SECOND ORDER ROTATABLE DESIGNS IN THREE DIMENSIONS!

By R. C. Bose AND NormaN R. Draprr’
Unaversity of North Carolina

0. Summary. The technique of fitting a response surface is one widely used
(especially in the chemical industry) to aid in the statistical analysis of experi-
mental work in which the “yield” of a product depends, in some unknown fashion,
on one or more controllable variables. Before the details of such an analysis can
be carried out, -experiments must be performed at predetermined levels of the
controllable factors, i.e., an experimental design must be selected prior to ex-
perimentation. Box and Hunter [3] suggested designs of a certain type, which
they called rotatable, as being suitable for such experimentation. Very few of
these designs were then known. Since that time the work of R. L. Carter [6] has
provided many new second order rotatable designs in two factors. However, addi-
tional methods were needed which would provide both second and third order
designs in three and more factors. The present work represents an attempt to
meet, in part, this need. New construction methods for obtaining rotatable de-
signs of second order in three dimensions are here presented. By use of these
methods various infinite classes of designs are obtained, and it may be shown
that all the rotatable designs previously known can be derived as special cases
of these infinite classes. Also derived is an infinite class of second order rotatable
designs which contain only 16 points; only two particular designs contain fewer
points.

1. Introduction. A great deal of information is now available about the theory
of response surfaces and the use of rotatable designs. Such information may be
found in papers by Box [1], [2], Box and Wilson [5], Box and Hunter [3], [4] and
the Ph.D. dissertation of Carter [6]. The paper [3] by Box and Hunter provides
the necessary background for the present work, and a discussion of polynomial
approximation and of the desirability of rotatable designs will be found therein.
We shall be concerned here with second order rotatable designs in three control-
lable factors and we shall assume that the measurements of the factors have
been coded, permitting the use of Cartesian axes in three dimensional space to
describe an experimental design.

Suppose, in an experimental investigation with & factors, N (not necessarily
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1098 R. C. BOSE AND NORMAN R. DRAPER

distinct) combinations of levels are employed. Thus the group of N experiments
which arises can be described by the N points in & dimensions

(1.1) (xlu,xZu;"',xku)y u=1y21"'1N;

where, in the uth experiment, factor ¢ is at level z;, .
The set of points (1.1) is said to form a rotatable arrangement of the second
order in k factors if the following conditions are satisfied:

2T = D@ = cr = 2 Tk = NN,
u % %
z"x:u = ngu = = lel:'u = 32 xfux?u = 3)\4]\7, (Z #= .])

and all other sums of powers and products up to and including order four are
zero, where all summations are over v = 1 tow = N. The set (1.1) is said to form
a rotatable design of second order if the conditions (1.2) are satisfied and a certain
matrix used in a subsequent least squares estimation is non-singular. Box and
Hunter [3] show that the necessary and sufficient condition for this to be so is

(1.3) /N > K/ (k + 2),

a condition which may always be satisfied merely by theaddition of points at the
center (0, 0, 0) of the design. Equality in (1.3) is attained when all the design
points lie on a k-dimensional sphere, and it is impossible for the inequality in (1.3)
to be reversed under any circumstances.

When presenting a rotatable design, it is customary to ‘“‘scale” it. By this it is
meant that the scale of the coded controllable variables is chosen in such a way
that N\; = 1. The reason for this is as follows. Given a second order design which
satisfies the conditions (1.2) with a specified value of \y/A3 , there are an infinite
number of values possible for A, > 0. Since these designs can be derived one from
the other merely by change of scale, we do not regard them as different. Thus
the scaling condition N\, = 1 fixes a particular design and enables better compari-
son between two designs with different values of As/A3 .

(1.2)

2. A transformation group in three dimensions and its generated point sets.
We shall define certain transformations applied to points in three dimensions.
Let W(, y, 2) = (y, 2, ). Then W(z, y, 2) = (2, z, y) and W'(z, y, 2) =
(z, y, 2). Thus W, W* and W* = I form a cyclical group of order 3. Further let
Rl(x) Y, Z) = (—.’IJ, Y, z), R?-(x: Y, 2) = (x) -Y z), R3(x> Y, z) = <x: Y, —z).

