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Introduction and Summary. Let X;, X., ---, X, be a sample of a one-
dimensional random variable X which has the continuous cumulative probabil-
ity function (cpf) F. It has been observed that the distribution-free statistics
commonly appearing in the literature can be written in the form ®[F(X,),
F(X,), ---, F(X,)] where ® is a measurable symmetric function defined on the
unit cube. Such statistics are said to have structure (d).

Birnbaum and Rubin [12] have proved that for the family Q*, of strictly mono-
tone continuous cpf’s, statistics of structure (d) possess a property stronger than
that of being distribution-free.

The purpose of this paper is to study the extension of the Birnbaum-Rubin
(B-R) result to other classes of cpf’s and to present a different approach to
these results. It is found that a one-sided extension of the B-R result is valid
for all properly closed, symmetrically complete classes of cpf’s. Then, from the
existing literature on completeness, one can conclude that the extension is valid
for several other classes of statistical interest.

The relation between statistics of structure (d) and strongly distribution-free
statistics (Section 1) is of importance for two reasons. First of all, if one is de-
signing distribution-free tests, the results here and in [12] guarantee that if
one chooses a statistic of structure (d), one has a strongly distribution-free
statistic for several large classes of cpf’s.

On the other hand if one has a strongly distribution-free statistic, the results
guarantee that it is of structure (d). Hence, its cpf can be written as the volume
of a polyhedral region in the n dimensional unit cube. Under such circumstances
the work of Smirnov [20], Feller [13], Anderson and Darling [4], and Birnbaum
[9] indicate that it should be possible to evaluate the cpf explicity; reduce it to a
system of recursion formulae; tabulate it with the aid of high-speed computers
or at least evaluate its limiting distribution.

This article is divided into four sections. In Section 1 distribution-free statis-
tics of various types are introduced. Section 2 contains some preliminary results
concerning cpf’s. The main theorem is proved in Section 3; and Section 4 con-
tains a survey of the known pertinent completeness results as well as a corollary
of the main theorem.

1. Distribution-free Statistics. Consistent with the notation of Scheffé [18]
and B-R [12] let

Q, = the class of all cpf’s;
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Q; = the class of all non-degenerate cpf’s;

Q. = the class of all continuous cpf’s;

Q* = the class of all strictly monotone continuous cpf’s;

Q; = the class of all absolutely continuous (with respect to Lebesgue measure)
cpf’s;

Qs = the class of all cpf’s with continuous derivatives;

Q, = the class of all cpf’s which are uniform within intervals [11], [12]; and

Q. = the class of all cpf’s with densities of the form
C(By, -+, 0,) exp{—2" — Oz — 02" — -+ — 0,27},

[16]. Analogously, for the unit interval I, one defines
Q(I) = the class of all cpf’s on I;
Q(I) = the class of all non-degenerate cpf’s on I;
(1) = the class of all continuous cpf’s on I; etc.
If @ and Q' are two arbitrary families of cpf’s, a real-valued function

Sa= SG(X1,X2,"',X")

will be called a statistic in @ with regard to (w.r.t.) @', if for every G ¢ @, and
FeQ;and X, X;, ---, X, in the n-dimensional sample space for a random
variable X which has cpf F,

(a) S¢(X™) = Se(X1, Xz, -+, X») is defined everywhere in the sample
space, and ‘

(b) S¢ = Se(X‘™) has a probability distribution; this probability distribu-
tion will be denoted by ®#™ Sg'.

For example, consider von Mises’ statistic

wh = [ 1Fu@) ~ 6@ d6() = (1/120) + 3 [6(X0) — (21 = D/

Kolmogoroff’s statistic
D, = sup |Fa(z) — G(z) | = max [G(X)) — (@ — 1)/n,(i/n) — G(X2));
—00<z<0 [L ) WERN 3

Anderson and Darling’s
K, =_sup +/n|Fu(2) = G(2) (MG’
and

W =n [: [Fu(z) — G(z)P¥G(z)] dG(z)

where F,(z) is the empirical cpf determined by the sample X, , ---, X, ; and
X1, Xa, -, X, are the ordered sample values. All satisfy (a) and (b) when
Q= Q = Q,. Hence w2, D, K., and W5 are all statistics in Q; w.r.t. Q2.

If for a statistic Se(X™) in @ w.r.t. @ there exists a (measurable) function
& defined on the n-dimensional unit cube and symmetrie in its arguments, such
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that for any G ¢ Q, F ¢ @, we have Se¢(z™) = ®[G(21), - -+ , G(2.)][®F], ie.
almost everywhere in the sample space X ™ for the random variable X which
has cpf F, then Sg(X™) is called a statistic of 'structure (d).

If @ = @ and Se(X™) has the property that ®$” S5, the probability dis-
tribution of S¢ when X has cpf G, is independent of G for all G ¢ ©, then Se¢(X my
is a distribution-free statistic in Q.

