SAMPLING INSPECTION AS A MINIMUM LOSS PROBLEM

By B. L. vaAN DER WAERDEN
Ziirich University

Introduction. In March 1958, in a lecture at Berkeley, Milton Friedman
pointed out that statisticians, when asked to recommend a sampling inspection
plan for the producer or buyer of a mass product, usually ask him questions
which he cannot answer. They first ask: What percentage of defectives would
you allow without rejecting the product? If the answer is po, the statistician
would choose a smaller percentage p: and a larger one p., and ask questions
like: Would you allow a probability of 5 per cent of rejecting the product, if
the true percentage is p;? The answers usually are mere guesses.

However, a competent manager could answer questions like: What is the cost
of inspecting a sample of n? What would be your profit or loss if you buy or
sell a lot with defective fraction p? What do you do if you reject the product,
and what would be your loss in this case? Would it be very expensive to improve
the quality of your product? A reasonable production and inspection plan ought
to be based solely on these loss functions.

In what follows, we shall leave aside production problems. We shall assume
a plant to produce a product of variable quality, the variations being due to
accidents we cannot prevent. The only thing the producer can do is to inspect
a sample and, if it contains too many defectives, to examine the whole lot and
to eliminate the defectives. And the only thing the buyer can do is to inspect
a sample and, if it contains too many defectives, to return the product to the
producer.

The loss functions will be assumed to be linear functions of the defective
fraction p, and the inspection cost to be proportional to the size n of the sample.
We shall assume that the same inspection plan is used every day, or in the
buyer’s case every time he buys a lot, so that in the long run only the average
loss counts.

In Sections 1-3 and in Section 4, the minimum loss problem will be discussed
from the producer’s and from the buyer’s point of view separately. In Section 5,
the producer’s and the buyer’s point of view will be combined. It will be shown
that the two partners may increase their joint profit by forming a coalition and
combining their inspection plans into one.

After having finished an earlier draft of this paper, I learned that S. Moriguti
[1] and S. Ura [2] investigated the problem of minimax inspection plans from
exactly the same point of view. Moriguti’s results are just the same as mine
obtained in Section 2 for Case A (pen and gon large). Ura’s results are close to
mine obtained in Section 3 for Case B (n large, p¢n not large), but there are
slight differences in the numerical values. On the other hand, Ura treated the
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370 B. L. VAN DER WAERDEN

cases k = 1, 2, 3, 4 and 5, whereas my calculations stop at £ = 2. Since my
assumptions are a little more general than those of Moriguti and Ura and since
their papers are not easily accessible, I shall expose the theory anew.

It would be interesting to extend the theory to sequential tests. A guess con-
cerning the best sequential test will be formulated at the end of Section 4.

1. The producer’s problem.

A. The loss function. Suppose a producer takes a sample of his product every
day and applies a test. If the lot is accepted, it is sold at a fixed price, but de-
fective units may be sent back by the buyer. The resulting loss is proportional
to the defective fraction p, so the loss will be, in the case of acceptance,

(1) L' = ap.

If the product is rejected, the whole lot will be examined and the defectives will
not be sold. Let the cost of inspection of the whole lot-be ¢, and the loss result-
ing from not selling the defectives bp. Hence, the loss in the case of rejection is

(2) L” =bp +c

On the other hand, if rejected lots are discarded (which is, of course, always
the case when inspection is destructive), we have to replace (2) by L” = ¢,
that is, we have to put b = 0 in (2).

To these losses, we have to add the cost of inspection of the sample. For the
sake of simplicity, we shall suppose that the test is not sequential, so that the
cost of inspection is simply fn, where n is the size of the sample. Thus, in the
case of acceptance, the loss becomes L’ + fn. In the case of rejection and 100%
inspection, we have already inspected a sample of n at cost fn and we still have .
to inspect the rest of the lot at cost ¢ — fn, so the term fn cancels out and the
total loss is simply L”.

For any p, let P and @ be the probabilities of acceptance and rejection by a
given test. The expectation value of the loss is

(3) L =P +fn) + QL".

This loss function has been considered by Weibull [3] and others. However, as
Hamaker [4] has rightly remarked, the sample size is usually small as compared
with the size of the lot. Therefore we may, for all practical purposes, replace
L” in (3) by L” + fn, thus obtaining the simpler formula

(4) L = PL' + QL” + fn = L' + fn,

which was also adopted by Anscombe [5] and others.