The four transformations represented by W, R,, and R. and R; generate a

group @ of transformations of order 24 with elements
e W?, W'Ry, W'Ry, W'Rs, WR:Rs,
' WRsR, , W'RiR, , WR\R:Rs G =123).

It is easily seen that all the 24 elements in (2.1) are distinct. While R, , E» and
R; commute, W’ and R;donot (j = 1,2;7 = 1, 2, 3).
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A group table may be constructed, employing the identities
(2.2) W =Rl =R,=R;=1
and identities of the type WR; = R,W, to verify the statements above. Because
of the size of the group the table will not be reproduced here.

Given a general point (z, y, 2) in three dimensions, we may apply to it all the
transformations of the group G. In this way we obtain a set of 24 points with
coordinates

(2.3) (*=, £y, £2), (%y, £z, £2), (%2, £z, £y).
We shall denote this set by
(24) G(z, y, 2).

Note that if (I, m, n) denotes any other point of the set, G(z, y,2) = G(Il, m,n),
i.e., any point of the set, when operated on by @, will give rise to the same set.
The set G(z, y, 2) satisfies all the moment conditions (1.2) except

N N
(2.5) Do th =32 xhan  (E#[), (45j=1,23).
u=1 u=1,
We now define a function K(z, y, z) of the point (z, y, z) as
(2.6) K(z,y,2) = 3a' + o + &' — 3% — 325" — 32%7).

This funetion is constant for all of the 24 points of G(x, y, z). Furthermore, if
it has the value zero, then G(z, y, 2) is a rotatable arrangement since the out-
standing condition (2.5) becomes satisfied. Let

2.7 o = s, Y =t
Then, if K(z, y, ) is zero and z = 0,
(2.8) £ —3t(s+1)+ (8 =3s+1) =0.

This is the equation of a hyperbola. If the point (s, t) lies on the hyperbola
and also in the first quadrant, G(z, y, 2) is a rotatable arrangement. Fig. 1
shows points (s, t) for which this is true. There is complete symmetry about the
line s = ¢. The value of s at the points P; and P, , where the hyperbola intersects
the line t = 0, is (3 — 4/5)/2 and (3 4+ /5)/2, respectively. If we solve for ¢
in terms of s, we obtain

(2.9) t=338(s+ 1) &+ 5(s2+ 65 + 1)].

This yields two non-negative solutions if s — 3s + 1 > 0, which implies s =
(34 4/5)/20r0 £ s £ (3 — 4/5)/2. Otherwise there is only one positive
solution for each value of s = 0. The reason for this is clear from Fig. 1.

The point set G(z, y, 2) is clearly spherical, and thus equality will be attained
in the non-singularity condition (1.3) unless additional points are added at the
center to form the design. If ny center points are added, N = 24 + ny, and \oN =
8+ + ) =8(s+t+ 1)
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Thus if we apply the scaling condition A\, = 1,
(2.10) 2= N/8(s+t+ 1),

and we have an infinite class of second order designs which depends on one pa-
rameter s. For if s = 0 is specified,

t=33(s+ 1) £ 5(s+ 6s + 1)], (t = 0 only),
z=[N/8(s +t+ 1)}, y = t, T = s'z,
and all design points are fixed. Each non-negative s gives rise to one or two de-
signs according as (2.9) yields one or two non-negative values of ¢. For this
class, N/Ns = 8(ay’ + %2 + %) /N = 8(st + s + t)2'/N. Consider the
special case s = t = /10 — 3. We then have z = y = (N — 82°)/16, z =
[(5 + 2 +/10)N/120})". This is the design referred to as the truncated cube by
Gardiner, Grandage and Hader ([9], Sec. 6, Par. 4).

Let us now suppose that K(z, y, 2) # 0 for the points of the set G(z, y, z). We
shall define Y, K(z, y, z) over a point set S to be the excess of that set and write
it Ex(S8). Thus

(2.12) Ex[G(z, y, 2)] = 8(a* + ' + &8 — 3% — 37" — 32%5).

