INFINITE CODES FOR MEMORYLESS CHANNELS

By David Blackwell¹

University of California, Berkeley

1. Introduction and summary. For a memoryless channel with finite input alphabet A, finite output alphabet B, and probability law $p(b \mid a)$, the capacity C is defined as the maximum over all probability distributions q on A of

$$\sum_{a\,b} q(a)p(b\mid a)\mathrm{log_2}(p(b\mid a)/\sum_a q(a)p(b\mid a)).$$

Shannon [1] has obtained the following result.

Exponential error bound. For any $C_0 < C$ there is a number $\rho < 1$ such that, for every positive integer N, there is a set $S \subset A^{(N)}$ with at least 2^{c_0N} elements and a function g from $B^{(N)}$ to S, such that, for every $s = (a_1, \dots, a_N) \in S$,

$$\sum p(b_1 \mid a_1) \cdots p(b_N \mid a_N) < 2\rho^N,$$

where the sum extends over all sequences b_1, \dots, b_N for which $g(b_1, \dots, b_N) \neq s$. Thus if the sender selects any $s \in S$ and places its letters a_1, \dots, a_N successively into the channel, and the receiver, on observing the resulting output sequence b_1, \dots, b_N , decides that the input was $g(b_1, \dots, b_N)$, the probability that he makes an error is less than $2\rho^N$, no matter what $s \in S$ was chosen. This result may be described as follows: it is possible to transmit at any rate $C_0 < C$, with arbitrarily small probability of error, by using block codes of sufficient length.

We wish to draw a slightly stronger conclusion, as follows. We imagine an infinite sequence $x=(x_1\,,\,x_2\,,\cdots)$ of 0's and 1's, which we are required to transmit across the channel. At time N, the sender will have observed the first $[C_0N]$ coordinates of x, and will place the Nth input symbol in the channel. The receiver, having at this point observed the first N channel outputs, will estimate the first M(N) coordinates of x. If $M(N)/C_0N\to 1$ as $N\to\infty$ and if, for every x, all but a finite number of his estimates are correct (i.e., agree with x in every coordinate estimated) with probability 1, we shall say that the channel is being used at rate C_0 . Our result is that, in this sense, a (memoryless) channel can be used at any rate $C_0 < C$.

The result stated below is exactly this result, for the special case $C_0 = 1$. The general case involves no new ideas, but only more notation, and we shall restrict attention to the case $C_0 = 1$. The function f_n of a code, as defined below, specifies the *n*th channel input symbol, as a function of the first *n* coordinates of *x*. The number M(n) is the number of *x* coordinates to be estimated by the

1242

Received March 27, 1959; revised June 1, 1959.

¹ This paper was prepared with the partial support of the Office of Naval Research (Nonr-222-53). This paper in whole or in part may be reproduced for any purpose of the United States Government.

receiver after observing the first n output symbols, and the function g_n specifies the estimate.

We now state the result precisely.

For any finite set S, we denote by $S^{(N)}$ the set of all sequences (s_1, \dots, s_N) , where $s_n \in S$ for $n = 1, 2, \dots, N$. For a memoryless channel with finite input alphabet A, finite output alphabet B, an infinite code (for transmitting at rate 1) is defined as consisting of (a) a sequence $\{f_n\}$ of functions, where f_n maps $I^{(n)}$ into A, and I consists of the two elements 0 and 1, (b) a nondecreasing sequence $\{M(n)\}$ of positive integers such that $M(n)/n \to 1$ as $n \to \infty$, and (c) a sequence $\{g_n\}$ of functions, where $\{g_n\}$ maps $B^{(n)}$ into $I^{(M(n))}$.

An infinite sequence $x = (x_1, x_2, \cdots)$ of 0's and 1's, together with an infinite code, defines a sequence of independent output variables y_1, y_2, \cdots , with

$$\Pr\{y_n = b\} = p(b | f_n(x_1, \dots, x_n)),$$

where $p(b \mid a)$ is the probability that the output symbol of the channel is b, given that the corresponding input symbol is a, and defines a sequence of estimated messages t_1 , t_2 ,..., where $t_n = g_n(y_1, \dots, y_n)$. We shall say that the code is effective at x if, with probability 1,

$$t_n = (x_1, \dots, x_{M(n)})$$

for all sufficiently large n, and shall say that the code is effective if it is effective for every x. The result of this note is the

Theorem: For any memoryless channel with capacity C > 1, there is an effective code.