If rejected lots are discarded, the same formula (4) holds, only we have to
put b = 01in (2). The formula thus obtained also holds in the case of destructive
testing.

For p = 0, L” is larger than L’. For p = 1, we may suppose that L’ is larger
than L”, for it is usually better not to sell a totally defective product than to
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sell it and to have to take it back with a complaint from the buyer. So the two
straight lines (1) and (2) inthe (p, L)-plane intersect at a point S with coordi-
nates (po, Lo),

(5) Po = ¢/(a — b).

We shall always put p + ¢ = 1 and po + ¢ = 1.
If we knew p, the best procedure would be to accept the product for p < po
and to reject it for p > po . The loss would then be L, = Min (L', L"), or

Lm = a <
( 6 ) 74 fOl‘ D = Do,
L,=bp+ ¢ forp > po.
The function L,, is represented by a heavy line in Fig. 1. We may call L,, the
unavordable loss.

The sum L' = PL’ 4+ QL” occurring in (4) is represented, in our diagram,
by a curve passing through the point S. For p = 0, we may assume that ac-
ceptance is certain, and, for p = 1, that rejection is certain. So the curve L'”
passes through the origin O and the end point B of the line L”.

B. The minimaz loss solution. If we try to minimize the maximum loss, we
only find the following trivial solution: Reject without taking a sample. For if we
follow this procedure, the loss is L” and the maximum loss is b 4+ ¢ (point B in
the diagram), whereas for all other procedures the maximum loss is larger.

This extremely cautious procedure may be quite reasonable, e.g. in cases
where the producer knows that some accident happened in the production
process and decides to inspect the whole lot without first taking a sample. In
most cases, however, we do not expect p to be large. In those cases, the pessi-
mistic minimax loss procedure is not justified.

C. Introduction of an a priori distribution. If we endeavor to formulate our
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feeling that p is not likely to be large as an exact mathematical hypothesis, we
may introduce a process distribution function, F(p), which becomes nearly 1
for unlikely large values of p. We now have to minimize the expectation of the
loss,

(7) B1) = [ Lar(p)

The exact minimum of E(L) can be determined only if the distribution funec-
tion F(p) is known. The derivative F’(p) is usually called the process character-
istic. Various functions F(p) or F/(p) have been proposed by several authors.
Hamaker [6] gives pictures of five of these functions, and Horsnell [7] lists eight
proposals. However, in the discussion to Horsnell’s paper, Barnard observes:

“We at Imperial College did some work in trying to find out what sort of
process curves do in fact turn up in industry and none we have seen bears the
slightest resemblance to those tabulated in Table I’

To this information, Hamaker [6] adds: “Apart from this, industry is con-
stantly changing its products and processes, and by the time we have collected
a sufficient number of data for a more detailed analysis some changes may be
introduced which completely alter the situation.”

Therefore, it seems that the various theoretical solutions of the minimum
problem of the loss expectation (7) are of little practical value. We have to
admit that we know next to nothing about the actual process function F(p),
and we must try to find a practical solution depending only on the loss con-
stants a, b, ¢, f.

D. The minimum regret problem. The loss L may be split into two parts

(8) L=Lm+R.

The first term L., is the unavoidable loss. The second term, the excess of the
loss over the unavoidable loss, is called the regret. Substituting for L and L.,
the expressions (4) and (6), we obtain

© R=(a—-0b)(p—p)P +fn forp > po,
R=(a—0)(p—p)Q + fn forp = po,
(10) B(L) = [ LnaFp) + [ R aF(p).

The first term on the right is independent of the test procedure. Therefore, in
order to minimize F/(L), we have to minimize the second term, the expectation
of the regret,

(11) E(R) = [ Rar(p).
For any given test, let M be the maximum of the regret B = R(p). The

formula (11) implies, of course, that E(R) < M. Hence, if we make M small,
we are sure that £(R) is always small, no matter what F(p) is. Thus, we are
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led to the following minimax problem: To find a test making the maximum of the
regret (9) as small as possible.

Let m be the minimum of the maximum regret, M, for all possible tests. It is
clear that the minimum exists. Let T be a test for which the maximum regret
is just m. The inequality (11) implies for the test T: that E(R) =< m for all
F(p).

