A MEASURE OF PREDICTIVE PRECISION IN REGRESSION ANALYSIS
By H. LiNHART

South African Council for Scientific and Industrial Research, Johannesburg

1. Introduction and summary. It has been suggested ([5], [6]) to use the ex-
pected value, E(l), of the length, I, of a confidence interval for the variable to
be predicted as a measure of precision of prediction in a regression analysis.
The measure is relevant only if the predictor variables are random.

Criticism of this particular choice of a measure of precision usually centres
about the following questions:

a. Why is the measure based on this and no other system of confidence inter-
vals; what is known about optimality of this system. (The system referred to
will be described in Section 2.)

b. Why is it based on the physical length of the intervals and not on
Neyman’s ‘““shortness’?

c. If it is agreed that it is based on [, what justifies the choice of E(l)?

In the following a few points are raised which are, of course, not sufficient to
prove that E(]) is the only possible choice for a measure of precision, but which
indicate that the intuitive choice is not altogether unreasonable.

Not much can be said about a. It turns out, in Section 3, that the confidence
limits discussed here are unbiased, but nothing about optimality in any sense is
known to the author.

To throw some light on b, Neyman’s shortness of the system of confidence
intervals used is calculated in Section 3. A parameter enters the problem which
makes it impossible to use Neyman’s shortness as an overall measure of precision.

With regard to ¢, one may argue that I is a random variable and if a single
measure of precision is needed a single characteristic of its distribution must be
used. Obvious possibilities are the mean and the median. The distribution of I
is obtained in Section 4, and it becomes apparent that the use of the median
would involve heavy numerical calculations.

2. A system of confidence intervals for y,. In all n 4 1, independent vectors
enter the problem. All vectors have the same (k + 1)-dimensional normal distri-
bution with mean vector u—here without loss of generality assumed to be the
zero vector—and with unknown positive definite covariance matrix A. It is as-
sumed that n > k + 1. The first n vectors, (xoy , 1, *** , Tpy), » = 1,2, -+, m,
are used to estimate u and A. These n vectors are called “the sample”. Only the
last & components of the (n + 1)st vector, (3o, %1, * -+ , %), are known. Using the
information on the structure of the distribution of (yo, %1, - * , %), which was pro-
vided by the first » vectors, a confidence interval, corresponding to the confidence
coefficient 1 — «, for a hypothetical future observation ¥, is given. The length
of the confidence interval is a random variable; its expectation can be used as
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400 H. LINHART

measure of precision of prediction. A system of confidence intervals will now be
described and studied; E(l) for this system will be computed and discussed.

The following notation will be used: L = (I;;), is the (k + 1) X (k + 1)
covariance matrix in the sample,

nls; = gl (o — &) (2 — Tj), ,j=0,1,--, k.

The k X k submatrix of L comprising only the elements ,; with ¢,j = 1,2, - - - k,
is denoted by Lo and Li* = (I) is written for (L,)™. A completely analogous
notation is used for the covariance matrix in the population A = (\;;). De-
terminants are written with vertical strokes. The double tailed 100« per cent
point of Student’s distribution with » degrees of freedom will be denoted by
to). The predicted value of yois o = & + D w1 B:(y: — %:), where dand §;, i =
1, 2, -+, k, are the least square estimates of the regression coefficients ([2],
p. 552).

The confidence intervals for y, which are used here are those which are usually
obtained under the assumption that zy,, 25, -+, 2% and y1, 42, -+, yi are
fized (nonrandom) variables ([8], p. 305). Under that assumption, §o — o is
N[O (1 4+ n+ T)|A|/n|Ao|], where

k
(1) T = “Z=1(Z/i — &) (y; — &) ;
and
_nla| | L] <
@ T AT o=

is, independently of o — yo , distributed as x* with n — k — 1 degrees of freedom.
It follows that

3) (= - |

|L0|(n—k—1)]*
ILA+n+T)

has Student’s distribution with n — k — 1 degrees of freedom, and that a con-
fidence interval for y, is given by

. n—k— L|(1 T) | . ke
G0 — 17D [ll Lol l((ntnkt 1;:' Sy S g+ t8TY

(4)

.[|L|(1+n+T>]*

The distribution of ¢, (3), is independent of Ly and T, and remains therefore
unchanged if Lo is a random matrix and T a random variable. The probability
that the intervals (4) cover yo is therefore [3] even in the random case equal to
1 — a

In Section 3 it will be shown that these confidence intervals are unbiased,
but nothing about optimality in any sense is known to the author.
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It might also be noted here that the intervals (4) are not confidence intervals
in the classical sense, as yo is a random variable and not a parameter. Sometimes
intervals of this kind are called “prediction intervals” or “quasi confidence in-
tervals”.