This can take both positive and negative values according to the choice of x, y
and z. Clearly, Z]« Ex(S;) = EX(Z] S;), where the notation )_; §; means
that points which belong to more than one set S; contribute to the sum each
time they occur. The notation thus does not denote the ‘“union’ of sets in the

(2.11)
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usual sense. Furthermore, if a number of sets Sy, Sy, -+, S, (say) satisfy,
either separately or together, the conditions for a second order rotatable ar-
rangement except for the condition (2.5), then the condition

(2.13) Ex(S;+ -+ + Sn) = Ex(8) + -+ + Ex(8») =0
is a necessary and sufficient condition for the points of the whole set S; + S +

... 4 8,. to form a rotatable arrangement of second order. We shall make use

of this important fact in Section 3.

For certain special choices of (z, y, 2) in three dimensions, the 24 points of
G(z, y, z) will coincide in pairs or in triplets or in quadruplets. For example,
G(p, g, 0) consists of the twelve points

(2.14) (%£p, =4, 0), (0, £p, +q), (4,0, £p),

each occurring twice. We may denote the 12 point set by 3G(p, ¢, 0). This set
has excess

(2.15) Ex[3G(p, ¢, 0)] = 4(p" + ¢' — 3p°¢),
a quantity which may be made positive or negative according to the values of
p and gq.

The set G (p, ¢, 0) will itself form a rotatable arrangement if p' — 3p°¢ +
¢ =0orp’/qd = (3 == +/5)/2. Thus p/q = 6 or 6" where 6 = (V5 + 1)/2,
6" = (1/5 — 1)/2. Thus the set reduces to the 12 points (£, £1, 0), (=1,
0, £6), (0, =6, 1), which as Coxeter [8] shows constitute the vertices of an
icosahedron. Adding center points we get the icosahedron design given by
Box and Hunter [3].

3. The formation of rotatable arrangements and rotatable designs by combina-
tion of several generated points sets. Consider the set G(a, @, a); this consists
of the eight points
(3.1) (*+a, =£a, =+a)
each occurring three times. We may therefore denote this set of 8 points by
1G(a, a, a).

(3.2) Ex[3G(q, a, a)] = —16a’,
which is always negative, hence this set alone cannot form a rotatable arrange-

ment.
Consider the set G(¢, 0, 0); this consists of the six points

(3:3) (£¢,0,0), (0, ¢ 0), (0,0, %c)
each occurring four times. The six points may be denoted by $G(c, 0, 0).
(3.4) Ex[2G(c, 0, 0)] = 2¢",

which is always positive, and so this set alone cannot form a rotatable arrange-
ment.
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For consistency of notation we }nay write the point (0,0,0) as (1/24)G(0,0,0).
Hence n, center points may be denoted by

No
(3.5) 51 G(0,0,0).
Consider the combination of sets 1G(a, a, a) and $G(c, 0, 0). Then
(3.6) Ex[2G(a, a, a) + 1G(c, 0,0)] = —16a* + 2¢.

This is zero if & = 24/2¢’, in which case the 14 points form a rotatable arrange-
ment. The actual des1gn pomts are obtained by applying the scaling condition
A2 = 1. This gives 8a° + 2¢* = = N = 14 + no, where no is the number of center
points added. Thus 4(2 + \/ 2)a N, and both @ and ¢ are determined when
N is given. We have obtained the well-known cube plus octahedron design first
presented by Box and Hunter [3].

"The method may now be extended. We have seen that the combination of
generated sets leads to a single design when-ghly.two parameters are present,
as in the example just given, since the two conditions Ex(set) = 0, A = 1, com-
pletely détermine the design. The first condition alone completely determines the
ratio of,the two parameters and is sufficient to determine the design apart from
scale. We now examine a combination of sets which contains three parameters.
We shall see that we obtain a single infinity of designs Wbleh depend on 3 single
parameter ratio. Consider the 20 points