On the other hand, let T be a test for which the maximum regret M is larger
than m, and let p, be a value for which R(p:) is just M. We now may define a
function F(p) which jumps from 0 to 1 for p = p, . For this function F(p) the
regret expectation is E(R) = M > m.

Hence, if we want to have a test for which the regret expectation is always
=< m, no matter what F(p) is, our only possibility is to take a minimax regret
test Ty . All other tests yield, for some F(p) a larger regret expectation, £(R),
and hence a larger loss expectation £ (L). )

Empirically I have found that the minimax regret tests 7' are also minimum
E(L) tests for some suitable process function F(p). The process functions I
used were quite reasonable. I assumed, as other authors did, that p may take
two values py < po and p. > po with certain probabilities. Processes of this
type, which usually produce a satisfactory product but sometimes a bad one,
do occur. Thus, we see that the minimax regret tests are quite good also from
the minimum E(L) point of view under reasonable assumptions concerning the
process function F(p).

The minimax problem will be solved in two cases, (A) and (B). In case (A),
pon and gon are both large. In case (B), the sample size n is still assumed to be
large, but np, is not. Case (A) was investigated by S. Moriguti {1], case (B)
by S. Ura [2]. For sequential tests see Section 4 C.

2. The minimum regret solution in case (A). Let po and gon both be large.
Let h be the fraction of defectives found in the sample. Let h be a critical frac-
tion near po, so that the test

accepts, if h < ho,
rejects, if h > ho.

We are interested only in p-values near ho and hence near p, ; for, if p is much
larger or much smaller than Ao, rejection or acceptance is nearly certain. For
those p-values, the variance of A,

(12) o* = n"'pq,
may be approximated by the constant
(13) o0 = 1 'pogo -

Let ® be the normal distribution function with mean zero and unit variance.
The probability of acceptance may be approximated by

(14) P = &((ho — p)/a0).
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The regret now becomes

(15) Ry = (a = b)(p — p)2((he — p)/00) + fn forp > po,

(16) R = (a = b)(po— pP)2((p — ho)/o0) + fn forp = po.
Putting

(17) P — Po = oo,

(18) ho — po = a8,

we may write, for positive z = z,

(19) Ry = Ri(2) = (a — b)ow®(s — z) + fn,

and, for negative x = —z,

(20) R_ =R (2) = (a — b)owd(—s — 2) + fn.

If s is positive, the function R, (z) is always larger than R_(z), hence the
maximum of R, is larger than the maximum of R_ . Between the two maxima -
lies the maximum of

(21) Ro(z) = (a — b)ow®(—2) + fn.

Hence, for s > 0, the overall maximum of the regret R is the maximum of R, ,
and it is larger than the maximum of B, . For s = 0 the regret is By . For s < 0,
the overall maximum is the maximum of R_ , and it is larger than the maximum
of Ro. Hence, in order to minimize the maximum regret, we have to assume
s = 0, or by = po . The test now

accepts, if & < po,
rejects, if h > po,

and the regret is, for x = +z as well as for v = —¢z,
(22) Ro(z) = g2®(—2) + fn,
with

(23) g = (a — b)ag.

The function 2®(—z) is zero for z = 0 and again for 2z = «. The maximum
of the function is

(24) C =.170 (for z = .752).
Hence the maximum regret is
(25) Ruox = Cg + fn.

Substituting g and ¢ from (23) and (13), we obtain
(26) Ruax = jn % + fn
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with
(27) j = C(a — b)(pogo)"™.

We now determine n by minimizing Ruax . This gives for n the approximation
(28) o' = (30)"(a — b)"(pogo)"F ™" = .193 ((a = )/ (poa) ",

To this approximate value, we have to take the nearest integer n and to make
sure that np, and nqo are really large.

The critical number & of defectives in the sample, i.e. the number which just
leads to rejection is the next larger integer to

(29) w = NPy .

If po is near %, and w + } near an integer, the approximations used here are
good, even if n is not very large. However, in many cases po is much less than 1.
In these cases, it is no longer admissible to replace o, as given by (12), by oy,
as given by (13). For p > p, the true ¢ will be larger than ¢y, and for p < no
less. Hence R..(2) will become larger and R_(2) less. To minimize the maximum
regret, we have to assume a negative s, which means that the critical value A
becomes slightly less than po, and the critical number of defectives less than
w~+ L.

