + 2y £,z dG(z)
+ 2 Sizizm,  dG(x) £ 1 dG(2) + [F2% x dG(x)])).

By (3.21), 8R, — 0 asn — .

Hence P{R, — 0 as n — »} = 1. Thus ii) is proved. We now prove i). Let A,
denote the event that at least 2 jumps of size (in absolute value) = M, oceur in
at least one of the k, subintervals of length k;'. Then

P(4,) = 1 — {P[X, £ 1}}*,

where X, denotes the number of jumps of size (in absolute value) = M, during
a specific time interval of length k,'. Now it is known (e.g., Doob [1], page 423)
that X, has a Poisson distribution with parameter

A = k;lf 1 + -’1: dGuﬂ(I)
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We want to prove that Y, PA, < «. We first note that

11+ M,
"_Ic CME

where K = G(+®) — G(— »); for simplicity, let ¥ = 1. Now D_, P(4,) =
D1 — {e™(1 4+ M\)}*) is a convergent series if and only if the infinite
product My = J[3-i{e™(1 + \;)}*" is convergent (i.e., does not diverge to
zero). Note that each term in the product does not exceed 1. Easily, II, converges
if and only if P = ) ,.log {¢e7"(1 + \,)}*" is absolutely convergent. But
P = DY au{—kM + k. log (1 + \.)}. But this is equal to

2
Z{knxn — kn (x,. - 0;)} <3Y kAl

320 kML 4 2M + ML) < o

(3.24a) 0=\ * K,

IIA

by (3.21). Thus 2., P(4,) < . Hence by the Borel-Cantelli lemma, the
probability that infinitely many of the 4,’s occur is zero. Thus i) is proved. In
conclusion, we prove iii). To do this, we simply note that, for every n, V,.(t) has
only a finite number of jumps with probability one. (The number of these jumps
follows a Poisson distribution with parameter \,). But also, U.(t) is a differen-
tial process with finite variance and consequently the expectation of the sum of
the squares of the jumps is finite. This proves iii). Thus the lemma is proved.

Having obtained lemmas (3.9) and (3.19), we obtain the following theorem
without addltlonal proof

THEOREM: Q% = DM {X(j/ky) — X((G — 1)/kx)}? — D* converges with
probability one to cas N — .

Let N,(S) denote the number of jumps of the sample function during [0, ¢) of
size in S. Then set

(3.25) J(x) = SZ dN(b):

1 + 1+ b
Now consider
(3.26) Jo(z) — J(y) — £ dG(b) = Hy(z, y)
If 0 2 (y, =], N(y, «] is finite with probability one and
EN(y, ) = [3+[(1 + ")/ dG(D).
Then ([1], p. 437), H(z, y) is a martingale in both x and —y. Since
E(|H(z,y) |) £ F~dG(b),

it follows that the definition of H, can be extended to 0 ¢ (y, ] and for y con-
verging to — . Thus J,(z) is well-defined and an unbiased estimate of
FLo dG(b) for all x. Hence we obtain the results in Section 1.
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4. Comparison of the two estimates of G. The two estimates obtained for G
are not necessarily equal since the first estimate obtained can be biased, while
the second estimate obtained is unbiased over all intervals which do not contain
zero. It does happen that at an intermediate limiting case the two estimates are
equal with probability one at all continuity points of the second estimates, and
this section is devoted to thie proof of this fact. In particular, we prove that

(4.1) p lim G¥..(u) = lim G, x(u) forall u e C(Gny)
This can be expressed as follows
u xt .
[wmle(x) if <0

(42) p, lim Gl (u) =

1 +o0
[ + [ @x@) - [ o anita)

if >0

for every u & C({,.1). We shall prove the result in the form expressed in (4.2).

Let Y.(t) denote the process formed by the jumps exceeding e in absolute
value, Y, the normal component and Y*(¢) the remaining process with the
trend term included. As X, = X(k/n) — X((k — 1)/n), we similarly define
Ymk y Y;k y and Yonk . NOW

43) n(| You | 2 o) 5 L g/
a L
and hence approaches 0. Also
. Var Y*(1)
(4-4) nP(I Yo I ) (_CY—:W )

8 = E(| Ya(1) |). Thus if «, approaches 0 sufficiently slowly as e, approaches 0,
these both become small and hence

(4.5) P (for some k, | Xat — Yenr | = 20n) — 0.