'EG(CI ) 07 0)’ %G(@ ) O’ O)a %G(aa a, a)-

The excess of this whole set is 2¢i + 2¢; — 16a*. Note that since Ex[3G(a, a; a)] =
—16a’ is negative, we must combine with it sets at least one of Whlch has pos1-
tlve excess to compensate Thus the set has zero excess if ¢; + ¢z = 8a’. Set
¢ = zd’, ¢ = ya’. Then z* + ' = 8. Any positive values of z and y which
satisfy thls equation will give rise to a rotatable arrangement of second order.
Thus if (z, y) is a point of the circle z* + y* = 8 and also li"s in the first quad-
rant, then we shall have a rotatable arrangement. No additional center points
are required to make the arrangement into a design since three radii of the parts
of the arrangement: z'”%a, y"’a and /3a are not all equal. Now N\, = 2¢; +
25 4+ 84" =2(x +y + 4)a2. Applying the scaling condition \; = 1, we obtain

y =8 — z? a=[N/2(x +y + )", a = 2%, e = y'a,

and the design becomes completely determined. For this class, \/N; = 8d*/N.
We now derive, as special cases of the infinite class just obtained, two designs
which were previously known.

(1) 2 = 0. Theny = 24/2, c2 =_c*a, ¢1 = 0. We have obtained the cube plus
octahedron design, with 6 center points which are vertices of the degenerate
octahedron.

(2) # = y = 2. Then ¢; = ¢ = a+/2. This gives rise to the design described
by Gardiner, Grandage and Hader, which consists of the vertices of a cube
plus those of a_doubled octahedron ([9], Sec. 6, Par. 6, first stage).
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The first summary table which occurs in Section 5 contains several other in-
finite classes of this type.

4. Classes of designs using sets with variable excess. In the previous section
the sets we used in combination had a positive or a negative excess. Let us now
consider the set of 12 points 1G(p, ¢, 0). The excess of this set is 4(p* + ¢* —
3p’¢"), a quantity which may be made positive or negative according to the
way p and ¢ are chosen. Thus 1G(p, ¢, 0) may be combined with all of the sets
1G(a, a, a), $G(c, 0, 0) and 3G(f, f, 0) to obtain rotatable arrangements and
hence designs. For example, Ex[2G(p, ¢, 0) + 1GQ(a, a, a)] = 0if p* + ¢* =
3p°¢ + 4a’. Set p* = ad’, ¢ = yd’, and wehavea® — 3zy + 3 = 4. Any point
of this hyperbola which lies in the first quadrant will give rise to a rotatable ar-
rangement of second order. If we solve for y in terms of x, we obtain y = [3z &
A/522 + 16]/2. This yields two positive solutions if 2 > 2; otherwise only one
positive solution arises. This may easily be seen from Fig. 2. The radii of the
separate point sets are /2 + ya and v/3a and these are equal when z + y = 3.
‘Since the straight line z -+ y = 3 intersects the hyperbola in two points P and
@, equality in (1.3) occurs for two arrangements of the class. For these two ar-
rangements, the addition of center points is necessary to satisfy the non-singu-
larity condition. Applying the scaling condition Ay = 1, we obtain an infinite class
of second order rotatable designs, each design consisting of 20 points plus any
center points which may have been added. The class depends on one parameter
z. Given z = 0, ’

y=[32 %+ V622 +16]/2, a=[N/4(z+y+2)]" .p=1"a q=y"0,
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where the lower sign in y is to be taken only when = > 2. For this class
M/ = (8¢ + 4p°¢")/N = 4(2 + zy)a’/N.

This class has two well-known special cases.

(1) Whena = 0,2z = «, y = . Ignoring the degenerate set 1G(aq, @, a),
we obtain the icosahedron design discussed at the end of Section 2.

(2) If we choose one of the two points on the hyperbola for which z + y = 3,
thenz = y ' = (3 % /5)/2 = ¢, 6°, where 6 = (+/5 + 1)/2. Thus the 20
design points (other than the center points) consist of constant multiples of

(0, £67%, +£6), (&6, 0, =677, (X6, £6, 0), (%1, =1, =£1).

As Coxeter [8] shows, these are the vertices of a dodecahedron, which form a well-
known second order rotatable design, given in [3].
Several other classes of this type may be found in the summary table.