It would be interesting to replace these qualitative considerations by more
accurate evaluations, to derive correction terms to the formulas for Rm.x and
n/, and to find a more accurate asymptotic formula for the critical integer £.
For po << 1 this has been done by Ura [2]. His asymptotic formula (19) may be
written, in our notations, as k = w 4 .145.

3. The minimum regret solution in case (B). _

A. The Poisson approximation. If np, is less than 4, the approximation used
in case (A) may no longer be good. Assuming n to be large, we may use the
Poisson approximation to the binomial distribution. Putting » = np, we obtain
for the probability of finding just y defectives in a sample of n

(30) P, = ¢ "(u'/y)).
If k is the critical value, which just leads to rejection, we have

P=P+ - + P,

(31) Q=1-p
The regret is
(32) Ry = (a—0b)(»— p)P + fn for p > po,
R_= (a—Db)(p—p)Q+ fn forp < po.

To get rid of inessential constants we introduce new variables v, w, S instead
of p, n, R by putting
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(33) p/po=v, pm=w  (p/IR = S.
The Poisson constant is now v = vw, and the new regret function S is
(34) Sy =tlv — 1P +w forv > 1,
So=t1—-0)Q +w forv < 1,
with
(35) t = ((a = b)/f)ps = (¢/f)ps .

We are now left with only one independent variable ¢. The procedure for
determining » and w and the critical integer k is as follows. We first determine v
by maximizing S; or S_, whichever has the largest maximum. The resulting
maximum regret M = Sn.x is, for every choice of k, a function of w. We next
determine w so as to minimize M. The resulting minimum m depends only on
k. We finally determine k so as to minimize m. The corresponding valueof w = pgn
determines the size n of the sample.

For small ¢, the best choice of k¥ will be k& = 1. This means that as soon as one
defective is found, the product is rejected. We shall investigate this case in
greater detail.

B. The case k = 1. For k = 1, formulae (31) simplify to

(36) P=¢"=¢"™,
Q=1—¢"
The regrets are
(37) S =tv— 1" +w (v > 1)
(38) S =1 —v)(1—¢e") + w. (v =1)
The maximum of S, is found by differentiating with respect to ». The result is
(39) v =1+ w™
Substituting into (37), we obtain the maximum of S, ,
(40) M, = twle ™ 4+ w

We shall write this result as
(41) M, = tf(w) + w,

where f(w) is a known function of w. By the same method, we may determine
the maximum of S_ as

(42) M_ = tg(w) + w,

where g(w) is a known function, which may be computed numerically for every

value of w.
Plotting M, and M_ as functions of w, we get, for different values of ¢, graphs
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M, M. M, M.

m=m m

w, w,

Fig. 2 Fig. 3

like those of Fig. 2 or Fig. 3. In every case, we have to consider
M(w) = Max (M, M_) as a function of w and to find the minimum of this
function M (w). -

The function M . decreases from « to a minimum my and then increases to
». The function M_ is always increasing. The intersection of the curves for
M, and M_ is given by the equation

(43) fw) = g(w).

Since f is a decreasing and ¢ an increasing function, there is only one solution of
(43), viz. w; = .868. This w; does not depend on {. We now may distinguish 2
cases:

Case of Fig. 2. If the function M, is increasing at w;, the minimum m of
M (w) is equal to the minimum m of M .

Case of Fig. 3. If M is not increasing at w; , the minimum m of M (w) is the
common value of M, and M_ at w; .

The condition for M, to be increasing at wy is

(44) i (wi) + 1> 0.

Now f’(w,) is negative, so condition (44) is satisfied for small ¢, but not for
large {. The limit between the cases of Fig. 2 and Fig. 3 is 4 = 2.61.

For ¢t < t; the minimum regret m is the minimum m, of M, . Equating the
derivative of M, to zero, we find

(45) = (w4 1) W,
(46) my = 2w — (w4 1)7\

By (45), we may compute ¢ as a function of w and plot the result in the
(t, w)-plane. Only the part of the curve between w = 0, ¢ = 0 and w; = .868,
t; = 2.61 is needed. For ¢ = 2.61, the optimum value of w remains constant =
w; , so the next part of the graph for w is a horizontal line w = w, (see Fig. 4).
This line has to be extended to the right until ¢ becomes so large that k = 2
would be more favorable than k¥ = 1. When does this happen?