Also if ¢, approaches 0 sufficiently slowly, we have already seen that the proba-
bility that there are at least two jumps of size larger than e, in any interval of
length 1/n approaches 0. Now let # < 0 not be the size of a jump. Then for n
sufficiently large, there is no jump whose size lies in (¥ — 2a, , ¥ + 2a,). Thus
with large probability,

(4.6) Gl.(u) = = =2

2
14 X 1+ xz,’
where the sum is over those k’s for which there is a jump of value less than
win [(k — 1)/n, k/n], and there is a one-to-one correspondence between such

jumps and intervals. Let v.; be the size of the jump corresponding to X , ie.,
Uk = Xnt — Youe — Yeur . Observing that



656 HERMAN RUBIN AND HOWARD G. TUCKER
@ [z — y|
itz 1+#4 2
with large probability G1.(u) differs from [“s (°/(1 -+ b%)) dN1(b) by less
than a,N(— «, ) and hence the first part of (4.2) is proved. Similarly, the
second part of (4.2) holds except possibility for an additive constant. To evaluate
this constant we consider G, (u) — Gi.(—u) where both » and —u are con-
tinuity points of N. Then with large probability,

IA

2
l-I-X

where the sum is over those k’s for which there is no jump of absolute value
exceeding « in [(k — 1)/n, k/n].
Let Z; denote the complementary sum. Now

(4.7) Gla(u) — Gla(—u) = Zp 2

(4.8) T + -2 Xuk S Gia(u) — Gha(—w) £ 2, X0,
But

2X— [ 0 dNO)| S don [u + f |b|dN(b)]
1b]>u
with large probability for n sufficiently large. Thus

T-I{—u’ (zxf.,, - fl . v dN(b)) — 8 = Gia(u) — Gra(—u)

< 3X%, — f B dN(b) + 5.

1B >u

with large probability. However, =X4; approaches [ clp/(dX (t))* Hence
1 00
(49) lim p lim (61u(w) — 61u(—w) = [ (@X())" = [ & aNi(a),
U-> n->00 ° 0 )

which completes the proof of (4.2).

b. Estimating the trend term, vy. As remarked earlier, the probability law of
the differential process X is completely determined by a constant ¥ and a bounded
non-decreasing function G as given in (1.1). Two estimates have already been
obtained for G; it now remains to find an estimate for . In this section we shall
derive an unbiased estimate 4 of v based upon complete observation of the
process for ¢ ¢ [0, 1]. Indeed we shall prove that

8

+o0
= X(1) = X(0) = [ 5 dNi(a)
is an unbiased estimate of v. It is trivial to prove that 4 is an unbiased estimate
of ¥ when X is a pure Gaussian process. Hence we shall assume that X is not
purely Gaussian in the development that follows.
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We can effectively represent X (¢) as a sum of three independent differential
processes,

(5.1) X(t)=U@) + V@) + W),
where
In fow(u) = =75,

TUT

(52) I fro(w) = inut+t [ (e"“’ —1- m)l 1"” d6(z),

. iuz UL 1 + 2
In fwy(u) = tvout + ¢  oiax (e e 1 - 1_47?) dG(x),

where

7= v £%dG(z)/ £ dG(x)
ve = v Siz12x dG(2)/ S22 dG(x),

and K > 0 is an arbitrarily selected constant such that both K and —K are
points of continuity of G. We first note that

" dG(x)) — B(V(1))

(5.3)

K

—i(;iuln frar(u) = (‘Yl + [K

exists and is finite. The results of section 3 and the Lebesgue convergence theo-
rem imply that

K 3
z
(5.4) = V() = VO - [ F i)
is an unbiased estimate of v; . Further, we may write

(5.5) In fwey(w) = du (72 . /| 1dG(x)>+ f. =D 1 j’” d6().

z|2K T

Thus W (1) can be expressed as
(56) W == [ Lde@ + [ zdw),

and consequently W(1) — [|;;2& # dN1(x) is a constant. But again by the results
of section 3, the random variable [.>x (z/(1 + 2')) dN1(z) is an unbiased es-
timate of [|z>x (1/z) dG(x). Hence

3

(57) fo= W) = WO = [ TN

is an unbiased estimate of vy, . Since y = v1 + vz, then ¥ = X(1) — X(0) —
[*2 (2®/(1 + 2%)) dN1(z) is an unbiased estimate of 7.

Now if we let
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© 3
90 = o {x - x0) - [* 1 ava),

not only is 4(¢) an unbiased estimate of v but is consistent in the sense that
Pllimy(t) = 9} = 1.
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