3. The shortness of the confidence intervals used. The shortness, in the sense
of Neyman, is measured by the probability that the confidence intervals cover
a value which is different from the true value of the parameter ([9], p. 371).
One must therefore find the probability that the intervals (4) cover yo + 4,
where 6 is any constant.

Recalling how the confidence intervals (4) have been obtained, one may see
that gy — yo — 8 is, conditionally, given Lo and T,

N[=8, (1 +n+ T)|Al/n|Ao]].

It follows ([1], p. 113) that (%o — %o — 8)’n|Ac|/(1 + n + T)|A| has the
noncentral x°-distribution with 1 degree of freedom and noncentrality parameter

(5) P =8n|MAl|/(1+n+T)|A|
The square of

b o |Lo|(n—k——1):|5
(6) ¢ = (o — Yo — 9) [m s

has then ([1], p. 114), again conditionally, the noncentral F-distribution with
fi=1landfo = n — k — 1 degrees of freedom,

f_’l had (12/2)"(7”1 t/2/f2)f1/2+v—1
f2 y=0 V'B(f1/2 =+ V,f2/2)(l —+ fl t'z/f2)(fl+f2)/2+v )

0=t

(7) f("*) = exp {—7"/2}

The conditional probability, given 7, that the confidence intervals (4) cover
9o + 6, or the conditional shortness, is therefore
[to(n—k—1)]2

(8) (6] T) = fo £ ™,

The unconditional shortness, s(8), is the expectation of s(§ | T'). It is thus neces-
sary to obtain at first the density function of 7.

Hsu has shown ([4], p. 235, equation 12); see also ([1], p. 114))
that (n — k)T/k has, conditionally, given (y1, 2, ***, ¥&), the noncentral
F-distribution (7) with f; = k and fo» = n — k degrees of freedom, and with
noncentrality parameter r° = 2\,

k
(9) N = (n/2) 2y
7,j=
The density function of T is the expectation over the variables 1, y2, -+, ¥,

of the conditional density function. Now the vector (y1, %2, *+ , ¥x) is N(0, Ag),
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and it is well known, that 2\/n has a x’-distribution with % degrees of freedom
([2], p. 319, example 15). It is then easily verified that

(10) E(\ exp {—\}) = #'T(k/2 + v)/(n + 1)**T1(k/2).

The density function of T is found to be

(1 + n) (n—k)lszlz—l
Blk/2,(n — k)/2](1 + n + T)»2’ -

(11) A[(T) =

The substitution
(12) v=(142n)/(14+n+T), 0=v=1,

shows that v has a Beta-distribution with & and n — k& degrees of freedom.

For the expectation of s(é | ') with respect to T one needs, as may be seen
from (7) and (8), the expectation of (7°/2)” exp {—7"/2}, where 7, as given
by (5), is a multiple of v. Using a well known integral representation for the
confluent hypergeometric function ([7], p. 87), one obtains easily

E[(+*/2)" exp { —7"/2}]

(13)  _ #'Tl(n — k)/2 + 40 (k/2)T(n/2)
I(n/2 + »)I((n — £)/2]

Fl(n —k)/2 4+ v;n/2 + v; — 1),

where
(14) n=38n|Al/2(1 +n)|Al
The shortness may then be calculated. It is
B [ta(n—k—1)]2 F(n/z)
s(@) = fo (n—Fk = D[(n = k = D/2T[(n — ©)/2]
(15) (=17 " (n — b — DI

5 i Tl(n — k)/2 +4T(n — k)/2 + v + ul
S50l + 02 (n — k — 1)]o—mr
‘T(1/2 + )T (/2 + v + u).