C. The case k = 2. The method for finding the optimum value of w for k = 2
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is the same as for £ = 1, the only difference being that the case of Fig. 2 does
not occur any more. If we compute the minimum m, of the maximum M, of
the function

(47) . Sy =1t(v— 1)1+ vw)e™ + w,

we find that this minimum is larger than m; as given by (44) for all values of
t below 13. Now a larger minimum means that the case k = 2 is less favorable
than k = 1. So if we want to have k = 2, we must assume ¢ = 13. For ¢ = 13
we are already in the case of Fig. 3, and this holds still more for larger values
of {. So we have to compute m from the equation m = M, = M_.

Once more, M and M_ are given by formulas like (41) and (42). The func-
tions f(w) and g(w) are more complicated now, but still f(w) is decreasing and
g(w) increasing, so that the equation (43) has only one solution, viz. w, = 1.864.

D. Comparison of the results for k = 1 and 2. The minimum m corresponding
to w, and k = 1 was, according to (41) or (42),

(47) m = 1779t 4+ .868,
and the minimum corresponding to w. and k£ = 2 is given by a similar formula,
(48) m = 1227t + 1.864.

The linear expressions (47) and (48) become equal for &, = 18.06.

For ¢t < 1, , the m of (47) is less, which means that k = 1 is better. For ¢t > ¢,
the m of (48) is less, which means that & = 2 is better. At the point ¢, = 18.06
the function w jumps from the constant value w; = .868 to the constant value
w, = 1.864, and k jumps from 1 to 2. The value 1.864 remains until £ = 3 be-
comes better, ete. The behavior of w as a function of ¢ is shown in Fig. 4 (loga-
rithmic scales).

E. The asymptotic formula for large t. If ¢ is very large, w is also large and the
Poisson distribution may be approximated by a normal distribution. The asymp-
totic formula for w may be obtained from (28) by putting ¢ = 1 and multi-
plying both sides by po . This gives us

(49) w = np, = .193¢,
or the dotted line in Fig,. 4.

- L4

w R4
s , o
ot ka2 o0

we<1.864

Iy kel .~
[ we i w=.868
I B B

t,=2.61 1,218.06

Fic. 4. The (¢, w)-diagram
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At the end of Section 2, we have seen that, for large w, the critical number
of defectives k in a sample of n ought to be chosen slightly less than w + 3.
We now see that this is not only true for large values of k and w, but even for
the smallest possible values ¥ = 1 and ¥ = 2. The optimum for w is

fork = 1:w = .868, hence w + 1 = 1.368;
fork = 2: w = 1.864, hence w + % = 2.364.

S. Ura extended the calculations to the cases & = 3, 4 and 5. His value ¢,
= 18.3 is slightly different from mine.

F. Once more k = 1. For k¥ = 1, the Poisson law P = e = ¢ " is a good
approximation to the exact formula
(50) =(1-1p)"

even if n is not large, provided p does not exceed .45. Now the largest value of
v = p/po entering into our calculations was v, = 1 4+ wi' = 2.15, so, if po does
not exceed .2, p will not exceed .43 and the Poisson approximation is justified.
Hence #f t lies between 2 and 18, and po does not exceed .2, the results for k =
obtained by the Poisson approximation may be applied without any modification
even to small samples.

If n, as computed by this method, is less than 4, a direct calculation of the
maximum regret M for n = 1, 2, 3, 4 is necessary. Also, if p, exceeds .2, we
have to apply the exact binomial distribution. The exact formulas for the re-
grets R and R_ are "

Ry = (a —b)(p — p)q" + nf,
= (a = b)(po — p)(1 — ¢") + nf.

The maxima M, and M_ are readily found by differentiation with respect
to p. Very often, the computation of M _ is not necessary. M _ being obviously
less than M. The maximum of M, and M_ is M, . Thus, we may calculate
the sequence My, M., --- . As soon as we find an M,,;, = M,, we may stop
the calculation and take 7 as the best value. If n turns out to be large, we may
replace n by a continuous variable and differentiate with respect to .

