INFINITE CODES FOR MEMORYLESS CHANNELS

By Davip BLACKWELL!

Unaversity of California, Berkeley

1. Introduction and summary. For a memoryless channel with finite input
alphabet A, finite output alphabet B, and probability law p(b | a), the capacity
C is defined as the maximum over all probability distributions ¢ on A of

3 a(@)p(b | )log(p(b | )/ T q(a)p(b | ).

Shannon [1] has obtained the following result.

Ezponential error bound. For any Co < C there s a number p < 1 such that,
for every positive integer N, there is a set 8 € A™ with at least 2°°7 elements and
a function g from B™ to S, such that, for every s = (az, -+, ay) € S,

2. p(bi| @) p(by | an) < 207,

where the sum extends over all sequences by ,- - -, by for which g(by ,- - -, by) # s.

Thus if the sender selects any s ¢ S and places its letters a; ,- - -, ax succes-
sively into the channel, and the receiver, on observing the resulting output se-
quence by ,---, by, decides that the input was ¢g(b1,---, by), the probability
that he makes an error is less than 2p", no matter what s £ S was chosen. This
result may be described as follows: it is possible to transmit at any rate Cy < C,
with arbitrarily small probability of error, by using block codes of sufficient
length.

We wish to draw a slightly stronger conclusion, as follows. We imagine an
infinite sequence z = (x1, Z2,---) of 0’s and 1’s, which we are required to
transmit across the channel. At time N, the sender will have observed the first
[CoN] coordinates of z, and will place the Nth input symbol in the channel.
The receiver, having at this point observed the first N channel outputs, will
estimate the first M (N) coordinates of z. If M(N)/CoN — 1 as N — « and if,
for every z, all but a finite number of his estimates are correct (i.e., agree with
z in every coordinate estimated) with probability 1, we shall say that the chan-
nel is being used at rate Co. Our result is that, in this sense, a (memoryless)
channel can be used at any rate Cy, < C.

The result stated below is exactly this result, for the special case Co = 1.
The general case involves no new ideas, but only more notation, and we shall
restrict attention to the case Cy = 1. The function f, of a code, as defined below,
specifies the nth channel input symbol, as a function of the first » coordinates
of . The number M (n) is the number of = coordinates to be estimated by the
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receiver after observing the first n output symbols, and the function g, specifies
the estimate.

We now state the result precisely.

For any finite set S, we denote by S the set of all sequences (81, -, Sy),
where s, ¢ S forn = 1, 2,---, N. For a memoryless channel with finite input
alphabet A, finite output alphabet B, an infinite code (for transmitting at rate
1) is defined as consisting of (a) a sequence {f.} of functions, where f, maps
I into A, and I consists of the two elements 0 and 1, (b) a nondecreasing
sequence {M(n)} of positive integers such that M(n)/n — 1 as n — o, and
‘(c) a sequence {g.} of functions, where {g,} maps B™ into I,

An infinite sequence z = (z1, 22, - -) of 0’s and 1’s, together with an infinite
code, defines a sequence of independent output variables v1, ¥, - -, with

Pr{y,. = b} = P(blfn(xl PR xn)),

where p(b | @) is the probability that the output symbol of the channel is b,
given that the corresponding input symbol is a, and defines a sequence of esti-

mated messages &, &2, -, where ¢t» = ¢a(¥1, -+, ¥s). We shall say that the
code is effective at z if, with probability 1,
I = (xl y %y xM(n))

for all sufficiently large n, and shall say that the code is effective if it is effective
for every z. The result of this note is the

TaEOREM: For any memoryless channel with capacity C > 1, there is an effective
code.

2. Proof of the theorem. Choose a number D with 1 < D < C, and let p be
the number <1 which Shannon’s exponential error bound associates with trans-
mitting at rate D. Thus we can, for any positive integer R, transmit any [DR]
x-coordinates with R uses of the channel, with error probability at most 2p".
We shall divide the x-sequence into successive blocks, of length B(1), R(2),- - -,
where {R(k)} is an appropriately chosen increasing sequence of positive integers.
We may use the channel, during the time the k + 1st block of 2-symbols is
observed, to transmit up to [DR(k + 1)] z-coordinates, among those received
to date, with error probability at most 2p**™. We choose to transmit the kth
block, containing R(k) z-coordinates, and to repeat the first Q(k) coordinates
of z, where {Q(k)} is a nondecreasing sequence of nonnegative integers such

that
Q(k) + R(k) < [DR(k + 1)],

Q(k) = R(1) + -+ + R(k — 1).
Since {R(k)} is strictly increasing, D . p"® converges, so that, with probability
1, only a finite number of errors will be committed. That is to say, the receiver,
after observing the £ 4 1st block of output symbols, estimates the first Q(k)
z-symbols, say as u(k), and the kth block of z-symbols, say as v(k), and we
have, with probability 1,

u(k) = c(k), v(k) = d(k)
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for all sufficiently large k, where c¢(k) denotes the first @(k) coordinates of  and
d(k) denotes the kth block of z-coordinates. After observing the k + 1st block
of output symbols and making the estimates u(k), v(k), the receiver will have
estimated each of the first R(1) + .-+ + R(k) = T(k) coordinates of = at
least once. He 1.ow forms an estimate w(k) of the first T'(k) coordinates, using
the latest estimate made on each coordinate. If

Q(k) =R(1) + -+ + R(t — 1) + h, 0 = b < R(3),
the estimate w(k) is:
’W(k) = (u(k)7 v*(i)) U(’L + 1): Tty U(k)),

where v*(¢) consists of the last R(¢) — h coordinates of v(%). If Q(k) — o«
with k, so does 4. Since, with probability 1, all u(¢), v(¢) for ¢ sufficiently large
are correct, we conclude that, with probability 1,

w(k) = (21, -+, Trwy)

for all sufficiently large k. We have thus defined a sequence {w(k)} of estimates,
where w(k) estimates the first T'(k) coordinates of z after T'(k + 1) outputs
have been received, such that, with probability 1, all but a finite number of
w(k) are correct.

For n < T(2), we define g, arbitrarily; for T(k + 1) = n < T(k + 2), we
define g, as w(k). Thus, for T(k + 1) £ n < T(k + 2), we have M(n) =
T(k), and M(n)/n — 1 asn — o if T(k)/T(k + 2) > 1lask — .

In summary, any two sequ-ces {R(k)}, {Q(k)} can be used to define an ef-
fective code, if

(1) {R(k)} is a strictly increasing sequence of positive integers.

(2) {Q(k)} is a nondecreasing sequence of nonnegative integers.

(3) Q(k) + R(k) = [DR(k + 1)].

(4) Q(k) = R(1) + --- + R(k — 1).

(5) Q(k) — © as k — «.

(6) (R(1) + -+ + R(k))/(R(1) + -+ + R(k+ 2)) > lask — .

The sequences R(k) = k, Q(k) = [min(1, D — 1)(k — 1)], for instance,
satisfy (1) --- (6).

This completes the proof.

It would be desirable to extend the theorem to finite-state channels. The method
of this paper relies on Shannon’s exponential error bounds, and such bounds
are not yet known for general finite-state channels.
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