If So(X™) is a statistic in @ C Q* w.r.t. some @/, then Sg(X™) is called a
strongly distribution-free statistic in @ w.r.t. @ if @5 Se' depends only on the
function r = FG ' forall G eQand F £ ©'.

In view of the preceding definitions, it can be readily established that

(A) if a statistic in 2 w.r.t. Q; has structure (d) then it is distribution-free
in 92 H

(B) if a statistic in Q* w.r.t. @* is strongly distribution-free, then it is dis-
tribution-free in Q*; and

(C) if a statistic in Q* w.r.t. @* has structure (d), then it is strongly distribu-
tion-free.

Further, it is seen that each of the statistics (von Mises, etc.) in the example
above is, for properly chosen classes of ¢pf’s, of structure (d); strongly distribu-
tion-free and symmetric; and distribution-free. Such also is the case for D} and
D7 of Wald and Wolfowitz [21], and Birnbaum, [10]; the spacing statistics of
Kimball [17] and Sherman [19]; and most of the other distribution-free statistics
in the literature.

Birnbaum and Rubin [12] have shown that there exists a distribution-free
statistic which is not strongly distribution-free; but the other two properties
always seem to occur together in a statistic. For that reason it is of interest to
find the conditions under which the property of having structure (d) is equiva-
lent to being symmetric and strongly distribution-free.

It is known [12] that these two properties are equivalent for statistics in Q*
w.r.t. @* In Section 3 it will be shown that the two properties are equivalent
for statistics in Q* w.r.t. @', where Q' satisfies certain closure and completeness
properties.

Before proceeding with the proof of this theorem, it is worthwhile to recall
some definitions and results concerning cpf’s. This is done below in Section 2.

2. Probability Functions. In view of the nature of the problem, the work will
deal primarily with probability spaces on the real line and on the unit interval.
For that reason the following classes and sets should be defined.

Let B, R™, I, I™ &, 8™, ®;, and ®{”, be respectively, the real line; euclid-
ean n-space; the open unit interval; the n-dimensional open unit cube; and the
respective classes of borel subsets of R, R™, I, I™.

A cpf, F(z), on R is a non-decreasing, upper semi-continuous function defined
on R and such that lim,., F(z) = 1 and lim,. ., F(z) = 0. A cpf, H(u), on I
is a non-decreasing, upper semi-continuous function defined on I and such that
limy_; H(u) = 1 and lim,,cH(u) = 0.
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It is well known ([2], p. 96) that each cpf on R induces and is induced by a
probability distribution on ®; similarly each cpf on I induces and is induced by
a probability distribution on ®;. Let ®r denote the probability distribution
induced by the cpf F(z); and let @ denote power probability distribution on
the class 8™ generated by F, i.e. the probability distribution induced by = in-
dependent random variables each distributed with cpf F.

If G, G1 £9Q¥ then G, G~ ! and G,G" are all 1 — 1 strictly monotone, con-
tinuous mappings; and, hence, preserve many of the properties of ¢pf’s and their
probability distributions. In fact,

(1) if F £ Q[ , Q2, Q%] and G, G, £ Q*, then

(a) FG™* e Qo(I)[@u(I), Qu(I), *(I)] and

(b) FG—IGl &€ Qo[Ql , Qz , Q*].

Since the closure property (b) is important in the sequel, it is worthwhile to
give the following formal definition.

Q' is said to be closed under @ if FG'Gy ¢ @', whenever F ¢ and G, Gy € Q.
Therefore, one concludes from (i) that Qo , 21, 2 and Q* are each closed under
Q*,

Further, it is seen that under such mappings numerical values are preserved
in the following sense. ,

(ii) If F £ Q and G, Gy £ Q*, then (a)®re-1(B) = @G (B) for all B £ ®&™;
and (8)®¥e-16,[GT*(B)] = ®@5d-1(B) for all B £ ®{™, where

[G(z™)] = [G(z), -+, G(za)]

and G (u, -+, un) =[G (w), -+, G (un)].
With these preliminary results one can proceed to establish the main theorem.

3. The Main Theorem. As mentioned in the introduction the object here is
to demonstrate that for suitable classes of ¢pf’s a statistic is symmetric and dis-
tribution-free if and only if it is of structure (d).

If a statistic, Sg, in @ w.r.t. @ is of structure (d), there exists a measurable
function & defined on I and symmetric in its arguments, such that for any
GeQand F e, Se(z™) = 3[G(z™)][®x).

If A is an arbitrary element of &™, then Sg'(4) = G0 (4). In view of
(ii), then, ®rS3'(4) = @G '0d ' (A) = Pre-1®'(A) providing FG* is well
defined. Clearly, this will be so whenever G ¢ @*. Further, Sg is symmetric
whenever & is. Therefore, one can conclude the following,.

LemMA 1: If a statistic, S¢, in @ C Q* w.r.t. @ is of structure (d), then S¢ s
symmetric and strongly distribution-free.