4. The buyer’s problem.

A. The loss functions. Suppose a buyer gets a product in lots from the pro-
ducer. If he accepts a lot, he pays a fixed price and uses the product for his
own purposes or sells it to others, making a fixed profit minus a loss proportional
to the number of defectives. The fixed profit does not enter into our calculations;
we are only concerned with the loss due to defective units, viz.

(51) L' = ap.
If the buyer rejects the lot, he returns it to the producer. In this case, he misses

his profit and may have to pay for the transportation, which means that he has
a fixed loss
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(52) L" =¢

in the case of rejection.
To both losses, (51) and (52), the cost of inspection fn must be added. Hence
the expected loss is

(53) L = PL' + QL” + fn = apP + ¢Q + fn.

Comparing (51) and (52) with (1) and (2), we see that the minimum loss
problem is the same as before, only with b = 0.

L m A a

e © —)

Po
Fig. 5

B. The cost per non-defective unit. The expressions (51) and (52) represent
the buyer’s loss for every lot he has ordered. However, what really matters is
his cost per non-defective unit. We may assume that defective units are worth-
less to him, and that evgry year he needs a certain number of non-defective
units. Now what is the average price he has to pay for these?

Following Hamaker [4], I shall use the following notation:

f» = [Qd F(p) = average fraction of lots rejected,

fia = [ p P d F(p) = average fraction defective accepted,

fa = [ (1 — p)P d F(p) = average fraction effective accepted,
N

All integrals are from 0 to 1.
The average number of non-defectives accepted per lot is

(54) Nfea = N(1 = fr — faa).

Let the price to be paid for an accepted lot be a, and the cost of a rejected lot
¢. The average cost of a lot is

(55) (I =fa+fice+fn=a—fla—c)+fn
Hence the average cost of a non-defective unit is

(56) K =la—fi(a—c)+ /N1 —fi— fa)

number of units in a lot.

It
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We may assume f, and fi to be small as compared with 1, and fn small as
compared with a. Neglecting powers and products of small terms, we obtain

(57) NK =a(l — f,((a — ¢)/a) + (fn/a) + fr + fas) = a + fua + fic + fn.

In order to minimize K for given N, we have to minimize the expression
(58) faaa + fre + fn = f(apP + ¢Q + fn) dF (p).
Now this is just the expectation of the loss L of equation (53)
(59) E(L) = [LaF(p).

Hence, no matter whether we start with the loss per lot or with the loss per
non-defective unit, the buyer’s minimum loss problem is just the same as the
producer’s, only with b = 0. Hence, the minimum regret solutions, obtained in
Section 2 and Section 3 for non-sequential tests, may be applied without any
modification to the buyer’s problem.

The method of approximation used in passing from the fractional expression
(56) to the linear expression (57) is due to Hamaker [4]. The same method can
be applied whenever factors such as 1 — f4 or 1 — f, — fa, oceur in the denomi-
nator of a cost formula. As an example, Horsnell’s cost formula for non-destruc-
tive inspection([7], Formula (1)) may be mentioned.

C. Sequential tests. For sequential tests there is an essential difference between
the producer’s and the buyer’s loss function. If the buyer finds many defectives,
his best action is to stop sampling and to return the product to the producer.
But if the producer finds many defectives, and if inspection is not destructive,
he may go on sampling without increasing his loss, because he has to inspect the
whole lot and to eliminate the defectives anyhow.

Therefore, a producer’s sequential test will have an acceptance line but no
rejection line. As long as we do not cross the acceptance line, sampling goes on
until the whole lot is inspected. The sampling plan is defined by an increasing
sequence of numbers ny < n; < n, --- . The lot is accepted when a sample of
no contains no defectives, or when a sample of n; contains just 1 defective, ete.
Anscombe [8] investigated sequential sampling plans of this type, in which the
numbers n; form an arithmetical sequence

Quite generally, let P, be the probability of acceptance with k defectives in
a sample of 7, . The loss in this case would be

(61) L, = ap + fny,
and, in the case of 100% inspection,

(62) L" =bp + c.
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For given p, the loss expectation is
(63) L = ) PiLi 4+ QL” = apP + > fmPi + (bp + ¢)Q.

The problem is, once more, to minimize the loss expectation
(64) B(L) = [ LaFp)

or, if F(p) is not known, to minimize the maximum of the regret
(65) R=L—Ln.