6. Summary table. Table I is a table of infinite classes of second order ro-
tatable designs in three dimensions of the type derived in Sections 3 and 4. The
table shows the generated sets used to form each class together with the design
coordinate values in terms of a single parameter.

6. A second method of generating point sets suitable for building second order
rotatable designs. Define

«a . (24
cos — Ssin — 0

cosae —sina 0 2 2
Ti=|sina cosa O], T, =] . « a ,
0 0 1 sin 5 cos 5 0
0 0 -1

where o = 2 /s. Consider the effect of applying 7 and T to points of the form
(r, 0, b), i.e., points on the plane y = 0, and to all other points obtained from re-
peated applications of T; and T, . In this way we shall obtain 2s points with
coordinates

(6.1) (r cos ta, r sin ta, b), (rcos (t + L), rsin (¢t + 3)a, — D),

wheret = 0, 1,2, ---, (s — 1). We shall denote the set of these 2s points by
T.(r,0,b). Provided s = 5, the set T.(r, 0, b) has the following sums of powers
and products:

doal = > yh =, D2 = 2sb’,
U u u
Sah =Y, y;’, = 3sr'/4, Z 2y = 2sb’,
u u u
> akyl = sr'/4, yrah = D ahah = sr'h’
U u u

and all other sums of powers and products up to and including order four are
zero. This is easily verified by using the fact that each of the two s-gons in the
set of 2s points is a second order rotatable arrangement in two dimensions [3].
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A rotation about the z axis of the complete point arrangement will not affect the
properties held by the sums of powers and products. We now recall the cyelic
group W, W? I, defined in Section 2, and apply this to T,(r, 0, b) to give set
T.(b, r,0) and Ty(0, b, r). In all we now have 6s points, which we denote by
T(r, 0, b) with coordinates

(r cos te, 7 sin ta, b), (rcos (t + e, rsin (£ + 3)a, —b),
(b, 1 cos ta, 7 sin ta), (=b,recos (t + %), rsin (¢ + 1)a),
(r sin te, b, 7 cos ta), (rsin (¢t + 3)e, —b, 7 cos (t + 3)a),

where ¢ = 2r/s (s = 5)and ¢t =0,1,2, -+, (s — 1).
The set T(r, 0, b) has sums of powers and products

;xi = ;yf‘ = Zuzf, = 2s(r2+b2),
Doxw = 2 Yu = D2

S akyh =D yhdh = Ozl = s'(r* + 8b%)/4,

s(3rt 4 4b%)/2,

and all other sums of powers and products up to and including order four are
%€ro.

The formulae for the sums of powers and products will extend to the case
s = 4, provided we fix as the set 7.(r, 0, b) the points

(£r,0,0), (0, £r,b), (£r/V2, £r/V/2, —b).

In the case s = 4, rotation of the s-gons about the z axis will affect the sums of
powers and products and thus cannot be permitted. This point must be remem-
bered whenever specific reference is made to the case s = 4. From the properties
of sums of powers and products given above, it follows that the excess of the set,
defined in the same way as before, is s(3r* — 24r°b* + 8b*)/4. Of course the ex-
cess of each single point varies in this case and it is necessary to consider the
total effect over all the points. Since its excess can be made positive or negative
according to the choice of 7 and b, it will be possible to combine the set T'(r, 0, b)
with sets of both positive and negative excess. Because of the large number of
points which would otherwise arise, we shall combine it only with 3G(a, a, a)
and 1G(c, 0, 0). The designs thus obtained will be found in the second summary
table below.

In the same way that special choices of z, y, and 2z made it possible to take
fractions of G(z, ¥, ), a special choice of b will enable us to use a smaller point
set than T'(r, 0, b). Set b = 0; then by employing only the transformation T
and W we can produce a set of 3s points with suitable moment properties. We
shall denote these 3s points by the notation To(r, 0, 0). The points will have
coordinates

(7 cos ta, 7 sin ta, 0), (r sin ta, 0, r cos ta), (0, r cos ta, r sin fa),
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wheret = 0,1,2, .-+, (s = 1) and s = 5. The sums of powers and products of
the set are

2ah =2y = D = s

u u u

2wh= 2 yu = 27 = 3sr'/4,

u 3 u
Lryh = Ly = 2w = o°/8,
u u u

and all other sums of powers and products up to and including order four are
Z€r0.