On the other hand if Sg, a statistic in @ C Q* w.r.t. @/, is symmetric and
strongly distribution-free, let ®, = S¢, 0 G1', where G, is an arbitrary fixed ele-
ment of & C Q*,

It is clear that ®; is symmetric. Therefore, in order to complete the proof one
must demonstrate that Se(z™) = &[G(z™)][®F] for all F £Q’ and all

G e C Q*,
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Again let A be an arbitrary fixed element of ®™. Then,
Cri®[G(z™)] e A} = CxG 0BT (A) = Cro-BT'(A) = CPre-1G10 Sa.(4)
= Pro-16,80.(A)  forall F ¢ @ and all G £ © C Q%

Now, if FGT'Gy e @, i.e. if @ is closed under @ C Q*, then the fact that Sq is
strongly distribution-free guarantees that (qu‘-lng;:(A) = ®»S5'(A) since
(FG7'G,)GT" = (F)G7. Under these circumstances one sees that

CAB[G(2™)] £ A} = @p{Sa(z™) € A} forall F e @, G ¢Q C Q*.

These results lead one to the following question. What conditions must the
class @ satisfy in order that S¢ and ® o G, which have identical distributions
for each F ¢, be essentially equal? In answering this question, the following
definition will be employed.

A class, Q, of cpf’s is said to be symmetrically complete if every unbiased, sym-
metric estimator of zero, with respect to the class of power probability distribu-
tions of Q, is essentially zero, i.e., the conditions (1) f is symmetric; and (2)
[z fd @5 = 0 for all F £Q, imply that f = 0[®s"] for all F £ Q.

In terms of this definition, the answer to the question is as follows.

LemMma 2: If 8 and ® are symmelric measurable functions such that

PSS e A} = @@ £ A)
forall A e ® and all F ¢ Q'; and if Q' is a symmetrically complete class, then
S = a[ef"]

forall F £ Q.
Proor: Let g(B, ™) be the indicator function of B, i.e.

(n)
4(B, z™) ={1 for ' ¢ B,

0 otherwise;
then for each A ¢ ® and each F ¢ @/,
[, (57 4),2) = g@7(4), 2)] dos = o§”(5™(4))

— oM (a7 (4)} = 0.

Since 8 and & are symmetric, g(S™(B), z'™) and g(®*(B), z™) are symmetric,
and so is their difference. Because of the completeness property of @/,

9(87'(B), z™) — g(@7(B),z™) = 0
and ¢g(S7(B), z™) = g(®(B), z™)[®+”] for all F £ Q. Consequently,
@7 (857(4)a87(4)) = 0
forall F ¢ Q' and all A ¢ B.
[Note: EAF = (EuF) — (EnF)l]
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But

P8 = @) = eM(S > @) + (@ > 8) <

> i [0S > (m/k); @ < (m/k)) + @§(S < (m/k); & > (m/k))]

Mm=—c0

L

< 2 kX; [¥((8 = (m/K))A(® = (m/k)))] =0 forall Feg.
Therefore § = ®[®{™] for all F ¢ Q. The main theorem now follows immediately.

TaE MAIN THEOREM. If S¢ is a statistic in Q@ w.r.t. @', then the property of
being symmetric and strongly distribution-free is equivalent to having structure (d),
whenever the following three conditions are fulfilled.

(a) @ C Q%

(B) @ s closed under Q@; and

(v) @ is a symmetrically complete class.

The next question is: Which classes of statistical interest satisfy the hypotheses
of the main theorem?

4. Closed and complete classes. As was previously mentioned one can con-
clude from (i) that Qo , Q1 , Q; and Q* are closed under all subsets of Q*. Also, it
can be proved that Q;, Q4 , Q, and Q. do not satisfy that closure property. How-
ever, one can verify that Q; is closed under 2; n Q*; and that Q, is closed under
94 n Q*.

The work of Halmos [16]; Fraser ([14], [15], [1], pp. 23-31); Lehmann ([3],
p. 132), and Bell-Blackwell-Breiman [8] establish the fact that Qo, @, @, @5,
Q , & and Q, are symmetrically complete. (It should be mentioned here that a
class of cpf’s is symmetrically complete if and only if the order statistic is a
complete statistic with respect to the class of power probability distributions
of the given class of cpf’s.)

Therefore, Qo, @, Q, @ and Q4 satisfy both the completeness and closure
hypotheses of the main theorem. Consequently, the following corollary to the
main theorem is valid.

CoroLLARY: If Sg is a statistic in Q@ w.r.t. ', then the property of being sym-
metric and strongly distribution-free is equivalent to having structure (d) for each
of the following cases.

(1) 2cC Q*and & =  ;

(2) Qc Q*and @ = ;

B)ecQ*and @ = O, ;

(4) QC Q*and & = Q*;

(5) 2 =% nQ*and @' = Q; ;and

(6) Q=UnQ*and @' = Q.
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