THE FIRST-PASSAGE MOMENTS AND THE INVARIANT MEASURE OF A MARKOV CHAIN

By John Lamperti¹

Stanford University

We consider an irreducible, recurrent Markov chain with transition probability matrix $P = [p_{ij}]$. The random variables constituting the chain are $\{X_n\}$; let N > 0 be the smallest positive time n at which $X_n = 0$. Then the quantities

$$E\{N(N-1)\cdots(N-k+1) \mid X_0=i\neq 0\} = \mu_{i0}^{(k)}$$

are the factorial first-passage time moments. In case i=0, we will let $\mu_{00}^{(k)}=\delta_{0k}$. However, it is also convenient to introduce the actual recurrence-time moments for state 0:

$$E\{N(N-1)\cdots(N-k+1)\mid X_0=0\}=\mu_0^{*(k)}.$$

Let $\{\pi_i\}$ be the unique positive solution of the equation

(1)
$$\pi_j = \sum_i \pi_i p_{ij},$$

often called the "invariant measure" of the chain. Then this measure and the first-passage moments are related by the

Theorem. The equation

(2)
$$\pi_0 \mu_0^{*(k+1)} = (k+1) \sum_i \pi_i \mu_{i0}^{(k)}, \qquad k = 0, 1, 2, \cdots,$$

is always valid. (Both sides may be $+\infty$.)

REMARKS. If k = 0, (2) reduces to the familiar assertion that the mean recurrence time of state 0 is $\pi_0^{-1}\Sigma\pi_i$. If k = 1, (2) is equivalent to a "remarkable formula" discovered by Chung [1], who gave a proof rather different from that which follows.

PROOF OF THE THEOREM. We shall use generating functions; let

$$f_{i0}^{(n)} = \Pr \{ X_n = 0, X_l \neq 0 \text{ for } l < n \mid X_0 = i \neq 0 \}$$

$$= \Pr \{ N = n \mid X_0 = i \neq 0 \}; \qquad f_{i0}^{(n)} = \delta_{n0}; \qquad F_{i0}(x) = \sum_{n=0}^{\infty} f_{i0}^{(n)} x^n.$$

Thus $F_{00}(x) = 1$, and $F_{i0}^{(k)}(1) = \mu_{i0}^{(k)}$ for all i including 0. Similarly we put $g_0^{(n)} = \Pr\{X_n = 0, X_l \neq 0 \text{ for } 1 \leq l < n \mid X_0 = 0\} = \Pr\{N = n \mid X_0 = 0\}$, and $G_0(x) = \sum_{n=1}^{\infty} g_0^{(n)} x^n$. Notice that $g_0^{(n)} = \sum_{i} p_{0i} f_{i0}^{(n-1)}$, so that

515

(3)
$$G_0(x) = x \sum_{i} p_{0i} F_{i0}(x).$$

Received August 3, 1959; revised November 27, 1959.

www.jstor.org

¹ This research was partially supported by the Office of Naval Research.

Similarly, $f_{i0}^{(n)} = \sum_{j} p_{ij} f_{j0}^{(n-1)}$ provided that $i \neq 0$; this gives

(4)
$$F_{i0}(x) = x \sum_{j} p_{ij} F_{j0}(x), \qquad i \neq 0.$$

The next step is to multiply by π_i in (4) and sum, which yields

$$\sum_{i\neq 0} \pi_i F_{i0}(x) = x \sum_j \sum_{i\neq 0} \pi_i p_{ij} F_{j0}(x) = x \sum_j (\pi_j - \pi_0 p_{0j}) F_{j0}(x)$$

from (1). In view of (3) we have $\sum_i \pi_i F_{i0}(x) - \pi_0 = x \sum_i \pi_i F_{i0}(x) - \pi_0 G_0(x)$, which, upon differentiating k+1 times, becomes (for |x|<1)

(5)
$$(1-x)\sum_{i}\pi_{i}F_{i0}^{(k+1)}(x) + \pi_{0}G_{0}^{(k+1)}(x) = (k+1)\sum_{i}\pi_{i}F_{i0}^{(k)}(x).$$

Relation (2) with " \leq " is immediate from (5), for, letting $x \to 1$,

$$\pi_0 \mu_0^{*(k+1)} = \pi_0 G_0^{(k+1)}(1) \leq (k+1) \sum_i \pi_i F_{i0}^{(k)}(1) = (k+1) \sum_i \pi_i \mu_{i0}^{(k)},$$

since the first term in (5) is non-negative. Now suppose that $G_0^{(k+1)}(1) < \infty$, but that $\sum_i \pi_i \mu_{i0}^{(k)} = \infty$. Then from (5) we obtain

$$\lim_{x \to 1-} \frac{(1-x) \sum_{i} \pi_{i} F_{i0}^{(k+1)}(x)}{\sum_{i} \pi_{i} F_{i0}^{(k)}(x)} = k+1.$$

It follows by Theorem 2 of [3] that

$$\sum_{i} \pi_{i} F_{i0}^{(k)}(x) = \frac{1}{(1-x)^{k+1}} L\left(\frac{1}{1-x}\right),$$

where L(y) is a slowly varying function.² Integrating k times, we would then have

$$\sum_{i} \pi_{i} F_{i0}(x) = \frac{1}{1-x} L_{1}\left(\frac{1}{1-x}\right),$$

with L_1 again slowly varying.³ This, however, is inconsistent with the fact that $\sum \pi_i F_{i0}(x)$ is bounded as $x \to 1$. (The assumption $G_0^{(k+1)}(1) < \infty$ excludes the null-recurrent case, so that $\sum \pi_i = \sum_{k} \pi_i F_{i0}(1) < \infty$.)

We have thus established that $\mu_0^{(k+1)}$ and $\sum \pi_i \mu_{i0}^{(k)}$ are both finite or both

We have thus established that $\mu_0^{*(k+1)}$ and $\sum \pi_i \mu_{i0}^{(k)}$ are both finite or both infinite; assume the former is the case. We are through if it can be shown that the first term on the left in (5) tends to 0 as $x \to 1-$. This follows at once upon applying to the function $h(x) = \sum \pi_i F_{i0}^{(k)}(x)$ the following simple Lemma. Let h(x), 0 < x < 1, be a positive, monotone increasing, convex function

LEMMA. Let h(x), 0 < x < 1, be a positive, monotone increasing, convex function with a finite limit as $x \to 1-$. Then $\lim_{x\to 1-} (1-x)h'(x) = 0$. This fact is obvious upon drawing a diagram, and this completes the proof of the theorem.

S. Karlin has pointed out (in conversation) that the theorem can be proved

² That is, $L(cy)/L(y) \to 1$ as $y \to \infty$ for every c > 0.

³ This well-known fact may be easily deduced from the canonical form of the slowly varying function L(y) [2].

in a somewhat different manner, which avoids the use of slowly varying functions. This has its advantages, but the author confesses to a mild proprietary pleasure in the argument given above.

REFERENCES

- K. L. Chung, "Contributions to the theory of Markov chains. II," Trans. Amer. Math. Soc., Vol. 76 (1954), pp. 397-419.
- [2] M. J. KARAMATA, "Sur un mode de croissance régulière," Bull. Math. Soc. France, Vol. 61 (1933), pp. 55-62.
- [3] JOHN LAMPERTI, "An occupation-time theorem for a class of stochastic processes," Trans. Amer. Math. Soc., Vol. 88 (1958), pp. 380-387.