Clearly any rotation of the 3 s-gons about their axes will also give rise to the
same moments, but we shall restrict attention here to the set To(r, 0, 0). From
the sums of powers and products it follows that the excess of this set is 3sr'/8
which is a positive excess. Thus to form an infinite class of second order designs
we must combine T(r, 0, 0) with sets at least one of which has negative excess
Two examples of this will be found in Table II.

7. An extension of the method: a 16 point design class. Consider the set of 12
points

(.’E, Y, 2), (xa -Y, —2), (_xa Y, _2)7 (—xy -Y, Z)’
(71) (y’ 2, .’E), (_y, —Z, x)a (ya —Z —.’L‘), (—y, 2 '—13),
(2, x, y), ('—Z, z, —y)7 ('—Z, -z, y), (Z, -2, _y)

This set consists of all points of G(z, y, z) for which the product of the coordinates
is 2yz. It can be described as a % replicate of G(z, y, 2) and we shall write it

(7.2) G (z,y, 2).

The complementary set, where the product of the coordinates is —zyz, we shall
denote by

(7.3) Gz, y, 2).

The set (7.2) satisfies all the conditions for a second order rotatable arrangement
except two. These are

N N
u=1 u=1
and
N
(7.5) D TrultauTs, = 0.
u=1

We recall that

N N
Ex[Point set(x1y , Tou , T3u), u=1,2,--+ N] = Z The — Z x?uaﬁu,
(7.6)
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Let us define a second excess function which relates to the left member of (7.5) as

N
(7.7) Fx[Point set (T, Tou, Tau), u=1,2, -+, N] = D Truoulsu .

u=1

Then if S is a point set or a combination of points sets which satisfies all of con-
ditions (1.2) except (7.4) and (7.5), and if

(7.8) Ex(8) =0, Fz(8) =0,
then 8 is a rotatable arrangement of the second order. Now
(7.9) Ex[G* (z, y, 2)] = 4(a* + y* + 2 — 3y%* — 3227 — 3a%)

(7.10)  Fx[G*P(z,y, 2)] = £12 aye.
The set G (a, a, a) consists of the four points
(7'11) (a, a, a), (a) —a, —a)’ (—a) a — a); (_aa —a, a)y

each repeated three times. Thus we may denote the four points (7.11) which
form a half replicate of the 2° factorial design, by 3G (a, a, @). Similarly the
set 2@ (a, g, a) consists of the four point

(—a, —a, —a), (—a,a,a), (a, —a,a), (a, a, —a).

It is easily seen that
Ex[2G*Y(a, a, a)] = —8d’, Fx[3G*?(q, a, a)] = +4d’.
Let S be the set of 16 points defined by
S =G,y 2) + 36 V(q, g, a),
Ex(8) = —8a* + 4(2* + y' + &' — %" — 35 — 32%0),
Fx(S) = 12 zyz — 4d’.
» Thus 8 is a rotatable arrangement if
(7.12) 2+ ot + & = 3%+ P+ %) = 24, 3ayz = a’.
If we set
(7.13) 2’ = ud’, ¥ = vd’, & = wad’,
it follows from (7.12) that we can write
utov+w=48 w+ow+wu=(8—2)/5 ww = 1/9.

These equations imply that u, v and w are the roots of the cubic
(7.14) & — 8+ (8 —2)t/5—1/9 = 0.

If for a given B this cubic has three positive roots u, » and w, we shall be able to
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use these values to obtain a rotatable arrangement of the second order which
contains only 16 points, using the relations (7.13). A sufficient condition for

(7.15) Az*+ B+ Cx+D =0

to have three positive roots (provided all roots are real) is4 > 0, B < 0, C > 0,
D < 0. Thusif 8 > +/2and all three roots of (7.14) are real, they are all positive.
The necessary and sufficient condition for (7.15) to have three real roots is
A = B’C* 4+ 184BCD — 4AC*® — 274°D* — 4B’D > 0 (see Conkwright [7]).
For the equation (7.14) we find

(7.16) A(B) = 3645(98° + 368 — 508° — 2528° — 9008 — 87).