For the case of an arithmetical sequence (60), good approximations to P, @
and E nPr are obtainable from Wald’s theory [10]. I do not know whether an
arithmetical sequence is most economical.

In the case of a buyer who is entitled to return rejected lots, a sequential test
may have an acceptance line and a rejection line. The loss function is

(66) L = apP + cQ + fE(n).

The lot size will be assumed to be large as compared with E(n), so that in all
probability a decision is reached long before the lot is exhausted. If the accept-
ance and rejection lines are straight and parallel, we have a Wald probability
ratio test. I am inclined to believe that the minimum regret tests corresponding
to the loss function (66) are just probability ratio tests, but I cannot prove it.
It would be very interesting to calculate the parameters of these tests as func-
tions of a, ¢ and f.

If the lot size is not very large as compared with E(n), we have to use, in
working out a probability ratio test, the hypergeometric distribution instead of
the binomial one; see [9].

b. Application of game theory. Until now, we have considered the producer’s
and the buyer’s problem separately. However, we may combine the two points
of view and regard the whole transaction as a two-person non-zero sum game.

A. The rules of the game. The producer may inspect a sample and may decide
to examine the whole lot and to eliminate the defectives, or he may send the
product as it is.

The buyer may inspect a sample and may return the product as soon as he
finds at least one defective, or he may accept the product and use it or sell it
to others.

The producer pays a constant production cost and gets a fixed price if the
product is accepted. If his own inspection does not accept it, he is still able to
make the fixed price minus bp + c¢. If the buyer returns the lot, the producer
gets the fixed price minus bp + ¢ + ¢’. In any case, he has to pay fn for the
inspection of a sample of n.

The buyer pays the fixed price if he accepts the sample. By using or selling
it himself, he makes a fixed profit minus ap. If he returns the product, he has,
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to pay ¢’ for cost of transportation. Besides, he has to pay fn; for the inspection
of a sample of n; .

B. The three players and their strategies. In order to apply the theory of games,
we may introduce ‘“Nature” as a third player, whose profit or loss is such that
the sum of the three profits is zero. Nature may influence the defective fraction
p by causing accidents in the production process. The producer can do nothing
against this except repairing the damage, so that next day the odds for a new
accident are exactly what they were before.

So a “move’” of Nature means a value of p, valid one day. The difference
between Nature and the other players is that Nature is not interested in in-
creasing her profit. Nature’s only ‘“‘strategy’ is to produce random numbers p
according to a distribution function F(p).

A strategy of the producer or buyer means an inspection plan. The buyer’s
best strategy has been investigated already in Section 4. If the buyer knows by
previous experience the distribution G(p) of the p-values the producer sends
him, he may find an inspection plan which minimizes the expectation value of
his loss

(67) B(L) = [L(p) d6(o).

If the function G(p) is not known, the buyer may adopt the minimax regret
strategy.

The producer’s strategy has to be considered anew, because the rules of the
game are more complicated than those adopted in Section 1. The formulas for
the producer’s loss if his own inspection rejects the product are the same as in
Section 1. On the other hand, if the product is sent to the buyer, the producer’s
profit or loss depends on the defective fraction p and on the buyer’s strategy.
Even if we assume the buyer’s strategy to be known, the producer’s loss expec-
tation will be a rather complicated expression. The assumption made in Sec-
tion 1 that the loss expectation is proportional to p, may be a useful
approximation.

C. The possibility of coalitions. Until now, we have investigated the strategy
of the three players separately. Next we have to consider the possibility of two
players forming a coalition with the aim of making their joint profit as large as
possible.

Of course, a coalition of one of the thinking players with Nature with the aim
of ruining the other one makes no sense, but the producer and the buyer may
well agree upon a combined sampling plan which would maximize the sum of
their profits.

By combining the two sampling inspections into one, the two partners can
avoid the additional losses ¢’ and ¢’ which arise when tlie product is sent and
returned to the producer. This means: The inspection has to be made only at
the producer’s, e.g. by a neutral agent. If n is the total size of the sample, the
combined loss of the producer and the buyer is
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L, = ap + fn, if accepted,

and

Ly = bp + ¢, if rejected.

Now this combined loss function is exactly the same as the producer’s loss

function adopted in Section 1. Hence we may apply the theory developed in
Sections 1-3 to find the best strategy of the coalition.

1.

2.

8.

9.
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