2. Proof of the theorem. Choose a number D with 1 < D < C, and let ρ be the number <1 which Shannon's exponential error bound associates with transmitting at rate D. Thus we can, for any positive integer R, transmit any [DR] x-coordinates with R uses of the channel, with error probability at most $2\rho^R$. We shall divide the x-sequence into successive blocks, of length R(1), R(2), \cdots , where $\{R(k)\}$ is an appropriately chosen increasing sequence of positive integers. We may use the channel, during the time the k+1st block of x-symbols is observed, to transmit up to [DR(k+1)] x-coordinates, among those received to date, with error probability at most $2\rho^{R(k+1)}$. We choose to transmit the kth block, containing R(k) x-coordinates, and to repeat the first Q(k) coordinates of x, where $\{Q(k)\}$ is a nondecreasing sequence of nonnegative integers such that

$$Q(k) + R(k) \le [DR(k+1)],$$

 $Q(k) \le R(1) + \dots + R(k-1).$

Since $\{R(k)\}$ is strictly increasing, $\sum_{k} \rho^{R(k)}$ converges, so that, with probability 1, only a finite number of errors will be committed. That is to say, the receiver, after observing the k+1st block of output symbols, estimates the first Q(k) x-symbols, say as u(k), and the kth block of x-symbols, say as v(k), and we have, with probability 1,

$$u(k) = c(k), \quad v(k) = d(k)$$

for all sufficiently large k, where c(k) denotes the first Q(k) coordinates of x and d(k) denotes the kth block of x-coordinates. After observing the k+1st block of output symbols and making the estimates u(k), v(k), the receiver will have estimated each of the first $R(1) + \cdots + R(k) = T(k)$ coordinates of x at least once. He 1.3w forms an estimate w(k) of the first T(k) coordinates, using the latest estimate made on each coordinate. If

$$Q(k) = R(1) + \cdots + R(i-1) + h, 0 \le h < R(i),$$

the estimate w(k) is:

$$w(k) = (u(k), v^*(i), v(i+1), \dots, v(k)),$$

where $v^*(i)$ consists of the last R(i) - h coordinates of v(i). If $Q(k) \to \infty$ with k, so does i. Since, with probability 1, all u(i), v(i) for i sufficiently large are correct, we conclude that, with probability 1,

$$w(k) = (x_1, \cdots, x_{T(k)})$$

for all sufficiently large k. We have thus defined a sequence $\{w(k)\}$ of estimates, where w(k) estimates the first T(k) coordinates of x after T(k+1) outputs have been received, such that, with probability 1, all but a finite number of w(k) are correct.

For n < T(2), we define g_n arbitrarily; for $T(k+1) \le n < T(k+2)$, we define g_n as w(k). Thus, for $T(k+1) \le n < T(k+2)$, we have M(n) = T(k), and $M(n)/n \to 1$ as $n \to \infty$ if $T(k)/T(k+2) \to 1$ as $k \to \infty$.

In summary, any two sequences $\{R(k)\}$, $\{Q(k)\}$ can be used to define an effective code, if

- (1) $\{R(k)\}\$ is a strictly increasing sequence of positive integers.
- (2) $\{Q(k)\}\$ is a nondecreasing sequence of nonnegative integers.
- (3) $Q(k) + R(k) \leq [DR(k+1)].$
- (4) $Q(k) \leq R(1) + \cdots + R(k-1)$.
- (5) $Q(k) \to \infty \text{ as } k \to \infty$.
- (6) $(R(1) + \cdots + R(k))/(R(1) + \cdots + R(k+2)) \to 1 \text{ as } k \to \infty.$

The sequences R(k) = k, $Q(k) = [\min(1, D - 1)(k - 1)]$, for instance, satisfy $(1) \cdots (6)$.

This completes the proof.

It would be desirable to extend the theorem to finite-state channels. The method of this paper relies on Shannon's exponential error bounds, and such bounds are not yet known for general finite-state channels.

REFERENCE

 C. E. SHANNON, "Certain results in coding theory for noisy channels," Information and Control, Vol. 1 (1956), pp. 6-25.