The function s(8) is difficult to study, and, in addition to that, besides
| A|/| Ao |, k and n, another parameter, §, enters the problem; it seems impossible
to base an overall measure of precision of prediction on s(8), unless it is weighted
by some arbitrary weight function of 6.

Remembering that s(8) is the expectation of s(6| T), and realising that
1 — s(8| T) is nothing else than the power function of Student’s ¢-test, one may
draw some conclusions about the properties of s(8).

The symmetrical double tailed i-test is unbiased; s(8 | ') has, therefore, for
fixed k, n and | A |/| Ao |, for each finite T an absolute maximum at 6 = 0; s(8)
has, therefore, for fixed k, n and | A |/| Ao |, also a maximum at § = 0. The system
of confidence intervals used is therefore unbiased in Neyman’s sense.

If 7y > me, the {-test with n; degrees of freedom is uniformly more powerful

di?
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than the corresponding test with n, degrees of freedom. For each finite value
of T, and for fixed n, 8 and | A |/] Ao|, (8| T) is thus strictly monotonically
increasing with k. For fixed n, 6 and | A |/| Ao |, s(8) is, therefore, strictly mon-
otonically increasing with k. This means that, if s(§) were used as a measure
of precision, the inclusion of more variables in a regression analysis which is
not accompanied by a decrease in the residual variance | A |/| Ao | would result
in a uniform (in &) deterioration of precision of prediction. This is a property
which a measure based on s(6) would share with the measure E(1).

To defend the use of E(l), work by S. S. Wilks [10] should be mentioned here,
which uses “‘average shortness” as a large sample optimum property of systems
of confidence intervals. Shortness is here physical shortness, and not Neyman’s
shortness; average shortness is thus completely analogous to E(l).

Neyman ([9], p. 370) writes a few sentences about physical shortness as an
optimum property and remarks in conclusion that, “The above statement may
appeal to intuition, but it is obviously too vague to be used in practice.” It
would appear that he does not condemn the idea as a whole, but only stresses
practical difficulties.

One must, however, also mention two drawbacks of physical shortness: it is
not invariant under monotone transformations; and it covers only precision, but
not accuracy, a physically short interval may be relatively bad if it contains
values which are very different from the true value of the estimated parameter.

4. The distribution of the length of the confidence intervals. From (4) one
may see that the length of the confidence interval, corresponding to the con-
fidence coefficient 1 — a, is given by

s [IL (L 4+ n+T))
16 l=2tf,"“)[| L, N
(16) |Lol (n — &k — 1)
It is convenient to obtain the distribution of
__l.n[Ao[lLI.l-l-n—}-T_l. .-1_
(17) 2= [A]] L | 1+n IR

at first, where u is given by (2) and » by (12). In Section 2 it was mentioned
that w has, conditionally, given Lq, a x’-distribution with n — k — 1 degrees
of freedom. It follows immediately, for the unconditional case, that w is distrib-
uted independently of T according to the same distribution. The simultaneous
density function of w and v is, therefore,

f(u, v)
o v

18
( ) exp { —u/2} v(n—-k)lZ-—l(l _ v)klz—-l, } 0

A

u, 0

A
<

IIA
[a—y

Substituting z = u/2v, 4/2 = t one has

(19) f(2) « g 21 f‘ exp {_t}tn—k—§(1 _ t/z)m_l di.

0
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Using the integral representation of the confluent hypergeometric function ([7],
p. 87) it is easily deduced that

£2) = B(n — k — 1/2,k/2) exp {—2z}
(20) B((n — k)/2,k/2]T[(n — k — 1)/2]
2V (/2 n — k/2 — 3;2), 0
The distribution of I may be obtained by substituting

. _ ob(n—k-1) 4 (1+n)|A| :r
(21) l = 2%, z[n(n—k—l)IAol'

One may see that this density is not of a very convenient form; tables of its
distribution function do not exist. Using the median of this distribution would
thus involve heavy numerical calculations. One may, for a comparison, note
the comparatively simple form of the mean

I'(n/2) [ (1+n)|A] ]%
[(mn—=1)/2]Ln(n —k —1)| A |1~

b. Acknowledgment. I am indebted to the referee and to Prof. W. Kruskal
for many critical remarks and helpful suggestions which, in particular, led to a
much shorter proof of the distribution of /.

IIA
x

(22) E(l) = 2aln*D 5
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