It may be shown that A(2.691376)/3645 = .0031, A(2.691375)/3645 = —.04,
so that a root of A = 0 lies near 8 = 2.691376. Furthermore

A(2.691376 + )/3645 = .0031 + Ay(s),

where A;(s) is the following sixth degree polynomial in's with all coefficients
positive:

Ai(s) = 9s° + 145.3s5 + 1013.9s* + 3846.7s° 4 7992.1s* + 7089.8s
Hence s > 0 = Ai(s) > 0= A(2.691376 + s) > 0, and
A(A/2)/3645 = —1789, A”(8)/7290 = 1358* + 2168° — 1508 — 250 > 0

for g > /2.
TABLE III
A Selection of Designs from the 16 Point Series (when no = 0)

B8 a x ¥ 3 )q/)s:
2.691376 1.04096 .49090 .49090 1.56026 .60140
2.7 1.03975 .45968 .52238 1.56036 .60131
3 1.00000 .31645 .67348 1.56405 .60000
4 .89443 .18375 .82366 1.57775 .60800
5 .81650 .12862 . 88669 1.59078 .62222
6 .75593 .09737 .92330 1.60206 .63673
7 .70711 .07722 .94697 1.61160 .65000
8 .66667 .06328 .96348 1.61965 .66173
9 .63246 .05321 .97559 1.62647 .67200

11 .57735 .03951 .99212 1.63732 .68889
14 .51640 .02767 1.00687 1.64887 .70756
19 .44721 .01759 1.02001 1.66110 .72800
49 .28284 - .00430 1.04018 1.68464 .76928
99 .20000 .00151 1.04601 1.69288 .78432

© 0 0 1.05146 1.70130 .80000

When 7, = 0, multiply a, z, y and z by « and multiply A+/A] by o2, where a2 = 1 4+ (no/16).
The variation in the values of a z, y and z is so well controlled that it is possible to
use a graph to find their values for values of 8 other than those in the table.
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This means that the function A is convex for 8 > 4/2 and thus has only one root
in that range which must be at approximately 8 = 2.691376. Thus if 8 > 2.7
the equation (7.14) gives rise to three real positive roots u, v and w and the 16
points of S form a second order rotatable arrangement. The radii of the two sets
of points which comprise the arrangement are /g a and /3 a. Thus, when g = 3
it will be necessary to add center points to the arrangement in order to satisfy
the non-singularity condition. It is desirable to add center points to arrange-
ments which arise from values of 8 near the singular value 3 in order that the
variances of the estimates of the model coefficients will not be large. When a = 0,
we shall retain the degenerate points as center points. If N = 16 -+ no where no
is the number of center points added, it is easy to verify that the scaling con-
dition \; = 1 leads to a®> = N/4(8 -+ 1). Thus we have found an infinite class of
second order rotatable designs depending on a parameter 3; each design con-
tains 16 points excluding any center points which may have been added. Given
a value of 8 > 2.691376, we can find w, v and w, the positive roots of (7.14).
Then

e = [N/4(8 + 1)}, z = ula, y = va, z = wa,
and the design is completely determined. An easy calculation shows that
(7.17) /N = (8° + 3)N/20(8 + 1)°

Table III contains some of the designs of this series. The table was obtained
by substituting for 8 in (7.14) a specific value and solving the cubic equation.
Only the range 8 > 2.691376 need be considered. The values given for z, y, 2
and a are those to be used when ny = 0, i.e., when no center points are added;
for no center points these values must be multiplied by the factor o = [1 +
(no/16)]!. The design points are obtained from (7.1) and (7.11) with appropriate
values for , , z and a from the table. The value of A¢/A] in the table is calculated
from (7.17) when N = 16. For n, center points these values must be multiplied

by o = 1 + (no/16).
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